KAUKAUNA UTILITIES
Outagamie County, WI

Kaukauna Utilities

Water System Study

May 14, 2024

Prepared by: CBS Squared, Inc. 2500 E Enterprise Avenue Appleton, WI 54913 920.574.3135

KAUKA 22001

Kaukauna Utilities Water System Study 2024 Executive Summary

Kaukauna Utilities serves the City of Kaukauna with drinking water. Kaukauna Utilities has an extensive water system with over 100 miles of water main, utilizing five wells with three iron removal plants and two water towers. Kaukauna Utilities provides service to approximately 7,000 customers. Residential usage accounts for most of the water demand.

Kaukauna Utilities is looking to investigate potential changes and upgrades to the water system in their effort to continue to provide water that meets or exceeds all federal and state regulatory standards while remaining safe, environmentally responsible, and cost-effective. The purpose of this water system study is to analyze existing and future water demands, supply, water storage, water quality, various water treatment options, and replacement options for the Main Filter Plant, including potential replacement of the plant at other site locations. The water study also explores future development areas for the water distribution system.

The following is a summary of the findings of the water system study.

Water Demand/Water Supply

The water system study looked at the projected water demands for the next 20 years. It forecasted the future water demands will increase steadily at a rate of about 1.7% annually. The groundwater that supplies Kaukauna Utilities' system is projected to be a sustainable source of water for at least the next 20 years. The existing pumping and treatment equipment is projected to be adequate for at least the next 15 years. A new well should be reevaluated in approximately 15 years to ensure that Kaukauna Utilities can meet the future demand.

The water system study analyzed a couple of water supply options. One option evaluated was to move from groundwater to surface water. Changing the water source to surface water from the Green Bay Water Utility or surface water from the City of Appleton is not a cost-effective solution for delivering improved water quality to customers. The operational costs of using surface water are higher than treating water from groundwater sources in Kaukauna.

The reuse of water from the wastewater treatment plant was also evaluated as a water source for Kaukauna Utilities. It would involve extensive treatment prior to being distributed as drinking water. This source option should not be pursued because it is not cost-effective.

Water Storage

Kaukauna currently meets the current capacity needs with the current underground storage reservoirs, but replacement is needed due to the condition of the tanks. The floors of the reservoirs are below the groundwater table and are subject to potential contaminants leaking into the tanks. This risk should be avoided by building new reservoirs above the groundwater table.

The water storage capacity is projected to be adequate for at least the next 20 years. No additional elevated storage tanks need to be considered during this time frame. It is estimated that the future

development in the southeast corner of the study area, which will need a second pressure zone and an elevated storage tank, will occur after the 20-year study period of this report.

Water Quality

The Wisconsin Department of Natural Resources (DNR) sets primary maximum contaminant levels for drinking water that pose a health risk and also sets secondary maximum contaminant levels for contaminants posing aesthetic and cosmetic objections in drinking water, such as taste, water hardness, and smell. Kaukauna Utilities currently uses a water treatment system consisting of a pressure filter tank and chemical addition to remove radium and iron. The treated water meets all DNR primary maximum contaminant levels and meets secondary maximum contaminant levels for iron. The treated water has levels of sulfate and total dissolved solids that exceed the DNR secondary maximum contaminant level, but the levels set by the DNR for these components of the water are guidelines and not mandated. Water hardness, which Kaukauna Utilities has identified as a potential area of improvement, is a component of total dissolved solids. Total dissolved solids and water hardness contribute to mineral buildup customers observe on water fixtures. Kaukauna Utilities' treated water is safe to drink and does not pose a health risk.

Main Filter Plant

The pressure filter tank at the Main Filter Plant is over 60 years old and is at the end of its service life. The tank was temporarily patched seven years ago and will need to be replaced within the next three to five years. In addition, the Main Filter Plant Site is located in a floodplain. This does not comply with current DNR Administrative Code which requires first floor elevation of water facilities to be two feet above the 100-year floodplain.

Four Alternatives for the Main Filter Plant were studied to address the above issues. The capital and operation costs, customer impacts, and risks were evaluated for each alternative. The alternatives studied were:

- Alternative 1: No Changes
- o Alternative 2: Replace Pressure Filter Tank at Current Location
- Alternative 3: Rebuild Water Treatment Plant Building and Reservoirs at Current Location
- Alternative 4: New Water Treatment Plant Building at New Site

Alternative 4 minimizes the most risk factors that were considered. Alternative 4 consists of building a new water treatment plant with reservoirs and a booster pump station at a new location outside the floodplain. The new Main Water Treatment Plant location would allow for the necessary building size for new treatment. This alternative would replace the equipment and structures identified in the water system study report as being past their useful life. Alternative 4 also allows the existing Main Filter Plant to continue producing water while the new water treatment plant is built.

Water Treatment Process Options

The existing water treatment process involves chemical addition to remove radium and iron using a pressure filter tank. New treatment processes are being considered to also remove the water hardness from the treated water. Nine water treatment processes were considered as part of the water study. The five water treatment processes further evaluated are:

Water Treatment Option 1: Keep Existing Water Treatment Process

Water Treatment Option 2: Ion Exchange Treatment Process

Water Treatment Option 3: Reverse Osmosis or Nanofiltration Treatment Process

Water Treatment Option 4: Pellet Softening Treatment Process

Water Treatment Option 5: Change from Groundwater Source to Surface Water Source

(Purchase Treated Water)

Treatment Option 3 meets Kaukauna Utilities' water treatment objectives best. It consists of nanofiltration or reverse osmosis water treatment process to lower or remove radium, iron, sulfate, water hardness, and total dissolved solids levels in the raw water. This treatment process would benefit customers by lowering water hardness to a predetermined range and allow them to save on water softening costs if they choose to eliminate their water softener.

Water Distribution System

Within the existing water distribution system, improvements such as water main looping and water main upsizing were considered. Kaukauna Utilities is anticipating residential growth to the southeast as well as industrial and residential growth to the north. The water distribution system was studied with a computer water model prepared in the Bentley WaterCAD software. The current water distribution system meets the minimum fire flow requirements established by the DNR of 500 gallons per minute (gpm) and 20 pounds per square inch (psi). This is the required amount of water flow and pressure needed to continuously fight a fire. The water distribution system also meets the minimum static system pressure established by the DNR of 35 psi for customers.

A potential improvement to the water distribution system includes upsizing the water main on Hillcrest Drive from the current 8 and 10-inch piping to 12-inch piping. This improvement would benefit the areas of low fire flow in the southeastern part of the existing water system and allow for higher fire flows in the future expansion to the southeast.

Additionally, Kaukauna Utilities can stay on one pressure zone until development to the southeast necessitates the addition of a second pressure zone. It is projected Kaukauna Utilities can add to the water system to the southeast, to an area east of County Road GG and south of Weiler Road, before needing to add another pressure zone. By staying with one pressure zone as long as possible, it would minimize maintenance labor and postpone adding dead ends in the water system until another pressure zone is needed. Once development reaches this area, a second pressure zone should be evaluated as well as the possible need for another elevated storage tank for the second pressure zone.

Table of Contents

1.	Introduction	1
2.	Water Study Need	1
3.	Topography	2
4.	Population Projections	2
5.	Design Period	2
6.	Past Studies	2
7.	Environmental Characteristics	2
7	'.1 Wetlands	2
7	.2 Floodplain	2
8.	Existing Water System	3
8	.1 Water Supply Facilities	3
8	.2 Water Storage	8
8	3.3 Water Distribution System	9
9.	Water Demand	9
10.	Water Supply System	11
1	0.1 Well Capacity	11
1	0.2 Aquifer and Pumping Information	14
1	0.3 Surface Water	15
1	0.4 Water Reuse	17
11.	Water Quality	19
1	1.1 Raw Water Quality	19
1	1.2 Treated Water Quality	19
	11.2.1 Strontium	20
	11.2.2 Water Hardness	20
12.	Main Filter Plant Alternatives Analysis	22
1	2.1 Alternative 1: No Changes	22
1	2.2 Alternative 2: Replace Pressure Filter Tank at Current Location	23
1	2.3 Alternative 3: Rebuild Water Treatment Plant Building and Reservoirs at Current Location	23
1	2.4 Alternative 4: New Water Treatment Plant Building at New Site	24
1	2.5 Main Filter Plant Recommendations	25
13.	Water Treatment Analysis	25
1	2.1 Survoys	25

	13.2 Water Softeners	26
	13.3 Target Water Hardness	27
	13.4 Customer Cost Savings for Water Hardness Reduction Performed by Utility	28
	13.5 Water Treatment Options	31
	13.5.1 Water Treatment Option 1: Keep Existing Water Treatment Process - Filtration	31
	13.5.2 Water Treatment Option 2: Ion Exchange Treatment Process	32
	13.5.3 Water Treatment Option 3: Reverse Osmosis or Nanofiltration Treatment Process	32
	13.5.4 Water Treatment Option 4: Pellet Softening Treatment Process	35
	13.5.5 Water Treatment Option 5: Change from Groundwater Source to Surface Water Source	36
	13.6 Other Water Treatment Processes Considered but Not Pursued as Options	37
	13.7 Water Treatment Recommendations	38
1	4. Water Distribution System	40
	14.1 Computer Water Model Calibration	40
	14.2 Computer Water Model Results	41
	14.3 Water Distribution System Recommendations	45

List of Appendices

Appendix A	Cost Estimates
Appendix B	Water Study Report Figures
Appendix C	Condition Report for Existing Water Filter Plants
Appendix D	Water Demand Summary and Calculations
Appendix E	Water Quality Results
Appendix F	Water Hardness Supplemental Information
Appendix G	Risk and Benefit Table for Main Filter Plant Alternatives and Treatment Options
Appendix H	Surveys and Water Softener Costs Details
Appendix J	Water Treatment Equipment
Appendix K	Computer Water Model Information
Appendix L	2003 Evaluation of Water Supply System

1. Introduction

Kaukauna Utilities is located in the City of Kaukauna, WI, which is in Outagamie County in northeastern Wisconsin. A location map of the City of Kaukauna is shown in **Figure 1** included in **Appendix B.** The municipal water distribution system serves approximately 7,000 customers utilizing approximately 100 miles of water mains according to the 2022 Public Service Commission (PSC) Annual Report.

The water system study includes Kaukauna Utilities' existing water system as well as areas of future growth. The 100-year expansion for the City of Kaukauna was delineated with the water study limits. The water system study limits go as far east as Outagamie Road / County Line Road and as far north as County Road UU. The west and south boundary of the water study are that of the existing system—STH 55 and CTH KK. A map of the water study limits is shown in **Figure 2** included in **Appendix B.**

Kaukauna Utilities' water is sourced from five groundwater wells: Well 4, Well 5, Well 8, Well 9 and Well 10. Kaukauna Utilities has three water treatment plants. The water from Well 4, Well 5, and Well 10 is treated in the Main Filter Plant. The Main Filter Plant has two ground storage reservoirs with a total capacity of 579,000 gallons. The water from Well 8 and Well 9 is treated at a water treatment plant located at each well building. Kaukauna Utilities' distribution system also includes two water elevated storage tanks, also known as water towers, with a combined capacity of 1 million gallons.

Based on data from the 2022 PSC Annual Report, the average daily demand for Kaukauna Utilities was 1,300,445 gallons per day. The water demand is largely driven by residential usage which accounts for about 67% of water usage annually.

The purpose of this report is to provide Kaukauna Utilities with an evaluation of the water system, providing alternatives, analysis, and recommendations.

2. Water Study Need

This study represents Kaukauna Utilities' ongoing commitment to deliver safe and reliable drinking water. The study will help Kaukauna Utilities make informed decisions about potential changes and upgrades to the system. Some areas that have been identified by Kaukauna Utilities for potential enhancements are the Main Filter Plant and the water treatment process. The existing Main Filter Plant is located in the Fox River floodplain and does not comply with current Department of Natural Resources (DNR) code requirements. The Main Filter Plant treatment equipment, building structure, and reservoir structures are at the end of their lifespans. Additionally, Kaukauna Utilities is evaluating whether the water treatment process should include water hardness removal. This treatment process would involve updated water treatment equipment for all the wells.

Kaukauna Utilities also requested that the study evaluate improvements and expansions to the water distribution system. Improvements such as looping and pipe upsizing were considered within the existing water distribution system. Kaukauna Utilities is anticipating residential growth to the southeast and industrial and residential growth to the north. These water distribution system expansions were considered, with additional pressure zones when applicable.

3. Topography

The topography of Kaukauna includes a high east end. A river runs through the center of Kaukauna, which divides the water distribution system. The river area includes some development, which is at a lower elevation than the rest of Kaukauna. A topographic map is shown in **Figure 3** included in **Appendix B.**

4. Population Projections

Past population estimates and projected population figures for Kaukauna are shown in **Table 1**. The population estimates are from the U.S. Census Bureau which predicts the City's population will increase annually at a steady rate of 1.7%.

1990 2000 2010 2020 2025 2030 2035 2040 Population Population Population Population Projection Projection Projection Projection 12,000 13,000 15,500 17,100 18,600 20,200 22,020 24,000

Table 1: Population Data for the City of Kaukauna

5. Design Period

The water main expansion area is for a 100-year design period. The remainder of the water study is a 20-year design period. The design period for the concrete structures, water treatment plant building, and water treatment plant equipment is 60 years.

6. Past Studies

McMahon Associates Incorporated prepared an Evaluation of Water Supply System in 2003. The report detailed the current system and made recommendations for improvements. The 2003 McMahon report is included in **Appendix L.**

7. Environmental Characteristics

7.1 Wetlands

The Wisconsin DNR Surface Water Data Viewer was used to show wetlands within the study area. Wetland areas occur throughout Kaukauna. They are generally located on the southeast side of Kaukauna in areas around the Fox River and Konkapot Creek. A Wetland Inventory Map from the Wisconsin DNR is shown in **Figure 4** included in **Appendix B**.

7.2 Floodplain

The Wisconsin DNR Surface Water Data Viewer and FEMA mapping was reviewed to determine the location of the existing 100-year floodplain within the study area. Floodplains are in Kaukauna around the Fox River, Konkapot Creek, and in the southeast portion of Kaukauna. The Main Filter Plant is located within the 100-year floodplain. Floodplain Mapping is shown in **Figures 5 and 6** in **Appendix B**.

8. Existing Water System

8.1 Water Supply Facilities

The water supply for Kaukauna Utilities is obtained entirely from groundwater wells. There are currently five wells in service. Wells 4, 5, and 10 are located south of the Fox River, which divides the City of Kaukauna. Wells 8 and 9 are located north of the Fox River. A map of Kaukauna Utilities' water facilities locations is shown in **Figure 7** in **Appendix B.** A schematic of the existing water system wells and treatment system is included in **Figure 8** in **Appendix B.** A Condition Report for existing water filter plants was prepared on October 23, 2023 to determine the deficiencies of the existing water filter plants, existing ground storage reservoirs, and main booster pump station. The Condition Report for Existing Water Filter Plants is included in **Appendix C**. The asset conditions are summarized in Figure 8.

8.1.1 Well 4

Well 4 is located at the Main Filter Plant site at 304 Elm Street. Well 4 consists of a 15.5-inch casing to a depth of 34 feet and a 12-inch casing extended to a depth of 120 feet. A 12-inch open hole was drilled from a depth of 120 feet to a total depth of 726 feet. A 10-inch liner was placed from the surface to a depth of 120 feet. The annular space between the 10-inch liner and the larger diameter casings was sealed with grout to a depth of 120 feet.

Well 4 has a submersible pump with a capacity of 600 gallons per minute (gpm) that was installed in 2024. This pump is driven by a variable frequency drive (VFD) and operates at 555 gpm. A variable frequency drive allows the well pump to operate at different speeds. The raw water from Well 4 is pumped to the Main Filter Plant which is adjacent to Well 4. There is no standby power for Well 4.

Well 4 is in a building connected to the Maintenance Facility Building and the Booster Pump Station Building. The Well 4 Building is in good condition.

The Well 4 Building is located just outside of the 100-year flood plain. The current Wisconsin DNR Administrative Code Chapter NR811.25(d) requires a floor elevation at least two feet above the regional flood elevation.

It is recommended that the next time Well 4 is scheduled for a major renovation, a cost benefit analysis should be performed to determine if the first floor of the building should be raised two feet above the 100-year flood plain to meet the current Wisconsin DNR Administrative Code Chapter NR811.25(d). It is anticipated that the DNR may require Well 4 to be brought up to meet current code the next time Well 4 is scheduled for a major renovation.

8.1.2 Well 5

Well 5 is located at 601 Pool Road southeast of the intersection of Dodge Street and Island Street. Well 5 was originally constructed in 1935 to a depth of 570 feet. In 1942, the well was extended to a depth of 733.5 feet and was then backfilled to a depth of 524 feet in 1947 to improve water quality. The well consists of a 16-inch grouted casing extended to a depth of 121 feet. A 15-inch

open hole extends from the bottom of the casing to a depth of 350 feet, and a 12-inch open hole extends from a depth of 350 feet to a total depth of 524 feet.

The Well 5 building was constructed in 1975. Well 5 has a submersible pump with a capacity of 380 gpm that was installed in 2022. This pump is driven by variable frequency drive and operates at 315 gpm. Well 5 was most recently serviced in February 2022. There is no standby power for Well 5. Both Well 5 and the Well 5 building are in good condition.

Sodium hypochlorite is added to the raw water at the Well 5 site to assist in disinfection prior to treatment at the Main Filter Plant. Well 5 water is conveyed through 2,100 feet of 8-inch diameter raw water transmission main to the Main Filter Plant.

8.1.3 Well 10

Well 10 is located on Tenth Street near Kenneth Avenue. Well 10 was originally constructed in 1945 as Well 6. Well 10 was originally constructed with a 10-inch casing grouted to a depth of 159 feet with a 10-inch open hole drilled to a depth of 568 feet. In 1995, the 10-inch open hole was extended to a depth of 841 feet and the well was renamed Well 10. In 2000, the well was filled to a depth of 660 feet to reduce radium and gross alpha levels. Radium levels were reduced as a result of filling the well.

Well 10 has a submersible pump with a capacity of 580 gpm that was installed in 2013. Well 10 was last serviced in 2013. The well is up for rehabilitation in 2024. There is no standby power for Well 10. Both Well 10 and the Well 10 building are in good condition.

Water from Well 10 is conveyed through 6,100 feet of 8-inch diameter raw water transmission line to the Main Filter Plant. Well 5 is also connected to this raw water transmission main.

8.1.4 Main Filter Plant Site

The existing Main Filter Plant site, originally developed in 1899, is located at 304 Elm Street. Water from Wells 4, 5, and 10 is treated and stored at the Main Filter Plant site.

8.1.4.1 Main Filter Plant Building

The Main Filter Plant building was last improved in 2022. Improvements included a new roof and new doors. The windows are original block windows. The Main Filter Plant building is currently in good condition. There is no standby power at this facility.

The floor elevation of the Main Filter Plant building is located below the 100-year floodplain elevation. The current Wisconsin DNR Administrative Code Chapter NR811.25(d) requires a floor elevation at least two feet above the regional flood elevation. The DNR may require the first floor of this building to be raised during the next major renovation to comply with current code.

A schematic of the Main Filter Plant treatment process is shown in **Figure 9** in **Appendix B.** The Main Filter Plant building includes one pressure filter tank and chemical feed systems. Manganese sulfate and potassium permanganate are added prior to filtration for oxidation and radionuclide removal. A pressure filter tank is used for iron, manganese, and radionuclide removal. Sodium hypochlorite is added following filtration for disinfection. An orthophosphate blend (50% ortho, 50% poly) is added following filtration for corrosion control. The finished drinking water is then

stored in two ground storage reservoirs until it is pumped to the distribution system from the main booster pump station.

The pressure filter tank is over 60 years old and in poor condition. The pressure filter tank is made of steel and coated with paint on the inside and outside for corrosion protection. The pressure filter tank works using low pressure around 10-15 pounds per square inch. The pressure filter tank was leaking in 2016. Upon visual inspection of the interior of the pressure filter tank in 2016, the tank was failing due to pitting of the interior steel surface caused by corrosion. The tank was repaired in 2016 by installing a concrete liner inside the bottom half of the tank to prolong its useful life. This type of repair was possible due to the low working pressure of the tank and was estimated to extend the life of the tank another 10 years. The repair has been a good temporary solution because the pressure filter tank is still producing satisfactory water quality.

Metal thickness testing of the pressure filter tank wall was performed on September 28, 2023. The results of the metal thickness testing are documented in the Condition Report for Existing Water Filter Plants included in **Appendix C**. The results show that the 60-year-old pressure filter tank has severe pitting on the interior of the tank walls. This result is consistent with the visual inspection performed on the interior of the tank in 2016. The structural integrity of the tank is in poor condition. The pressure filter tank currently has signs of mineral buildup on its exterior in two locations which indicates the tank is leaking.

It is recommended that the pressure filter tank be replaced within the next three to five years. The pressure filter tank at the Main Filter Plant is over 60 years old and is at the end of its service life. The tank was temporarily patched seven years ago. In addition, the Main Filter Plant Site is located in a floodplain. If major building renovations are performed, it is anticipated that the DNR may require the first floor of the Main Filter Plant Building to be raised two feet above the 100-year flood plain in accordance with Wisconsin DNR Administrative Code Chapter NR811.25(d).

8.1.4.2 Ground Storage Water Reservoirs

The Main Filter Plant Site has two ground storage reservoirs for storing finished water. See Section 8.2 (Water Storage) of this report for a discussion of the reservoirs.

8.1.4.3 Booster Pump Station Building

The Booster Pump Station building is on the north side of the Main Filter Plant site. The exterior of the building is in poor condition due to the rusty metal roof and rusty metal siding. The interior of the building is in good condition.

The Booster Pump Station building houses three booster pumps. Two of the pumps were installed in 2019 and have a capacity of 1,200 gpm each. They operate regularly. These two booster pumps are in good condition.

The third pump was installed in 1967 and has a capacity of 2,000 gpm. It is for emergency backup use only in the event of a power failure. The third booster pump is operated by a right-angle drive liquid propane engine, which is not considered a good emergency backup pump. The third booster pump will only provide water to the distribution system until the two ground storage reservoirs are empty. The engine only runs one booster pump and will not run the wells or the filter plant.

It is recommended that the third booster pump be replaced when emergency backup power is installed.

8.1.5 Well 8

Well 8 is located at 311 Delanglade Street, which is at the southwest corner of the intersection of Blackwell Street and Delanglade Street. Well 8 was originally constructed in 1959 and was rehabilitated in 1995. The well has a 20-inch casing pipe to a depth of 73 feet and a 16-inch liner to a depth of 151 feet. The well has been grouted to 151 feet. Well 8 has a total depth of 700 feet.

Well 8 has a submersible pump with a capacity of 600 gpm that was installed in 2023. This pump is driven by a variable frequency drive and operates at 475 gpm. Well 8 was last serviced by Municipal Well Services in 2023. There is no standby power for Well 8. Well 8 is in excellent condition.

Well 8 water is treated on site at a water treatment plant inside the well house. The treatment at Well 8 includes manganese sulfate and potassium permanganate injection prior to filtration for oxidation and radionuclide removal. One pressure filter tank is used for iron, manganese, and radionuclides removal. Following filtration, sodium hypochlorite is added for disinfection and an orthophosphate blend (50% ortho, 50% poly) is added for corrosion control. The water is stored in a ground storage reservoir before being pumped to the distribution system.

The Well 8 Water Treatment Plant building and pressure filter tank are in excellent condition after the recent renovation. The pressure filter tank was completely replaced in 2018 due to corrosion in the tank wall and a failure in the internal filter media bed, underdrain, and diffuser. The pressure filter tank is made of steel and coated with paint on the inside and outside for corrosion protection. The pressure filter tank works using low pressure around 10-15 pounds per square inch but is at 53-65 pounds per square inch (distribution system pressure) during backwash cycles.

Metal thickness testing of the pressure filter tank wall was performed on September 28, 2023. The results of the metal thickness testing are documented in the Condition Report for Existing Water Filter Plants included in **Appendix C**. The results show that the 5-year-old pressure filter tank has no pitting on the interior of the tank walls. The structural integrity of the tank is in excellent condition. The pressure filter tank currently has no signs of mineral buildup on the exterior of the tank which indicates the tank is not leaking.

The ground storage reservoir, built in 1999, is 15,000 gallons and is in excellent condition. The booster pumps at Well 8 are in fair condition.

8.1.6 Well 9

Well 9 is in Riverside Park at 101 River Street on the west side of Kaukauna. Well 9 was originally constructed in 1974. The well consists of an 18-inch casing grouted to a depth of 239 feet. A 17.25-inch diameter open hole was originally extended to a depth of 806 feet. In 1989, the well was filled to a depth of 620 feet to improve the water quality and reduce radium levels. The well

is chlorinated once a month to control iron bacteria. Well 9 was last serviced by Water Well Solutions in 2020. Well 9 is in good condition.

Well 9 site consists of two buildings: the Well House building and the Water Filter Plant building. The Well 9 Well House building, originally built in 1974, is in good condition. The Well House building houses a vertical turbine pump with a capacity of 1,300 gpm. Well 9 is the only well that Kaukauna Utilities is able to run during a power outage. Well 9 is equipped with a right-angle drive natural gas engine which was installed in 2015. The natural gas engine operates the well pump at 850 gpm which is 63% of the normal well pump capacity of 1,300 gpm.

Well 9 water is treated on site in a Water Filter Plant building located south of the Well House building. The filtration process includes injection of manganese sulfate and potassium permanganate for oxidation and radionuclide removal. The pressure filter tank is used for iron, manganese, and radionuclides removal. Sodium hypochlorite is added following filtration for disinfection. An orthophosphate blend (50% ortho, 50% poly) is added following filtration for corrosion control.

There are two horizontal pressure filter tanks inside the Well 9 Water Filter Plant building. The pressure filter tank was installed in 1990 and is made of steel and coated with paint on the inside and outside for corrosion protection. The pressure filter tank works using 75-82 pounds per square inch (distribution system pressure) all the time. All the inner piping has failed and was replaced in 2010 with PVC. The media was replaced in 2010. Media typically lasts 15 years.

Metal thickness testing of the pressure filter tank wall was performed on September 28, 2023. The results of the metal thickness testing are documented in the Condition Report for Existing Water Filter Plants included in **Appendix C**. The results show that the 33-year-old pressure filter tank has some pitting on the interior of the tank walls. The structural integrity of the tank is in good condition. The pressure filter tank currently has no signs of mineral buildup on the exterior of the tank, which indicates the tank is not leaking. It is anticipated that the pressure filter tank has about 20 more years of useful life. It should be evaluated at that time. An evaluation can also be done when the media in the tank is replaced.

Well 9 Filter Plant building has a standby generator to run during a power outage. The generator is sized to run only the building heaters, lights, and chemical pumps. Well 9 can produce treated water during a power outage using the natural gas engine driven well pump and the generator to run the chemical pumps. During a power outage, the well capacity is only 850 gpm due to the size of the natural gas engine.

It is recommended that the media in the pressure filter tank be replaced in the next three to five years. The pressure filter tank can be reused for the next 20 years based on the findings in the Condition Report for Existing Water Filter Plants. In approximately 20 years, the pressure filter tank should be re-evaluated to determine its condition.

A study should be conducted to determine which components of the water system should be supplied with backup power pursuant to Wisconsin DNR Administrative Code Chapter NR 811.27: "all municipal pumping stations, pumphouses, and water treatment plants shall have a standby auxiliary power source unless the department determines that there is sufficient pumping capacity with existing auxiliary power located at other water system facilities to

provide at least an average day supply of water." The DNR has clarified that the backup power should, at a minimum, be able to provide average day demand. The study should include an analysis of which components need backup and whether the backup power can be phased into the water system or if all facilities should receive backup power at the same time. Water system components to be reviewed for a need for backup power should include all wells, pumping stations, and water treatment plants.

8.2 Water Storage

Kaukauna Utilities has two elevated storage tanks in the water distribution system that have capacities of 500,000 gallons each. The Industrial Park Tower is located on the north side of the river and was constructed in 1974. The Ann Street Tower is located on the south side of the river and was constructed in 1999. Both elevated storage tanks have an overflow elevation of 865 feet. Both elevated storage tanks are in good condition.

The Main Filter Plant site contains two ground storage water reservoirs. Ground Storage Reservoir #1 is circular and was constructed in 1899. Ground Storage Reservoir #1 has a capacity of 284,000 gallons and is approximately 60 feet in diameter and 18 feet deep. The reservoir is in the floodplain. Ground Storage Reservoir #1 is in poor condition.

Ground Storage Reservoir #2 is rectangular and was constructed in 1940. Ground Storage Reservoir #2 has a capacity of 295,000 gallons and is approximately 13 feet deep. Ground Storage Reservoir #2 is in poor condition.

Reservoir #1 is located in the floodplain. Reservoir #2 is not located in the floodplain. The bottom floor of each reservoir is located below the 100-year floodplain and the groundwater table. The elevation of each reservoir violates the current Wisconsin DNR Administrative Code Chapter NR 811.63(1) because the floor of a reservoir is required to be a minimum of two feet above the 100-year floodplain and the groundwater table.

The current Wisconsin DNR Administrative Code Chapter NR811.63(4) states: "The department recommends that the lowest elevations of floors and sump floors of ground level reservoirs and standpipes should be placed at or above the normal ground surface. If the department allows the floor or sump to be below the normal ground surface, it shall be placed a minimum of two feet above the groundwater table." The bottoms of both ground storage reservoirs at the Main Filter Plant site are located below the groundwater table. This puts the reservoirs at a high risk of contamination leaking into the tanks.

It is anticipated that the DNR will require the reservoirs to comply with the current Wisconsin DNR Administrative Code at the time of major renovation or remove both reservoirs from service. The reservoirs have outlived their useful life.

The Well 8 site contains one ground storage reservoir. The ground storage reservoir is 15,000 gallons and was built in 1999. The ground storage reservoir is in excellent condition.

The existing reservoirs at the Main Filter Plant site are located below the groundwater table and are subject to potential contaminants leaking into the tanks. This risk should be avoided by building the new reservoirs above the groundwater table and at least two feet above the

Table 2.

floodplain. Although grandfathered in, the elevation of each reservoir does not comply with current Wisconsin DNR Administrative Code NR 811.63 relating to reservoir placement with respect to floodplains and the groundwater table. A study should be performed to determine the most feasible location for the ground storage reservoirs.

8.3 Water Distribution System

The water distribution system for Kaukauna Utilities consists of a single pressure zone. The water system includes PVC, ductile iron, and cast-iron pipes ranging in size from 4-16 inches. A breakdown of pipe sizes is shown in

Table 2: Water Distribution System Pipe Summary

Size	Material	Linear Feet
4"	Metal	754
4"	PVC	642
6"	Metal	79,569
6"	PVC	25,195
8"	Metal	27,838
8"	PVC	209,887
10"	Metal	30,583
10"	PVC	19,103
12"	Metal	16,685
12"	PVC	117,093
16"	Metal	10,636
16"	PVC	1,100
	Total	539,085

The areas of the distribution system that are being served by 4-inch undersized water mains have access to hydrants fed on larger water mains.

Kaukauna Utilities has 6,695 utility-owned water service lines. Approximately 214 private lead water services and 351 public lead water services remain in the water distribution system as of May 1, 2024. Kaukauna Utilities is working to remove the private and public lead water service lines from the water distribution system. The City of Kaukauna has a lead service line replacement ordinance which requires owners to replace the private lead water service lines in conjunction with public water main and service reconstruction.

9. Water Demand

Kaukauna Utilities has an average daily pumping demand of 1,300,445 gallons based on data from the 2022 PSC Annual Report. This demand consists of about 67% residential demand. A summary of the water demand for Kaukauna Utilities is included in **Appendix D.**

The top ten water users in the system are listed in **Table 3**. These customers are not anticipated to leave the Kaukauna Utilities water system in the next 20 years.

Table 3: Top 10 Water Users

	Customer	Annual Water Use (High Year) Gallons
1	Ahlstrom Munksjo	2,321,585
2	Bernatello's Pizza	1,798,934
3	St. Paul Elder Services	769,335
4	Aurora BayCare Medical Center	617,261
5	Kaukauna Utilities	538,255
6	Kaukauna Area School District	495,493
7	Griesbach Trucking	427,892
8	Albany International Corp	168,114
9	Best Wash Inc	163,276
10	City of Kaukauna	147,300

Kaukauna Utilities should anticipate increased water demand over the next 20 years. This demand includes residential development to the southeast and industrial development to the north. The projections were calculated assuming a 0.5% annual increase in water demand, following discussions with Kaukauna Utilities. The water demand projections are shown in **Table 4** and **Figure 1.**

Table 4: Water Demand Projections

Year	Total Water	Average Day	Maximum Day
	Demand (gal)	Demand (gal)	Demand (gal)
2000	464,305,000	1,272,000	2,252,000
2001	484,189,000	1,327,000	1,961,000
2002	501,160,000	1,373,000	2,011,000
2003	536,283,000	1,470,000	2,204,000
2004	512,887,000	1,405,000	3,026,000
2005	534,648,000	1,465,000	2,336,000
2006	516,376,000	1,415,000	2,495,000
2007	510,719,000	1,399,000	2,261,000
2008	506,623,000	1,388,000	2,556,000
2009	471,048,000	1,291,000	2,135,000
2010	430,703,000	1,180,000	2,308,000
2011	444,951,000	1,219,000	2,022,000
2012	457,694,000	1,254,000	1,862,000
2013	444,685,000	1,218,000	1,929,000
2014	469,407,000	1,286,000	1,911,000
2015	435,258,500	1,192,000	2,057,000
2016	432,127,000	1,184,000	2,064,000
2017	432,714,000	1,186,000	2,288,000
2018	432,995,000	1,186,000	2,030,000
2019	416,569,000	1,141,000	2,192,000

2020	409,484,000	1,122,000	1,827,000
2021	422,636,000	1,158,000	1,922,000
2022	473,362,000	1,297,000	2,213,000
2025	480,499,000	1,316,000	2,317,000
2030	492,631,000	1,350,000	2,376,000
2035	505,071,000	1,384,000	2,435,000
2040	517,824,000	1,419,000	2,497,000
2045	530,900,000	1,455,000	2,560,000

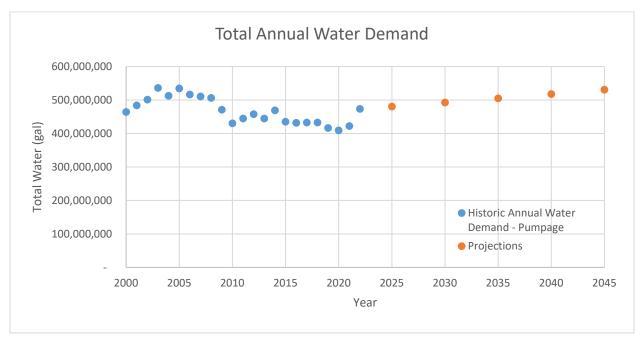


Figure 1: Annual Water Demand Projections

10. Water Supply System

10.1 Well Capacity

The existing water supply system consists of five municipal wells. The wells can supply a total of 3,225 gpm (4.6 million gallons per day (MGD)) if run concurrently. The well capacity is shown in **Table 5**.

Table 5: Well Capacity

Tuble 5. Well expectly						
Well	Current DNR Approved Well Capacity (GPD)	Maximum DNR- Allowed Pumping Rate (gpm)*	Current Well Pumping Rate (gpm)	Proposed Well Capacity (gpm)		
Well 4	864,000	600	555	600		
Well 5	360,000	250	315	500		
Well 8	756,000	525	475	525		
Well 9	1,872,000	1,300	1,300	1,300		
Well 10	756,000	525	580	580		
Total Well Capacity	4,608,000		3,225	3,505		
Total Well Capacity Without Well 9	2,736,000		1,925	2,205		
Total Well Capacity Without Well 10	3,852,000		2,745	2,925		

^{*}Calculated assuming a 24-hour pumping day.

The PSC uses Firm Well Capacity (FWC) to determine how the water supply system will perform under different demand conditions. Firm Well Capacity is the total capacity of the water supply system with the largest well out of service. In the case of Kaukauna Utilities, this would be Well 9, which operates at 1,300 gpm. This formula shows the total FWC of Kaukauna Utilities at 1,925 gpm (2.7 MGD pumping at 24 hours per day; 2.0 MGD pumping at 18 hours per day).

The PSC uses four equations to study a water supply system's ability to provide for different demand conditions. All equations use FWC for the water supplied during an event. Equations 3 and 4 also include storage in the water towers as a supply for the events considered. Equation 1 studies maximum day demand in gallons per minute. Equation 2 looks at average day demand in gallons per minute. Equation 3 includes a fire flow event on a day of maximum demand in gallons per minute. Equation 4 considers maximum hour demand in gallons per minute. These calculations are included in **Appendix D.** A summary of the water demand calculations, for both the current system and future demands for the year 2043 are included in **Table 6**. If the number is positive, then Kaukauna Utilities has excess capacity in that category. If the number is negative, the Utility is deficient in that category, which means Kaukauna Utilities could not supply water under that demand condition with the largest well out of service.

Equation 1 -Equation 2 -Equation 3 - Fire Equation 4 -Scenario **Maximum Day Average Day** Flow on Maximum Maximum (gpm) (gpm) Day (gpm) Hour (gpm) Current 2023 - FWC 0 124 1,500 12,883 Future 2043 - FWC (422)(75)1,078 11,997 Future - With Well 9 878 1,225

Table 6: Water Demand Calculations Summary

These calculations indicate that the system's storage and well capacity is currently sufficient to provide for maximum day demand, average day demand, a fire flow event, and maximum hour demand. The water storage and well capacity is also sufficient to provide average day, fire flow, and maximum hour demand for the projected demands in 2043. It is projected that the existing system will not be able to provide maximum day demand in the year 2043 with Well 9 out of service.

The above calculations for maximum day demand were made by using a pumping time of 18 hours per day. This 18-hour pumping time leads to the conclusion that Kaukauna Utilities cannot provide the water demand on the current or future maximum day with Well 9 out of service. One solution to this is to run the pumps for 24 hours during maximum day instead of 18 hours if Well 9 is out of service. Kaukauna Utilities' wells can handle a 24-hour pumping day in the short term (such as on the maximum day when Well 9 is out of service), but this is not a recommended long-term solution to meet average day demand. In the case of a 24-hour pumping day, the system spare capacity for the current maximum day demand increases from 0 gpm to 481 gpm. The future spare capacity for maximum day demand increases from -422 gpm to 165 gpm. The system can handle these maximum day and average day demands with Well 9 out of service but would need to extend the pumping duration.

Another solution to meet these demands is to add another well to the system. The FWC will change significantly if another well is drilled that has a capacity close to Well 9. The calculations require that the largest well is out of service. It is unlikely that planned maintenance would occur on Well 9 during the summer months when maximum day demand occurs. If the calculation is run with the second largest well out of service instead of the largest well out of service, the FWC increases from 1,925 gpm to 2,745 gpm.

A decision could be made by Kaukauna Utilities to become a wholesale water provider to smaller communities without wells. Kaukauna Utilities currently has adequate water supply to expand to small neighboring communities to meet the average day demand even with Well 9 out of service. Well 9 would need to be in service to meet the maximum day demand.

If Kaukauna Utilities joined water systems with Kimberly and Little Chute, as an example, the wells from Kimberly and Little Chute could be added to the water supply system if all the treatment processes were the same. Currently, Kimberly and Little Chute use ion exchange for water treatment. The advantage of joining water systems is when the FWC calculation is done, only one well out of all three communities needs to be considered not in service. Right now, each community needs to have one well out of service for the calculation. This joining of water systems increases redundancy in the water system. Another advantage of joining water systems would be increasing the efficiency in the water system, such as sampling and repairing water main breaks.

Currently, Kimberly and Little Chute outsource sampling and water main breaks to private companies.

Based on the above discussion of well capacity, recommendations include the following:

- 1. Evaluate in ten years whether another well is needed by 2035 to meet future average day and maximum day demand with Well 9 out of service. The evaluation will further refine the average day and maximum day projections that will be utilized at that time.
- Obtain DNR approval to increase the daily capacity of Well 5 from 360,000 gallons per day (250 gpm) to 720,000 gallons per day (500 gpm) within the next 10-15 years based on the current growth projections.
- 3. Increase the capacity of Well 4 and Well 8 by increasing the speed of the pumps using the variable frequency drive which will pump more water.
- 4. Consider and evaluate whether Kaukauna Utilities wants to become a wholesale water provider.
 - a. If Kaukauna Utilities wants to proceed with becoming a wholesale water provider for a community that does not have any wells, perform a study to determine if a well is needed.
 - b. If Kaukauna Utilities wants to proceed with becoming a wholesale provider for a community with wells and have those wells as a part of the water supply system, perform a feasibility study to determine how to integrate the systems.

10.2 Aquifer and Pumping Information

More information on each well is included in **Table 7**. The well information came from Kaukauna Utilities and the DNR Groundwater Retrieval Network. The water elevations listed are from pumping records from June 2023.

Static Water Pumping Water Well No. Aquifer Elevation (ft) Elevation (ft) 4 Sandstone/Limestone 524 405 5 St. Peter Sandstone 524 490 Sandstone/ Dolomite 10 540 469 8 Sandstone/ Dolomite 398 531 9 Sandstone/Limestone 531 432

Table 7: Well Information

Currently, Kaukauna Utilities does not have issues with its groundwater supply. The static water levels have been consistent over the years. **Figure 2** shows the average annual static water level at each Utility well. The level has generally increased in the past ten years, even with increased water demand. Wisconsin Rural Water Association was also consulted on the sustainability of the aquifers in Kaukauna, and they did not have concerns with the aquifer's ability to supply water to Kaukauna Utilities long-term.

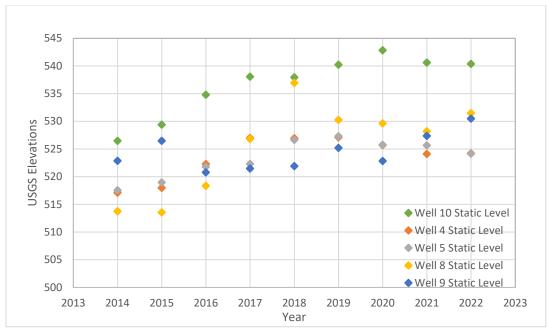


Figure 2: Annual Average Static Water Level at Kaukauna Utilities Wells

10.3 Surface Water

Kaukauna Utilities has an option to switch from groundwater to surface water as a source of water. This option has the benefit of eliminating the issue of radium and high water hardness associated with Kaukauna's groundwater. There are two communities nearby that are wholesale suppliers for surface water.

10.3.1 Lake Michigan Surface Water – Green Bay Water Utility

The Green Bay Water Utility supplies water to Ashwaubenon, Hobart, the Town of Scott, and Wrightstown. The Green Bay Water Utility obtains water from Lake Michigan by Algoma. The water hardness of the water from Lake Michigan is 135-155 mg/L (8-9 grains per gallon).

The nearest water transmission main connection is located near the Village of Wrightstown. The pipeline is an 18-inch diameter pipeline that serves Wrightstown. The pipeline may have capacity to supply Kaukauna Utilities with surface water. The transmission main is approximately 4.5 miles from Kaukauna Utilities' water distribution system. Kaukauna Utilities would need to install a 4.5-mile pipeline to connect to the surface water transmission main near Wrightstown. A booster pump station may be required to pump water to Kaukauna.

This option also includes the annual cost of purchasing water from the Green Bay Water Utility. Currently, the wholesale water rate from the Green Bay Water Utility is \$2.55 per 1,000 gallons. The wholesale water rate is the same for all their wholesale customers. A conveyance charge is also required to be paid to Wrightstown and Ashwaubenon for using their transmission mains. The conveyance rate for Ashwaubenon is \$0.33 per 1,000 gallons. The estimated conveyance rate for Wrightstown is \$0.50 per 1,000 gallons.

10.3.2 Lake Winnebago Surface Water – Appleton Water Department

The City of Appleton obtains surface water from Lake Winnebago. The nearest connection point is located approximately 2.5 miles southwest of the Kaukauna Utilities water system. The pipeline is a 12-inch diameter pipeline that serves Sherwood. The pipeline may have capacity to supply Kaukauna Utilities with surface water. Kaukauna Utilities would need to install a 2.5-mile pipeline to connect to the surface water transmission main. A booster pump station may be required to pump water to Kaukauna.

This option also includes the annual cost of purchasing water from the City of Appleton. Currently, the wholesale water rate from the City of Appleton is \$4.39 per 1,000 gallons. The wholesale water rate varies to each of their wholesale customers. A fire protection charge and a meter charge would be charged to Kaukauna Utilities each quarter. These charges are based on each customer's specific situation. An estimated fire protection charge is \$35,500 per quarter. The estimated meter charge is \$700 per quarter.

10.3.3 Surface Water Risks

There is risk with purchasing water from another utility. Initially, there is only a single transmission main from the source water to the distribution system. There is a risk of transmission main failure. Kaukauna Utilities would have to decide if a backup system is going to be maintained in case of pipeline failure or other issues with the purchased water. If switching to surface water, it is recommended that the wells should be maintained as a backup system in case of emergency. The DNR does not require water treatment equipment to be maintained for emergency backup systems.

The water rates can be unpredictable when set outside of the utility. The water rates are set by the PSC. It also does not give Kaukauna Utilities any control over final water quality.

10.3.4 Surface Water Costs

The cost comparisons between the two surface water options are included in **Table 8** below. A detailed breakdown of this cost estimate is included in **Appendix A**.

Description	Capital Cost Estimate	Annual O+M Estimate	20-Yr O+M Estimate	Capital + 20- Year O+M Estimate	
Surface Water from Appleton	\$6,570,000	\$ 2,280,000	\$45,500,000	\$52,100,000	
Surface Water from Wrightstown	\$9,270,000	\$1,660,000	\$ 33,100,000	\$42,400,000	

Table 8: Surface Water Options Cost Breakdown

Kaukauna Utilities should stay with groundwater since well capacity and aquifer capacity is projected to be sufficient for at least the next 20 years. If Kaukauna Utilities chooses to pursue the option of changing the source water to surface water, it is recommended that a further study be performed to determine specific connection points and hydraulics required for the

connection pipeline. The preliminary costs estimates should be refined in that study before a final decision is made to switch to surface water.

10.4 Water Reuse

Water reuse is the capture and use of wastewater for beneficial use such as agricultural irrigation, industrial cooling, or potable water. Indirect potable reuse (IPR) uses an environmental buffer such as a lake, river, or aquifer before the water is treated at a drinking water treatment plant. Direct potable reuse (DPR) involves treatment and distribution of water without an environmental buffer. IPR is the more common water reuse method.

Water reuse has been an effective solution in areas with little access to fresh water. As early as 1962, Montebello Forebay in Los Angeles County, California started using IPR by recharging the aquifer with wastewater treatment plant effluent. In recent years, a lack of water in some communities has sped up the integration of water reuse into water systems. Wichita Falls, Texas experiences extreme drought conditions throughout the year. In 2018, Wichita Falls brought its IPR project into service, which discharges wastewater via a 17-mile pipeline to a lake. This water is then treated with Cloth Media Filtration and used for drinking water. Several water districts across California have also implemented water reuse. Orange County Water District employs a Groundwater Replenishment System. This process takes treated wastewater effluent from Orange County Sanitary and treats it with microfiltration, reverse osmosis, and ultraviolet light disinfection. The treated water is then pumped into injection wells and percolation basins.

Figure 3 is from the EPA and shows planned and construction reuse projects in the United States as of 2017.



Figure 3: Water Reuse Programs in the U.S. 2017

Reference: U.S. Environmental Protection Agency and CDM Smith. 2017. Potable Reuse Compendium. Washington D.C.

Kaukauna Utilities has expressed an interest in investigating the feasibility of reusing wastewater treatment plant effluent from the Heart of the Valley Metropolitan Sewerage District (HVMSD) as a drinking water source. HVMSD receives wastewater from Kaukauna, Little Chute, Kimberly, Combined Locks, and the Darboy Sanitary District. The average daily flow to the plant is 5.5 MGD. The plant can treat flows up to 26 MGD.

HVMSD discharges effluent to the Fox River. The water reuse project for Kaukauna Utilities would involve rerouting some of the effluent water for drinking water treatment. HVMSD already provides 3 MGD to Fox Energy Center for power plant cooling. There would be sufficient effluent water to supply Kaukauna Utilities because the maximum day demand for Kaukauna Utilities is approximately 2 million gallons. The average day demand for Kaukauna Utilities is 1.3 million gallons.

There has been one case study in central Wisconsin on water reuse. The case study was the result of declining water levels and increasing water demand in the area. A pilot study was conducted with DNR approval involving the treatment of water in a stream down-river of the municipality's wastewater treatment plant. The project did not result in water reuse in the area due to public disinterest and DNR involvement.

The DNR requires that community water be taken from the best available source. The best available source is determined through many characteristics including contaminant concentrations, seasonal variations, and treatment required. Determining the characteristics of the effluent water from HVMSD would require intensive testing. It is unlikely the effluent water would be determined to be of a higher quality than the current groundwater source for Kaukauna Utilities.

Even if the effluent water was determined to be the best available source, there would be high capital and operational costs associated with water reuse. The pilot study would be required to run throughout at least a full calendar year to determine how treatment efficiency would change seasonally. The whole treatment process would need to be more advanced than reverse osmosis treatment and would need to include multiple stages of disinfection. Lastly, because water reuse is new to municipalities in the state of Wisconsin, the DNR would require extensive testing throughout the life of the water reuse plant to ensure quality water is being delivered to Kaukauna Utilities' customers. The PSC may not allow a water reuse project to advance if there are other, less costly options for safe drinking water.

Even with these hurdles, the largest barrier for water reuse in Kaukauna Utilities would be public perception. Each community that has implemented water reuse has faced the difficulty of public acceptance. To gain public acceptance, extensive information campaigns to educate the community would be necessary. This adds time and expense to a water reuse project.

Kaukauna Utilities should stay with groundwater since well capacity and aquifer capacity is projected to be sufficient for at least the next 20 years. If Kaukauna Utilities chooses to pursue the option of changing to water reuse, it is recommended that a further study be performed to determine constituents in the HVMSD effluent water.

11. Water Quality

11.1 Raw Water Quality

Full raw water quality results for all wells are included in **Appendix E**. Kaukauna Utilities currently treats raw water by removing iron and radium. Water hardness is also an issue in the water system. Currently, customers are responsible for softening their water. The raw water quality results are summarized in **Table 9**.

Well No.	Iron (mg/L)	Strontium (mg/L)	Sulfate (mg/L)	Hardness as CaCO3 (mg/L)	Total Dissolved Solids (mg/L)	Sample Date
4	0.61	24	583	754	1,088	2/22/2023
5	0.81	21	607	778	1,173	2/22/2023
10	0.59	27	381	536	802	2/22/2023
8	0.55	20	441	565	862	2/22/2023
9	0.53	26	451	619	918	2/22/2023

Table 9: Raw Water Quality Summary

The Utility tested the raw water for PFAS in February 2023. All five wells were found to have no detection of any PFAS compounds in the raw water.

11.2 Treated Water Quality

The water treatment plants (Main Filter Plant, Well, 8 and Well 9 treatment plants) are removing iron and radium to levels acceptable by Kaukauna Utilities. The drawback to the current treatment technique is the high cost of removing radium with chemical addition and the lack of water hardness removal. A summary of finished water quality results for the treated water is included in **Table 10**. **Appendix E** includes more finished water quality data from sample points around the distribution system.

Table 10: Finished Water Quality					
Testing Location	Total Chlorine	Iron	Sulfate	Hardness as	Sample
	(mg/L)	(mg/L)	(mg/L)	CaCO3 (mg/L)	Date
Main Filter Plant		<0.02		665	4/23/2021
Entry Point 8		<0.02		585	4/23/2021
Entry Point 9		0.02		639	4/23/2021
Entry Point 8	1.71	<0.06	430	618	10/20/2022
Entry Point 9	1.80	<0.06	464	670	10/20/2022
Entry Point 400	1.83	<0.06	528	727	10/20/2022
777 Island St	1.26	0.06	536	719	10/20/2022
2700 Northridge Dr	1.25	<0.06	440	638	10/20/2022
406 10 th St	1.30	<0.06	456	677	10/20/2022
1701 CTY HWY CE	1.33	<0.06	485	706	10/20/2022
Main Filter Plant		<0.06	548	563	1/17/2023

Table 10: Finished Water Quality

Note the finished water quality's hardness concentration is very similar to the raw water hardness. The pressure filter tanks do not remove water hardness.

The DNR requires chlorine in the distribution system to be greater than 0.01 mg/L, with a maximum residual chlorine level of 4 mg/L. The chlorine results show that Kaukauna Utilities is maintaining an acceptable level of chlorine in the distribution system.

The DNR sets secondary maximum contaminant levels for drinking water in NR 809.70. The secondary maximum contaminant levels are for inorganic chemicals that do not have health risks when exceeded and are only associated with cosmetic or aesthetic aspects of drinking water quality. There are no DNR violations when the maximum levels are exceeded. NR 809.70(1) states "Waters containing inorganic chemicals in quantities above the limits contained in this section are not hazardous to health but may be objectionable to an appreciable number of persons." The secondary standard for sulfate is 250 mg/L. Finished water sulfate level ranges from 430-548 mg/L. The secondary standard for total dissolved solids is 500 mg/L. Total dissolved solids level ranges from 802-1173 mg/L.

NR 809.71, Sampling and Analytical Requirements for Secondary Standards, states if the DNR receives complaints on aesthetic water quality, then the water supplier will be required to implement a monitoring program to determine compliance with the secondary standards.

Water supplied by Kaukauna Utility is completely safe to drink and does not pose a health risk.

11.2.1 Strontium

Strontium is not currently regulated by the DNR. It is a naturally occurring mineral found in groundwater. It does not pose a cancer risk to people but could have other health impacts. Because of this, the EPA has considered establishing a maximum contaminant level for strontium. The current level of strontium in Kaukauna Utilities' drinking water is higher than any level being considered for the maximum contaminant level by the EPA. The EPA has set a non-enforceable lifetime limit of 4 mg/L and a short-term limit of 25 mg/L. If the EPA pursues setting a maximum contaminant level for strontium in the future, the current levels in Kaukauna Utilities' drinking water would need to be addressed and treatment would need to be added for strontium removal.

11.2.2 Water Hardness

There is no secondary standard for water hardness directly, but water hardness and sulfate both contribute to total dissolved solids. The water in Kaukauna is extremely hard. The main components of water hardness are caused by calcium and magnesium. The groundwater in Kaukauna has a total water hardness level of CaCO3 ranging from 563-778 mg/L (36-45 grains per gallon). Kaukauna Utilities encourages customers to use a total water hardness setting of 48 grains per gallon for their water softeners because the water softener should be set to 4 grains per gallon higher than the water hardness.

There is a wide range in the water hardness test results. Table 11 shows water hardness testing results from two different laboratories from 2021 – 2023. The main filter plant site shows a water hardness range of 665-838 mg/l. It is suspected that the large range of water hardness levels is not accurate as water hardness should not vary greatly at each site.

Table 11 - Hardness Testing Results

Location		Main Filter Plant				Well 4		Well 5	Well 10		
Laboratory		Carus	Carus	Carus	Carus	Carus	Carus	Badger	Badger	Carus	Badger
Test Date		4/23/2021	2/25/2022	2/25/2022	2/25/2022	2/25/2022	4/23/2021	2/22/2023	2/22/2023	4/23/2021	2/22/2023
Treated or Raw Water		Treated	Treated	Treated	Finished	Finished	Raw	Raw	Raw	Raw	Raw
Hardness as CaCO3	mg/l	665	792	838	827	810	783	754	778	548	536
Calcium	mg/l	231	278	295	287	281	280	271	279	182	178
Magnesium	mg/l	21	23	25	27	26	20	19	20	22	22

Location		Well 8				Well 9					
Laboratory		Carus	Carus	Badger	Badger	Carus	Carus	Badger	Badger		
Test Date		4/23/2021	4/23/2021	2/22/2023	10/20/2022	4/23/2021	4/23/2021	2/22/2023	10/20/2022		
Treated or Raw Water		Raw	Finished	Raw	Finished	Raw	Finished	Raw	Finished		
Hardness as CaCO3	mg/l	585	589	565	618	637	639	619	670		
Calcium	mg/l	202	203	195	215	215	216	210	229		
Magnesium	mg/l	19	19	19	19	23	24	23	23		

Note: Carus testing data on 2/25/2022 at Main Filter Plant is not considered accurate beause they are higher than any individual test result at Well 4, 5, or 10. The Main Filter Plant water hardness is the weighted average of the water from Wells 4, 5, and 10.

For example, the Main Filter Plant water hardness levels should be the same as a weighted average of the water hardness levels from Wells 4, 5, and 10. The Main Filter Plant water hardness level cannot be higher than any of the levels from the individual wells. But in February 2022, the Main Filter Plant water hardness was measured at 792-838 mg/L, which is higher than the water hardness measured individually at Wells 4, 5, or 10. This inconsistency in water hardness could be a result of different testing methods from different laboratories or from the testing being wrong that day. Strontium, orthophosphate, and polyphosphate interfere with the water hardness testing procedure.

12. Main Filter Plant Alternatives Analysis

Part of the Main Filter Plant site is located in the 100-year floodplain of the Fox River. As previously explained in Section 8.1.4 Main Filter Plant Site, the pressure filter tank in the Main Filter Plant building is in poor condition and is in need of replacement. There are four alternatives being considered for the Main Filter Plant.

12.1 Alternative 1: No Changes

This alternative includes not making any improvements to the Main Filter Plant or changing the location. The high risk associated with this alternative is having the Main Filter Plant fail and not being able to produce potable water. The high risk is associated with the pressure filter developing leaks that cannot be repaired so the tank cannot be placed back in service in a timely fashion. The Main Filter Plant produces potable water at 1,450 gpm. If the Main Filter Plant is removed from service, then Well 4, Well 5, and Well 10 would be out of service. The Main Filter Plant can be removed from service during low flow periods but should not be removed from service during high flow periods. If the Main Filter Plant was removed from service for several months during high flow periods, over-pumping of Well 8 and Well 9 would occur. The aquifer would not be able to recharge properly during that time.

This alternative is not recommended because the structures at the Main Filter Plant are past their useful life. The pressure filter tank was lined in 2016 as a temporary solution to extend the life of the filters by about ten years. The filters should be replaced to ensure the Main Filter Plant can function when the liner fails.

The ground storage reservoirs present a high risk of groundwater leaking into the reservoir. Groundwater can contain surface water contaminants that can cause widespread sickness to customers. The current process of chlorine addition minimizes the risk of these contaminants impacting customer health.

This alternative is not desirable because the Main Filter Plant is located within the 100-year floodplain of the Fox River. Wisconsin DNR Administrative Code Chapter NR811.25 (1) (d) states all water system related buildings must be constructed such that the floor elevation is at least two feet above the 100-year flood elevation. The Main Filter Plant currently does not meet this requirement but is grandfathered into the code.

In addition to the building itself being in the floodplain, the reservoirs on the Main Filter Plant site are in the 100-year floodplain. In Wisconsin DNR Administrative Code Chapter NR 811.63(1), it

states that potable water storage facilities may not be located within a floodway and the lowest elevation of the bottom floor shall be a minimum of two feet above the regional 100-year flood elevation. The existing reservoirs are not in the floodway but are in the floodplain. The bottom floors of the reservoirs are below the 100-year floodplain and the groundwater table. The existing water reservoirs do not conform to the current Wisconsin DNR Administrative Code requirements, thus posing a larger risk of contaminants leaking into the ground storage reservoirs.

12.2 Alternative 2: Replace Pressure Filter Tank at Current Location

This alternative includes replacing just the pressure filter tank at the Main Filter Plant. This alternative is to be considered the bare minimum for improvements needed at the Main Filter Plant because the concrete liner in the steel pressure filter tank is anticipated to start leaking considerably in less than five years. There are currently signs of the pressure filter tank leaking. This alternative would involve reusing the existing building for the pressure filter tank. The work would need to be coordinated to remove the Main Filter Plant from service during the low flow months to install the new pressure filter tank. This raises the cost of this alternative to speed up the replacement process.

This alternative does not consider any other improvements at the Main Filter Plant site, such as the aged ground storage reservoirs. In addition, it does not move the Main Filter Plant out of the floodplain and therefore would not address the current Wisconsin DNR Administrative Code violations associated with their location in the floodplain discussed in Alternative 1. This alternative is not recommended for these reasons.

The preliminary cost estimate for replacing the pressure filter tank at the Main Filter Plant is included in **Table 14**.

12.3 Alternative 3: Rebuild Water Treatment Plant Building and Reservoirs at Current Location

This alternative includes a new pressure filter tank, reservoirs, booster pumps, suction and discharge piping, and a generator at the current Main Filter Plant location. This alternative includes demolition of existing reservoirs, booster pumps, and piping in the Booster Pump Station. This alternative includes reusing the Main Filter Plant Building.

This alternative was explored to determine if there would be any cost savings associated with staying on the same site for the Main Filter Plant. There are some limitations with staying at the current site. The Main Filter Plant must stay in operation during construction to supply average water demand during high flow periods. The water system cannot be supplied by just Well 8 and Well 9 during the entire construction period. The work would need to be coordinated to remove the Main Filter Plant from service during the low flow months to install the new pressure filter tank. This raises the cost of this alternative in order to speed the replacement process along.

The reservoir construction must be sequenced so that one reservoir is demolished, part of the new reservoir is built, then the other reservoir is demolished and the second part of the new reservoir can be built. This sequencing is necessary due to the need for the reservoir during construction, as well as the limited space on site. The current reservoir locations will have to be used for the future reservoir. These construction sequencing requirements will add to the cost of this alternative.

This alternative is beneficial because it would not involve rerouting the transmission main from Wells 4, 5, and 10 to a new location. There is currently an 8-inch transmission main that connects Well 4 (100 linear feet), Well 5 (2,100 linear feet), and Well 10 (6,100 linear feet) to the existing Main Filter Plant.

This alternative is also not desirable because the Main Filter Plant site would still be located in the floodplain. Keeping the Main Filter Plant in the floodplain does not comply with Wisconsin DNR Administrative Code, as discussed in Alternative 1.

The DNR may not allow this as an alternative unless the floor of the Main Filter Plant building was raised two feet above the 100-year floodplain during the installation process of the tank. A detailed predesign study would need to be performed to determine if the DNR would require alterations to the building and to determine the feasibility of the actual construction process and length of construction for the work. It is possible that the construction time frame would be too long to have the Main Filter Plant out of service.

If a different treatment process is selected, the Main Filter Plant building would require an addition. The preliminary cost estimates for rebuilding the Main Filter Plant at the current site are included in **Tables 14**, **15**, **and 17**.

12.4 Alternative 4: New Water Treatment Plant Building at New Site

This alternative includes building a new Water Treatment Plant building including a new pressure filter tank, booster pumps, suction and discharge piping, ground storage reservoir, and a generator on a new site. This alternative includes demolition of the existing reservoirs, booster pumps, and the piping in the Booster Pump Station and removing the pressure filter tank from the Main Filter Plant building and repurposing the existing Main Filter Plant building to a storage facility.

Four proposed building sites for a new Water Treatment Plant building are being considered to relocate the Main Filter Plant outside the 100-year floodplain. A two-acre site is needed for the new Main Treatment Plant. The main drawbacks of this alternative are the high capital costs of new building construction and the cost of rerouting the raw water transmission main for Wells 4, 5, and 10 to a new site. All the sites being considered are along the raw water transmission main from Well 10 to the existing Main Filter Plant to minimize the raw water transmission main costs.

This alternative has the major benefit of moving the Main Filter Plant outside the floodplain. This would allow access and use of the water treatment plant and reservoirs during a 100-year flood event. The preliminary cost estimate for building the Main Filter Plant at a new site is included in **Tables 14, 15 and 17.**

Four sites were considered for a new Water Treatment Plant building location. A map of the proposed Water Treatment Plant sites is shown in **Figure 10** in **Appendix B.**

Proposed Site #1 is on Boyd Avenue, just south of the City pool at the current archery range site. This site is desirable due to its proximity to the existing raw water transmission main, and the

property is currently owned by the City of Kaukauna. This site is also uphill from the river, fairly level, and out of the floodplain. The archery range is currently located on this site.

Proposed Site #2 is to the west of the Konkapot Creek Trail. This site is also near the existing raw water transmission main. This site is undesirable due to the steep topography in this area.

Proposed site #3 and #4 are in Horseshoe Park. These sites are beneficial because they are already located on City-owned property and are near the raw water transmission main. These sites are also outside the floodplain. Site #3 is north of the baseball field. This site is not desirable due to the steep slope. Site #4 is not desirable because it is the site of a former fill site, not suitable for building foundations.

12.5 Main Filter Plant Recommendations

The risks and benefits for each alternative for the Main Filter Plant are included in **Appendix G**.

Alternative #4 - New Water Treatment Plant Building at New Site is the recommended alternative. The new Main Water Treatment Plant location would allow for the necessary building size for new treatment equipment and would comply with the DNR regulation of being outside the floodplain. This alternative would lower the risks associated with having the Main Filter Plant, reservoirs, and booster pump station in the floodplain and would replace the equipment and structures identified in the study report as being past their useful life. Alternative #4 also allows the existing Main Filter Plant to keep producing water while the new water treatment plant is being built.

Site #1, located on Boyd Street just south of the City pool at the current archery range site, is considered the most viable location for the proposed Water Treatment Plant building that was studied. Site #1 appears to be the most feasible of the properties studied since the property is already owned by the City, the property is relatively level, and the property is close to the raw water transmission main located at Well 5. We recommend that a predesign study be performed to refine the preliminary cost estimate for the alternative, exact site, and treatment option selected. This study should include working with the City on relocation of the archery range site.

13. Water Treatment Analysis

The scope of the study includes an analysis of various water treatment processes to remove water hardness. The focus of the treatment options is removing water hardness to address customer concerns and provide cost savings to customers.

13.1 Surveys

A survey of Kaukauna Utilities' customers was conducted to gain a better understanding of how customers soften and use their water, and what customers would like to see in water improvements moving forward. There were 1,309 people that responded to the survey. It was found that 87% of respondents use a water softener to treat their water. The survey showed that 957 respondents use a water filter in their house or buy bottled water for drinking water instead of drinking water directly from the tap. Only 8% of respondents did not want to see improvements or changes to the water quality in Kaukauna. Of the respondents that gave a

reason for their dissatisfaction with the water quality, hard water was the top reason for dissatisfaction. The survey questions and results are included in **Appendix H.**

A survey of plumbing contractors and salt suppliers in the Fox Valley area was conducted to investigate how much Kaukauna Utilities' customers spend on water softening and replacement appliances compared to other communities. Questions included the lifespan of different appliances in Kaukauna versus other communities, the cost of replacement water heaters, and the amount of salt customers use each month. The survey questions and results are included in **Appendix H.**

13.2 Water Softeners

Based on the Kaukauna Utilities customer survey, 1,131 people out of 1,304 people (87%) that answered the question chose to treat the water with a water softener. Water softeners use an ion exchange process to remove water hardness. Ion exchange water treatment is a common method used to remove water hardness from water by exchanging calcium and magnesium ions with sodium or potassium ions. Water softeners require salt to operate. While this ion exchange process is effective for moderately hard water, water softeners can face challenges when dealing with water that is extremely hard.

When the ion exchange resin comes in contact with extremely hard water, the resin gets exhausted quickly as it reaches its maximum capacity for exchanging ions. As a result, the resin needs frequent regeneration which uses more salt and water. The need for more frequent regeneration cycles adds to the operational costs and disrupts the continuous flow of treated water. It also requires larger ion exchange equipment to handle the higher volume of resin.

When using sodium as the exchange ion, the process adds sodium ions to the treated water. The extremely hard water will add a significant amount of sodium ions to the water. Sodium, when dissolved in water, forms sodium ions (Na+), which are charged particles. These ions increase the water's overall conductivity, meaning the water becomes a better conductor of electricity.

Water heaters have metal components, such as heating elements and the tank itself. When high-conductivity water (water with high sodium content) surrounds these metal parts, it creates an environment that facilitates an electrochemical process known as electrolytic corrosion. This corrosion occurs when electric currents flow between different metal components through the conductive water resulting in the breakdown of the metal over time. The electrolytic corrosion eats away at the metal components of the downstream equipment leading to leaks, rust, and ultimately, failure.

Water heaters in Kaukauna have been estimated to fail every five to seven years based on information from the local plumbing contractors. Clothes washers, dish washers, and water fixtures are also ruined prematurely and need to be replaced sooner with corrosive water.

It is important to note that while sodium can contribute to increased conductivity and corrosion, other factors, such as the presence of other dissolved minerals and the pH of the water, can also play a role in the corrosion process.

13.3 Target Water Hardness

The recommended target water hardness level is between 70-120 mg/L (4-7 grains per gallon). There are factors that contribute to this recommended water hardness level.

Water hardness levels for communities surrounding Kaukauna were compared. The target water hardness level for Kaukauna is lower than the water hardness level in the surrounding communities. It is anticipated that by providing water at this hardness level, Kaukauna customers can remove or bypass their water softeners. Table 12 has the water hardness levels for surrounding communities.

Additionally, Kaukauna Utilities performed a taste test on six different bottled waters. Each person who participated in the taste test ranked their top choice of bottled water by flavor. The hardness level of each bottled water was also tested. The bottled water hardness ranged from 4-10 grains per gallon. It was found that taste was subjective and lower hardness does not always result in better tasting water. **Table 12** also includes the water hardness results from Kaukauna Utilities' taste test.

Water Source	Water Hardness Level (mg/L)	Water Hardness Level (grains per gallon)			
City of Appleton	138	8.0			
City of Green Bay	157	9.1			
Village of Little Chute	129	7.5			
Village of Kimberly	95	5.5			
Village of Wrightstown	157	9.1			
Core Bottled Water	69	4			
Smart Water Bottled Water	69	4			
Fiji Bottled Water	138	8			
Ice Mountain Bottled Water	172	10			
Nature's Touch Bottled Water	103	6			
Aquafina Bottled Water	69	4			

Table 12: Water Hardness Level Comparisons

Another resource when determining the target water hardness for Kaukauna Utilities was the UW-Madison Water System Excellence Project (WSEP) Wisconsin Water Utility Report Cards. The WSEP compiled publicly available and original data to "grade" municipal water on multiple subjects — Water Quality - Health, Water Quality - Aesthetics, Finance, Infrastructure & Operations, and Communications. The Water Quality - Aesthetic score incorporates water hardness into the grade. **Appendix F** includes more details into the WSEP Report Card grading.

The current average water hardness of Kaukauna Utilities' water is 665 mg/L (39 grains per gallon). This results in a water quality - aesthetics score of 63.6, which is a grade of D-. The water quality - aesthetic score for Kaukauna Utilities' water was calculated for different hardness levels if centralized softening was implemented. Kaukauna Utilities would receive a score between 94.4 - 96.8 with a finished water hardness between 70-120 mg/L (4-7 grains per gallon). This score is considered an "A", or excellent water quality, with respect to hardness. **Figure 4** illustrates how the quality - aesthetic score for Kaukauna Utilities changes with different target water hardness levels.

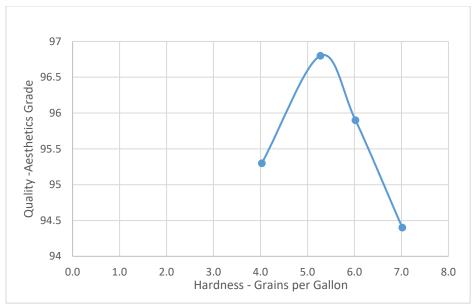


Figure 4: Kaukauna Water Quality - Aesthetics Score for Different Proposed Target Hardness Levels Using Reverse Osmosis Treatment

A case study with a similar change in water hardness occurred in Wrightstown when they switched from using groundwater as their source of water to purchasing surface water from Lake Michigan. When Wrightstown was using groundwater as the water source, the water hardness level was 540 mg/L (32 grains per gallon). By switching to surface water, the water hardness level is now 155 mg/L (9.1 grains per gallon). Wrightstown has estimated that 90% of residents no longer use water softeners. It is expected that a similar change in water softening by customers will occur if Kaukauna changes their target water hardness level to between 70-120 mg/L (4-7 grains per gallon).

Appendix F includes supplemental information on water hardness which contributed to the recommended target water hardness level for Kaukauna Utilities.

13.4 Customer Cost Savings for Water Hardness Reduction Performed by Utility

The survey results were compiled and extrapolated to find the cost savings if the customers receive water with a water hardness level between 70-120 mg/L (4-7 grains per gallon). It is assumed that if Kaukauna Utilities adds treatment for water hardness reduction, customers will remove their water softeners and save on costs associated with water softening and longer service life for water heaters and appliances. An explanation of calculations is included in **Appendix H.** It is anticipated that the average residential customers of Kaukauna Utilities will save approximately \$720 per year. The potential total savings for all the customers is \$4.8 million annually by receiving water that has water hardness reduced to a level between 70-120 mg/L (4-7 grains per gallon). This calculation is a conservative estimate for the items that could be quantified. See **Table 13.1 and 13.2.** There are far more benefits than those listed in the estimate such as the saving of faucets, valves, coffee makers, showers, toilets, swimming pools, and hot tubs. The reduced water hardness will also add life to plumbing fixtures.

Table 13.1 - Estimated Annual Water Softening Costs for Residential Customers with 3/4" Meter

Kaukauna Utilities

Estimate Annual Costs Savings for Customers with 3/4" Meter if Hardness Reduction Treatment is Implemented April 4, 2024

Percentage of Customers to Which Costs Apply	75%	15%			10%			
					_			
Residential Customer Costs with Current Treatr	nent - Iron a	and F	Radi	um Filtr	ation			
Salt Usage Costs - Materials Only ¹		240	\$ 1	.80 - \$	240			
Labor Costs for Salt	'	-	т	- \$	-			
Water Softener Regeneration Water Costs	\$ 95 - \$	135	\$	95 - \$	135			
Water Softener Replacement Costs	\$ 80 - \$	120	\$	80 - \$	120			
Water Heater Replacement Costs ²	\$ 125 - \$	175	\$ 1	.25 - \$	175	\$ 125	- \$	175
Appliance Replacement Costs ²	\$ 225 - \$ 2	275	\$ 2	25 - \$	275	\$ 225	- \$	275
Bottled/ Home Filter Water Costs ¹	\$ 220 - \$ 2	260						
Total Annual Costs	\$ 925 - \$ 1,2	205	\$ 7	'05 - \$	945	\$ 350	- \$	450
Average Annual Costs with Current Treatment	\$ 1,0	065	\$		825	\$		400
Residental Customer Costs with Adding Hardness Reduction Treatment								
Water Heater Replacement Costs ²				80 - \$	100	\$ 80	- \$	100
Appliance Replacement Costs ²	•		•	.25 - \$		\$ 125	•	175
Total Annual Costs				.25 - \$		\$ 205		
Total Annual Costs	\$ 205 - \$.	2/5	\$ Z	.05 - Ş	2/5	\$ 205	- Ş	2/5
Average Annual Costs with Hardness Reduction Treatment	\$	240	\$		240	\$		240
Summary								
Average Annual Costs with Current Treatment	\$ 1,0	065	\$		825	\$		400
Average Annual Costs with Hardness Reduction Treatment		240	\$		240	\$		240
Annual Cost Savings for Residential Customers	•	825	\$		585	\$		160
Total Number of Residental Customers with 3/4" Meter		856			971			647
Estimated Total Annual Residential Customer Cost Savings	\$ 4,006,0	000	\$	568	8,000	\$	104,	,000
Potential Total Annual Customer Cost Savings					\$	4,678,	000	
Estimated Weighted Average Annual Cost Saving for Reside	ntial Customer	's					\$	723

¹Costs from Kaukauna Customer Cost Survey

²Costs from Plumber and Softening Company Surveys

Table 13.2 - Estimated Annual Water Softening Costs for Customers

Kaukauna Utilities Estimate Annual Costs Savings for Customers if Hardness Reduction Treatment is Implemented April 4, 2024

	Residential	Water Service	Commerical & Ind	ustrial Water Service	Re	ervice				
Meter Size	0.75 Inch	1.0 Inch	0.75 Inch	1.0 Inch	1.5 Inch	2.0 Inch	3.0 Inch	4.0 Inch		
Customer Costs with Current Treatment - Iron and Radium Filtration										
Salt Usage Costs - Materials Only		\$ 325 - \$ 400	\$180 - \$ 240	l ' '	1 '	\$1,400 - \$1,600	1 ' ' ' ' ' '			
Labor Costs for Salt		\$ \$ -	\$ 240 - \$ 300	\$ 320 - \$ 380	\$ 450 - \$ 550	\$ 700 - \$ 900	\$1,200 - \$ 1,600	\$ 2,000 - \$ 6,000		
Water Softener Regeneration Water Costs	See Table 13.1	\$ 180 - \$ 220	\$ 95 - \$ 135	\$ 180 - \$ 220	\$ 430 - \$ 490	\$ 720 - \$ 920	\$1,600 - \$ 2,000	\$ 2,500 - \$ 4,500		
Water Softener Replacement Costs	See Table 15.1	\$ 125 - \$ 200	\$ 80 - \$ 120	\$ 125 - \$ 200	\$ 350 - \$ 450	\$ 600 - \$ 800	\$1,400 - \$ 1,800	\$ 4,000 - \$28,000		
Water Heater Replacement Costs		\$ 240 - \$ 290	\$125 - \$ 175	\$ 240 - \$ 290	\$ 550 - \$ 650	\$ 900 - \$1,100	\$2,200 - \$ 2,600	\$ 3,000 - \$ 8,000		
Appliance Replacement Costs		\$ 225 - \$ 275	-	-	-	-	-	-		
Total Annual Costs		\$1,095 - \$1,385	\$720 - \$ 970	\$1,190 - \$1,490	\$2,570 - \$3,030	\$4,320 - \$5,320	\$9,500 - \$11,500	\$16,500 - \$58,500		
Average Annual Costs with Current Treatment		\$ 1,240	\$ 845	\$ 1,340	\$ 2,800	\$ 4,820	\$ 10,500	\$ 37,500		
Customer Costs with Adding Hardness Reductio Water Heater Replacement Costs Appliance Replacement Costs Total Annual Costs	See Table 13.1	\$ 140 - \$ 180 \$ 125 - \$ 175 \$ 265 - \$ 355	-	\$ 140 - \$ 180 - \$ 140 - \$ 180	-	-	\$1,200 - \$ 1,800 - \$1,200 - \$ 1,800	\$ 2,300 - \$ 2,800 - \$ 2,300 - \$ 2,800		
Average Annual Costs with Hardness Reduction Treatment		\$ 310	\$ 90	\$ 160	\$ 360	\$ 640	\$ 1,500	\$ 2,550		
Summary										
Average Annual Costs with Hardness Reduction Treatment	See Table 13.1	\$ 310	1 1	\$ 160		1 '	1 '			
Annual Cost Savings for Customers	\$ -	\$ 930	-		-		· · · ·			
Total Number of Customers	6,474	27	287	97	61	54	19	8		
Estimated Total Annual Customer Cost Savings	\$ 4,678,000	\$ 8,000	\$ 26,000	\$ 16,000	\$ 22,000	\$ 35,000	\$ 29,000	\$ 20,000		
	Potential Total Annual Customer Cost Savings \$ 4,834,0									

See Appendix H for detailed calculations

13.5 Water Treatment Options

With a new water treatment process, raw water from Wells 4, 5, and 10 would be treated at a proposed water treatment plant located south of the Fox River. Raw water from Wells 8 and 9 would be treated at an upsized Well 9 water treatment plant located north of the Fox River. A raw water transmission main between Well 8 and 9 would be installed, and the Well 8 water treatment plant would remain for pretreatment to remove iron. All options below would include new treatment equipment at the Main Filter Plant and the upsized Well 9 Treatment Plant.

It is anticipated that if Kaukauna Utilities changes its current treatment process, a pilot test will be required by the DNR. The pilot study will add to the timeline of the project and add cost to the project compared to not changing the treatment process. As an example, the current Wisconsin DNR Administrative Code Chapter NR811.50 (3) requires a pilot length of two to seven months for reverse osmosis or nanofiltration treatment.

Each water treatment option has a summary of estimated capital and operating costs shown below. These estimated costs are shown in detail in **Appendix A.**

13.5.1 Water Treatment Option 1: Keep Existing Water Treatment Process - Filtration

Water treatment option 1 is to keep the existing treatment process. This process involves filtration for iron removal and the addition of potassium permanganate and manganese sulfate for radium removal.

This option is beneficial due to the operators at Kaukauna Utilities being familiar with the existing treatment technique. It involves treatment for the major constituents of concern in the water: iron and radium. The drawback with this type of radium removal is the cost of potassium permanganate and manganese sulfate chemical which is approximately \$60,000 per year for Kaukauna Utilities. The chemical cost is a major contribution to operations and maintenance costs for the water utility. **Table 14** summarizes the capital and operational costs associated with Option 1.

Table 14: Preliminary	Cost Estimate: Ontion	1 - Keen Existing Water	Treatment Process - Filtr	ration
Table 17. I Tellillial V	COSt Estimate, Obtion	I INCCOLNISHIE WALCI	TICALITICITE FOCCSS FILL	ation

Description	Capital Annual		20-Years	Capital Cost + 20-		
	Cost	Operating Cost	Operating Cost	Year Operating Cost		
Alternative 1 - Option 1 Filtration	\$0	\$488,000	\$9,700,000	\$9,700,000		
Alternative 2 - Option 1 Filtration	\$3,100,000	\$488,000	\$9,700,000	\$12,800,000		
Alternative 3 - Option 1 Filtration	\$7,300,000	\$488,000	\$9,700,000	\$17,100,000		
Alternative 4 - Option 1 Filtration	\$8,300,000	\$488,000	\$9,700,000	\$18,000,000		

This option also allows Kaukauna Utilities' water customers to have no change in water quality. This is beneficial because changing water quality can have a negative connotation with water customers. However, by not changing the current water quality, the water customers would still be receiving water high in hardness because the existing treatment technique does not remove water hardness. This results in the cost of water softening to remain on water customers.

13.5.2 Water Treatment Option 2: Ion Exchange Treatment Process

Water treatment option 2 is ion exchange water treatment. Ion exchange functions as a large-scale water softener. With the simplicity of the treatment technique, there is a benefit to operators who are already familiar with the water softening process. This treatment equipment is also easy to maintain and only requires salt for regenerating the resin media. This treatment process also eliminates the need for potassium permanganate and manganese sulfate for radium removal. This process would result in higher operational costs compared to the current treatment method. Ion exchange would still require filtration prior to the ion exchange system to remove iron. Ion exchange is also the treatment method used in the neighboring communities of Little Chute and Kimberly.

This process has the main benefit of reducing hardness in water. This process would benefit water customers because they would no longer have to keep and maintain their water softeners. A summary of the costs of water softening for customers is included in **Table 13**.

The main drawback of ion exchange is the high operational costs associated with buying salt. This cost outweighs the cost savings from eliminating the need for potassium permanganate and manganese sulfate. **Table 15** summarizes the capital and operating costs for Option 2.

Description	Capital Cost	Annual Operating	20-Years Operating	Capital Cost + 20- Year Operating Cost		
Alternative 3 - Option 2 Ion Exchange	\$15,500,000	\$670,000	\$13,400,000	\$28,900,000		
Alternative 4 - Option 2 Ion Exchange	\$16,000,000	\$670,000	\$13,400,000	\$29,400,000		

Table 15: Preliminary Cost Estimate: Option 2 – Ion Exchange Treatment Process

Ion exchange also discharges chlorides to the Heart of the Valley Wastewater Treatment Plant. The wastewater treatment plant is currently nearing their chloride limit. If reached, the plant would need to add a process to remove chlorides from the effluent water.

Lastly, it is anticipated that a chemical would need to be added for pH adjustment to make the water less corrosive. The ion exchange treatment process does not change the end use water quality in the system. This treatment process shifts the water softening from the customer to the Utility. It is anticipated that the amount of sodium in the treated water at the point of use will remain approximately the same as what the customers are now using with residential, commercial, and industrial water softeners operating. This means the wear on customer appliances and water heaters will be the same. It is possible the pH adjustment chemical will lengthen the life of water heaters, but there will still be higher wear associated with softened water compared to reverse osmosis or nano-filtered water because of the sodium content.

13.5.3 Water Treatment Option 3: Reverse Osmosis or Nanofiltration Treatment Process

Water treatment option 3 is reverse osmosis or nanofiltration treatment. This treatment process consists of pushing water through a semipermeable membrane using high pressure. Pressure filters would still be required for this option as pretreatment to remove iron. Reverse osmosis or nanofiltration treatment would replace the potassium permanganate and manganese sulfate chemical addition for the removal of radium. An antiscalant chemical would need to be added to

the treatment process to not foul the membranes quickly. The operational cost savings would be a net zero cost associated with the chemicals.

The main difference between reverse osmosis and nanofiltration is the pressure needed to force the water through the membrane. Reverse osmosis uses a membrane that is less permeable than the membrane used in nanofiltration. The reverse osmosis membrane has smaller holes than the nanofiltration membrane. This difference in membrane means less constituents get through the reverse osmosis membrane than the nanofiltration membrane, but more power is required for reverse osmosis treatment. Reverse osmosis and nanofiltration result in the same finished water quality.

A major benefit of reverse osmosis or nanofiltration over Option 1 (filtration only) is that it removes water hardness. This treatment process would have the same benefits to the customers described in Option 2 associated with the removal of customer water softening. These cost savings are summarized in **Table 13**. Reverse osmosis or nanofiltration has the additional benefit of not adding sodium to the water like Option 2 does. This treatment process aids the wastewater treatment plant in lowering chloride levels while still removing hardness from water.

There are currently four reverse osmosis water treatment plants approved by the DNR in Wisconsin. Waupun Public Utilities and Stanley Municipal Waterworks have reverse osmosis treatment plants in operation. Winneconne Water Utility's reverse osmosis water treatment plant is in construction and will be in operation soon. The City of Prescott Municipal Water Utility reverse osmosis treatment plant is planned to start construction in summer of 2024.

Municipalities in Minnesota have been incorporating reverse osmosis treatment to treat water hardness for longer than Wisconsin. The first reverse osmosis water treatment plant was constructed in 1998 in Madison, Minnesota. A summary of the three reverse osmosis water treatment plants in Minnesota that would be very similar to Kaukauna's raw water quality are included below in **Table 16**.

Municipality	Year Placed in Service	Average Day Demand (MGD)	Raw Water Hardness (mg/L, gpg)		Finished Water Hardness (mg/L, gpg)		
Northfield	In construction	2.0	310	18	95	5.5	
Redwood Falls	2011	1.5	1,015	59	215	12.5	
St. Peter	2011	1.1	413	24	86	5.0	

Table 16: Minnesota Reverse Osmosis Water Treatment Plants

Redwood Falls, Minnesota accomplishes an 80% decrease in water hardness, a similar goal to Kaukauna Utilities. The communities in Minnesota that use reverse osmosis for water hardness treatment demonstrate that this treatment technique can be a feasible option for municipalities.

Reverse osmosis or nanofiltration has higher capital costs than Option 1, but lower capital costs than Option 2. Reverse osmosis or nanofiltration has higher operating costs than Option 1 and 2. **Table 17** summarizes the capital and operating cost estimates.

Table 17: Preliminary Cost Estimate: Option 3 - Reverse Osmosis or Nanofiltration

Description	Capital Cost	Annual Operating Cost	20-Years Operating Cost	Capital Cost + 20- Year Operating Cost
Alternative 3 - Option 3 Reverse Osmosis	\$13,900,000	\$950,000	\$19,000,000	\$32,900,000
Alternative 4 - Option 3 Reverse Osmosis	\$14,400,000	\$950,000	\$19,000,000	\$33,400,000

Reverse osmosis or nanofiltration treatment for Kaukauna Utilities would have a waste stream of approximately 17%-20% of the water pumped. The water hardness, sulfates, total dissolved solids, radium, and strontium will get filtered out and concentrated into a stream of wastewater to be sent to the wastewater treatment facility or to a surface water discharge point. The cost of sending this waste stream to the wastewater treatment facility would be high.

Through conversations with the DNR, if the radium and iron is removed in the pressure filters and the pressure filter backwash water is sent to the wastewater treatment plant, then the reverse osmosis waste stream may be approved to be sent directly to surface water. Kaukauna Utilities has applied for a General Discharge Permit from the DNR to discharge the reverse osmosis waste stream directly to surface water. If this permit is approved, then the high cost for sending the waste stream to the wastewater treatment facility would not be a factor. The wastewater treatment cost for the reverse osmosis waste stream is not included in Table 17.

If reverse osmosis or nanofiltration treatment is chosen, the wells would have to produce approximately 17%-20% more water to account for the waste stream. The water calculations that were performed in Section 10 were reevaluated with this additional water demand. These calculations are summarized in

Table 18.

Table 18: Demand Calculations with Reverse Osmosis or Nanofiltration

Scenario	Equation 1 Maximum Day	Equation 2 Average Day	Equation 3 Fire Flow on Maximum Day	Equation 4 Maximum Hour
Current Demand + 17%	(327)	(182)	1,173	1,318
Future 2043 Demand + 17% - FWC	(821)	(415)	679	1,085
Future 2043 Demand + 17% - with Well 9	479	885	1,979	2,385

With Well 9 out of service, the water system could not meet the current or future average daily demand when pumping at 12 hours per day and could not meet the current or future maximum daily demand when pumping at 18 hours per day. With Well 9 in service, the water system can handle current and future demand with the additional water needs of reverse osmosis or nanofiltration.

The above calculations for average day demand were made by using a pumping time of 12 hours per day. This 12-hour pumping time leads to the conclusion that Kaukauna Utilities cannot provide the current water demand on average day with a reverse osmosis or nanofiltration treatment system and Well 9 out of service. If the wells are run for 13.1 hours, they will supply current average day demand with reverse osmosis or nanofiltration treatment and Well 9 out of service.

If Kaukauna Utilities chooses to go with the reverse osmosis or nanofiltration water treatment process, Well 5 pumping capacity should be increased from 250 gpm to 500 gpm. The pumping capacity change would require approval from the DNR. This increase in water supply capacity would allow the system to meet current average day demand with reverse osmosis or nanofiltration water treatment with a spare capacity of 3 gpm. The Main Filter Plant is currently not sized for this additional flow from Well 5.

The above calculations for maximum day demand used a pumping time of 18 hours per day. This 18-hour pumping time leads to the conclusion that Kaukauna Utilities cannot provide the water demand on current maximum day with a reverse osmosis or nanofiltration treatment system with Well 9 out of service. One solution to this is to run the pumps for 19.2 hours during current maximum day instead of 18 hours if Well 9 is out of service. Kaukauna Utilities' wells can handle extra pumping per day in the short term (such as on the maximum day when Well 9 is out of service), but this is not a recommended long-term solution to water supply needs.

13.5.4 Water Treatment Option 4: Pellet Softening Treatment Process

Water treatment option 4 is pellet softening treatment. With pellet softening, water is pushed through a fluidized bed of sand. The chemistry concept of pellet softening is the same as lime softening. A catalyst, either caustic soda (sodium hydroxide) or lime (calcium hydroxide), is used to increase pH of the water and to precipitate calcium which will reduce water hardness. The chemistry process requires the source water to have a water hardness that is high in calcium and low in magnesium. Kaukauna has 225 mg/L calcium and 20 mg/L magnesium, so Kaukauna is a good fit based on chemistry.

Pellet softening uses a tall vertical tank with a fast loading rate to produce a calcium pellet. The vertical tank would be approximately 20 feet tall and would be required to be built indoors. The tank is open to the atmosphere on top. The chemistry seems to be stable compared to lime softening since there is a fast loading rate. Sand is added to the tank as seed material. The calcium will precipitate and attach itself to the sand particle. The sand particle will grow to 200-300% of the original size. The pellet is extracted when the pressure difference above and below the strainer plate has reached the predetermined differential. The waste pellet is placed in a waste dumpster and 95% dewatered two hours later. There is about a 1% waste of source water with pellet softening. The calcium pellet can be landfilled, land applied, or fed to livestock. The calcium pellet may be able to be sold to concrete companies or drywall manufacturers. Sand needs to be added daily as a seed.

Calcium hardness is estimated to be reduced by 80-90%. Magnesium hardness would not be reduced with pellet softening. This magnesium issue is not a concern for Kaukauna, as 90% of the water hardness in the raw water is from calcium. With 90% calcium hardness reduction, pellet softening would reduce the overall water hardness to approximately 150 mg/L (9.0 grains per gallon), which is higher than the targeted hardness range discussed above in Section 13.3. Pellet softening also reduces iron and manganese.

There is no data from the pellet softening manufacturers for radium and strontium removal, but lime softening removes both radium and strontium and the chemistry is the same as pellet softening. It is expected that pellet softening would also reduce strontium as much as 40-80% and radium as much as 50-80%, but this would need to be confirmed during pilot testing. The iron filter would not be necessary as pretreatment for pellet softening.

The operations of pellet softening are automated to minimize Kaukauna Utilities' staff onsite time; however, this treatment process would require additional vendor and operator oversight for waste disposal and sand replenishment. The pellet reactor works best to run 24 hours a day but can work if it runs at least eight hours straight and then is turned off. Sand needs to be added a minimum of once per day.

The capital cost of pellet softening is higher than reverse osmosis or nanofiltration. The operational costs and operating labor are lower than reverse osmosis.

Table 19: Preliminary Cost Estimate: Option 4 – Pellet Softening

Description	Capital Cost Operating Co		20-Year Operating Cost	Capital Cost + 20- Year Operating Cost		
Alternative 3 - Option 4 Pellet Softening	\$16,400,000	\$900,000	\$18,000,000	\$34,400,000		
Alternative 4 - Option 4 Pellet Softening	\$16,200,000	\$900,000	\$18,000,000	\$34,200,000		

A pellet softening system has never been installed or piloted in Wisconsin. A township in Pennsylvania installed a municipal pellet softening system in 2018, approved by the Pennsylvania DNR. Pellet softening is being piloted in Illinois and Indiana for industrial use. Because this technology is new to Wisconsin and the Midwest, the DNR would likely require more extensive pilot testing than if Kaukauna Utilities selected a more common treatment process that already has been approved by the DNR.

A major benefit of pellet softening is that it removes calcium hardness, iron, manganese, strontium, and radium. Pellet softening has the benefit of leaving the carbonates in the water which helps stabilize the water from being corrosive. This treatment process aids the wastewater treatment plant in lowering chloride levels while still removing hardness from water. The downfall to pellet softening is the total water hardness is anticipated to only be removed to 150 mg/L. At this level some customers may choose to keep their water softener.

Pellet softening would require more operations oversight than reverse osmosis treatment. There is also waste disposal associated with pellet softening that would need to be picked up weekly. Pellet softening would require more training for the operators and result in increased Utility operations time.

13.5.5 Water Treatment Option 5: Change from Groundwater Source to Surface Water Source

Water treatment option 5 is for Kaukauna Utilities to switch to surface water as a source of water. This option has the benefit of eliminating the issue of radium and high water hardness associated with Kaukauna's groundwater. There are two communities nearby that are wholesale suppliers for

surface water. The source surface water does not contain radium and contains a water hardness level between 120-160 mg/L. This surface water option was studied in Section 10.3 of this report. The capital and operating cost estimates for surface water source are summarized in **Table 8** in Section 10.3.4.

13.6 Other Water Treatment Processes Considered but Not Pursued as Options

13.6.1 Lime Softening

Lime softening is a treatment technique that involves adding lime and soda ash to untreated water. The hardness and alkalinity in the water is precipitated out and creates a residual sludge. This sludge must be disposed of with approval of the wastewater treatment plant. This treatment method is not preferred due to the operation and maintenance requirements. Lime feeders and lines carrying lime slurry to the point of application can be difficult to maintain. In addition, operators must understand the chemistry behind lime softening and test the water full-time to ensure the process is working as desired. Lime softening also does not address Kaukauna's high iron or radium. This treatment technique was not pursued as an option due to these drawbacks.

13.6.2 Electrodialysis Reversal Treatment

Electrodialysis reversal treatment uses electricity to separate out ions through membranes. Electrodialysis reversal treatment is effective for removal of water hardness and metal ions, like iron.

This treatment technique would necessitate additional treatment for organics and radium. The main advantage of electrodialysis reversal treatment is it has higher water recovery than reverse osmosis treatment, which is an option discussed below. This treatment technique was not pursued as an option due to the high capital costs and operating costs.

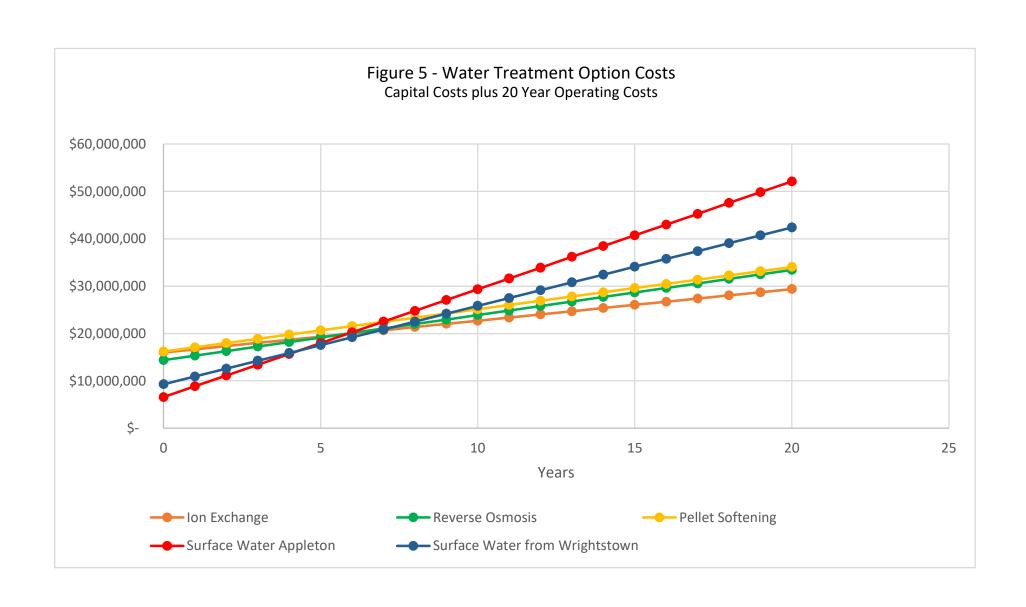
13.6.3 Distillation

Distillation is a process that relies on evaporation to remove contaminants from water. The process involves heating water to form steam, where contaminants will not evaporate. The steam is then cooled and condenses as purified water. Distillation is effective at removing iron, water hardness, and some microorganisms. There is a high energy cost for heating and cooling distilled water. Additionally, there is maintenance associated with cleaning the scale from the equipment that builds up as contaminants are distilled from the drinking water. If this is not cleaned periodically, the energy costs increase for heating the water. Because of the high water hardness of Kaukauna's water, distillation would result in heavy scaling of the equipment and maintenance would be intensive for the operator. Distillation was not pursued as an option for treatment for Kaukauna Utilities due to the high operation and maintenance costs associated with it.

13.6.4 Freezing Water

Freezing water can separate out hardness from water because the contaminants will not freeze with the water. The process involves freezing water and then thawing, letting the first

water thawed to be removed from the solution. The contaminants will be contained in the initial water that is thawed. This process has been found to be effective at water hardness removal. It does not result in the same scaling issues as distillation because of the low heat involved. This is not a practical solution for a large-scale system due to the energy costs associated with freezing and thawing the water.


13.7 Water Treatment Recommendations

The risks and benefits for each water treatment option are included in **Appendix G**. The capital costs plus the annual operating costs for a 20-year period for each water treatment option are shown in **Figure 5**.

A new treatment process is recommended for raw water in the water system. The recommended alternative is Option 3 which is to use a reverse osmosis or nanofiltration treatment process. This treatment process would benefit customers by lowering water hardness to a standard level and allow customers to save on the costs of water softening if they choose to eliminate their water softener. Additionally, the treatment process removes the high radium and iron in the raw water supply. This treatment process will also remove strontium and lower the total dissolved solids.

It is strongly discouraged to use the ion exchange water treatment process due to the additional discharge of chlorides to the wastewater treatment process. The DNR is trying to set lower limits of chloride discharges for the wastewater treatment plants. Some other states have banned the installation of ion exchange systems due to the high chloride discharge.

A schematic of the proposed water system is shown in Figure 11 in Appendix B. If Kaukauna Utilities chooses to go with the reverse osmosis or nanofiltration treatment option, it is recommended that a predesign study be done to analyze cost differences between reverse osmosis and nanofiltration at the time closer to purchase. Cost information from two suppliers, Water Surplus and Tonka Water, have been obtained for this report. Correspondence with these suppliers is included in Appendix J. Reverse osmosis has a lower initial capital cost but a higher operating cost due to pumping compared to nanofiltration. The costs in the report are based on reverse osmosis because at the time of the report the nanofiltration capital cost was significantly higher than reverse osmosis and one supplier felt that significantly higher capital cost would not be offset by operating costs. Also, one supplier found a Low E reverse osmosis membrane which would have lower energy usage than traditional reverse osmosis.

14. Water Distribution System

The water distribution system for Kaukauna Utilities was studied with a computer water model prepared in the Bentley WaterCAD software. This computer water model includes the layout of the existing system and future system expansions Kaukauna Utilities is considering. Maps of the computer water model for each scenario and results are included in **Appendix K.**

14.1 Computer Water Model Calibration

The water system was drawn in WaterCAD using existing system maps and information from Kaukauna Utilities. The model includes pipes, junctions, reservoirs, and storage tanks. The pipes and junctions are drawn according to the existing system layout. Pipes include information on pipe sizes, material, and C-factors. The C-factor is a number that indicates the friction in a pipe and is determined by the pipe material and age. The model junctions are points of intersection for pipes, and they include information on elevation at each point. For the Kaukauna Utilities water model, the ground elevation for each point was used. There are two elevated storage tanks that model the existing Ann Street Water Tower and Industrial Park Water Tower.

The model was calibrated with empirical fire flow data obtained from the Utility. The data included static pressure, residual pressure, and fire flow at hydrants throughout the system. For each fire flow test, the elevated storage tank operating level was recorded at the time of the fire flow. This information was then compared to the model fire flow results.

First, static pressure was considered. To match the model to the field results, the elevated storage tank initial water heights were set to the height at which each hydrant test was performed. Then, the corresponding junction in the model was checked to see how the static pressure compared. Generally, the model matched the field results. There was an average difference between static pressures in the field and model of 1 pound per square inch (psi).

When the static pressures were representative of the field data, fire flow and residual pressures were considered. WaterCAD has a calculation option that will run each junction at fire flow down to a minimum pressure. For our calibration, the pressure minimum was set to 30 psi. The minimum pressure required by DNR is 20 psi. 30 psi was used for calibration and for studying the model to account for the additional 10 psi pressure drop that would be caused by the hydrant and the hydrant lead, which are not included in the model.

The field results did not have residual pressures as low as those in the model, which went down to 30 psi. In order to compare residual pressures in the field to the model, a conversion equation was used on the field data to convert the fire flow at field residual pressure to the 30 psi used in the model. Then, the flow rate at each junction was compared to the converted field flow rate. Calibration was then done by changing the C-factors of the pipes. The water distribution system has three types of pipe materials: PVC, ductile iron, and cast iron. There were many combinations of C-factors input into the model, but it was determined that using the C-factors 90, 120, and 130 for cast iron, ductile iron, and PVC respectively most closely matched the existing water system. There was an average difference in fire flows of -18 gpm when comparing the field fire flow to the converted model fire flow.

14.2 Computer Water Model Results

The existing water system is considered the base water model. After establishing a base model, changes to the water system could be investigated such as pipe upsizing and water main extensions. The two main factors studied are static pressure and fire flow.

The DNR has requirements for static pressure and fire flows in a public water system. The minimum static pressure to a customer is 35 psi. Kaukauna Utilities has residential customers currently at 50 psi. The minimum fire flow allowed by DNR is 500 gpm at 20 psi. This fire flow is a low-pressure situation and not ideal for firefighting. There are other guidelines for fire flow established by Insurance Services Office, Inc. (ISO) and are listed in **Table 20**.

Table 20: ISO Reco	ommended Fire Flows
Type of Property	Recommended Fire
	Flow (gpm)
Residential	550- 750
Schools	3,000- 3,500
Commercial	1,000- 3,000
Industrial	2,000- 3,000

Table 20: ISO Recommended Fire Flows

Each scenario is described below, and a summary of the fire flows for each scenario are included in **Table 22** at the end of the section. The computer water modeling results are shown in **Appendix K**.

14.2.1 Scenario 1: Hillcrest Water Main Pipe Upsizing

The first scenario incorporates upsized piping along Hillcrest Drive and Boyd Street, from Dodge Street to County Highway CE. The Hillcrest Drive pipe connects to 12-inch PVC piping at both intersections. This scenario upsized all the piping along this street to 12-inch PVC. The existing system has a combination of 10-inch and 8-inch PVC and ductile iron piping. No additional piping was added to the system for this scenario.

This scenario addresses low pressures and low fire flows in the residential area in the southeast portion of Kaukauna. The 12-inch water main along Hillcrest Drive resulted in higher fire flows in this area. This upgrade would be completed when the pavement on Hillcrest Drive reaches the end of its useful life in 10-15 years.

14.2.2 Scenario 2: Loop at Evergreen Drive

The second scenario involved the addition of a 12-inch PVC loop to a dead end at the north side of the water system at Evergreen Drive. The loop connects at the dead end on Evergreen Drive, follows County Highway CC south of USH 41, and connects to the existing system at the intersection of Mera Lane and Alyssa Street.

This scenario adds redundancy to the system by adding another crossing under USH 41. It also raises fire flow in the areas near the loop. For example, the junction at the end of Evergreen Drive currently has a fire flow of 3,301 gpm @ 30 psi. By adding the loop, the fire flow at the end of Evergreen Drive increases to 5,294 gpm @ 30 psi.

14.2.3 Scenario 3: 12-Inch Southeast Expansion – No Additional Pressure Zones

Scenario 3 includes the addition of 12-inch PVC water main to the southeast portion of Kaukauna. This was modeled as future residential development. The water main addition extends east to Outagamie Road, south to County Highway KK, and north to County Highway ZZ.

This scenario successfully delivers acceptable fire flow and pressures to most of the expansion. There are low fire flows and low static pressures in the most southeast corner of the expansion. The southeast corner begins east of Military Road and south of Weiler Road. There is a hill in this area that is the cause of low pressures. The minimum static pressure with this scenario is 25 psi and the lowest fire flow is 316 gpm @ 30 psi. This fire flow is below the DNR minimum of 500 gpm @ 20 psi. Kaukauna Utilities could successfully expand to the southeast including all but the most southeast corner before needing to consider another pressure zone or another alternative for this area.

14.2.4 Scenario 4: 16-Inch Southeast Expansion – No Additional Pressure Zones

Scenario 4 has the same extension as Scenario 3 but includes 16-inch diameter PVC water main instead of 12-inch diameter PVC water main. The same situation occurs in the southeast corner of the extension. The minimum static pressure with this scenario is 25 psi and a minimum fire flow of 536 gpm @ 30 psi. Kaukauna Utilities could expand with this scenario to all but the most southeast corner before needing to consider an additional pressure zone or another solution to the low pressure in this area.

14.2.5 Scenario 5: 12-Inch Southeast Expansion—Pressure Zone Addition

Scenario 5 includes the same pipe extension as Scenario 3 with the addition of another pressure zone to the water system. The new pressure zone includes areas of the existing system that have the lowest pressures. The map showing the delineation between the two pressure zones is included in **Appendix K.**

This scenario has the benefit of being able to supply water with an acceptable static pressure and acceptable fire flow to the most southeast portion of the extension. The addition of another pressure zone also raises pressure in the neighborhood to the north of County Highway CE at the far east of the existing water system. This area has the lowest pressures in the existing water system and is a concern for Kaukauna Utilities. This scenario has the drawback of the cost associated with isolating parts of the existing water system and creating dead ends in the water system. Another drawback of adding a pressure zone to the water system is the cost of an additional elevated storage tank.

14.2.6 Scenario 6: 16-Inch Southeast Expansion—Pressure Zone Addition

Scenario 6 includes the southeast expansion with 16-inch piping and a pressure zone addition to the water system. This scenario results in slightly higher fire flows available compared to Scenario 5 but has the same drawbacks.

14.2.7 Scenario 7: 12-Inch North Expansion

Scenario 7 involves an expansion of the water system to the north of Kaukauna, addressing anticipated development of the industrial area. The expansion connects to the existing system at Evergreen Drive, runs north on STH 55 to County Road UU. County Highway UU is the northernmost end of this expansion. It then runs east across STH 41, where it turns south on County Line Road. It then is anticipated to connect to the existing system at the intersection of

County Highway ZZ and Outagamie Road. This connection point is a part of the southeast expansion water main. In this scenario, all piping is 12-inch PVC.

This expansion allows for acceptable static pressure and fire flow throughout the junctions. Because of the relatively flat topography of the area, there is no need for an additional pressure zone to the north.

14.2.8 Scenario 8: 16-Inch North Expansion

Scenario 8 has the same north expansion as Scenario 7, but with all 16-inch PVC piping throughout. The upsize in piping allows for slightly higher fire flows throughout the expansion. Both scenarios result in adequate static pressures and fire flows.

14.2.9 Scenario 9: Tower Drive Replacement and Loop to Edgewood Drive

Scenario 9 looks at the part of the water system near the Industrial Park Water Tower. Currently, there is a 16-inch ductile iron pipe on Tower Drive between the water tower location and Eastline Road. Kaukauna Utilities is looking to replace this 16-inch pipe with a 12-inch pipe. This scenario also includes looping from the water tower location to the north, under STH 41, to the intersection of County Road JJ and Maloney Road.

A summary of how these changes to the water system affect fire flows is included in **Table** 21. Junction J-719 is at the intersection of County Road JJ and Maloney Road. Junction J-489 is located at the intersection of Tower Drive and Eastline Road.

Scenario J-719 Fire J-489 Fire Flow (gpm) Flow (gpm) Current 4,775 10,000 Downsize Tower Drive Pipe to 12-4,688 10,000 inch Downsize Tower Drive Pipe to 12-6,523 10,000 inch and Add Loop to North

Table 21: Scenario 9 Fire Flows

There is marginal benefit to fire flows to keep the 16-inch pipe. Downsizing to a 12-inch pipe would not affect the system's fire flow capability and would save capital costs. Looping to the north has a benefit to fire flows on the north side of STH 41.

[INSERT FIRE FLOW TABLE AND MODEL DIAGRAMS HERE]

T	L 1	ı _	22.	F:		
101	nı	Ρ	//:	FIFE	' F	OM

г	

14.3 Water Distribution System Recommendations

A potential improvement to the water distribution system includes upsizing the water main on Hillcrest Drive from the current 8 and 10-inch piping to 12-inch piping. This improvement would benefit the areas of low fire flow in the southeast of the existing water system and would allow for higher fire flows in the future expansion to the southeast.

Additionally, Kaukauna Utilities can stay on one pressure zone until development to the southeast necessitates the addition of a second pressure zone. It is projected Kaukauna Utilities can add to the water system to the southeast, to an area east of County Road GG and south of Weiler Road, before needing to add another pressure zone. By staying with one pressure zone as long as possible, it would minimize maintenance labor and postpone adding dead ends in the water system until another pressure zone is needed. Once development reaches this area, a second pressure zone should be evaluated as well as the possible need for another elevated storage tank for the second pressure zone.

Appendix A

Cost Estimates

Alternative 2 - Replace Pressure Filter Tank at Current Location Option 1 - Keep Existing Water Treatment Process - Filtration

October 20, 2023

Capital Costs

Item		Qty	L	Init Price	Со	st Estimate
Main Filter Plant Building Renovations						
Renovate Existing WTP Building	LS	1	\$	200,000	\$	200,000
Generators - Well 4, 5, 10, & Treatment Plant	Ea	1	\$	370,000	\$	370,000
Pressure Filter Tank	Ea	1	\$	900,000	\$	900,000
Site Piping	LS	1	\$	200,000	\$	200,000
Chemical Feed Equipment	LS	1	\$	15,000	\$	15,000
SCADA Improvements	LS	1	\$	200,000	\$	200,000
Demolition of Pressure Filter	LS	1	\$	100,000	\$	100,000
Well 8 & 9 Improvements						
Replace Pressure Filter Media - Well 9 only	Ea	1	\$	100,000	\$	100,000
Subtotal					\$	2,085,000
Inflation 3% per year, 3 years	9%				\$	188,000
Contingency 15% \$				\$	313,000	
Engineering	20%				\$	417,000
Admin/ Legal	2%				\$	42,000
Total Capital Cost					\$	3,045,000

ltem	Cos	st Estimate
Main Filter Plant at New Site		
Chemical Feed - Chlorine + Orthophosphate	\$	50,000
Chemical Feed - HMO	\$	30,000
Media Replacement - 15 years	\$	3,012
Wells Running - Electric Cost	\$	69,069
Labor	\$	63,385
Maintenance of Wells	\$	15,000
Well 8 & 9		
Chemical Feed - Chlorine + Orthophosphate	\$	50,000
Chemical Feed - HMO	\$	30,000
Media Replacement - every 15 years	\$	3,012
Well 8+9 Running - Electric Cost	\$	96,052
Labor	\$	63,385
Maintenance of Wells	\$	15,000
Total Annual Operating Cost	\$	488,000

20-year annual operating cost	\$ 9,760,000
Capital cost plus 20-year annual operating cost	\$ 12,805,000

Alternative 3 - Rebuild Water Treatment Plant Building and Reservoirs at Current Location Option 1 - Keep Existing Water Treatment Process - Filtration

October 24, 2023

Capital Costs

Item	Unit	Qty	Unit Price	Со	st Estimate
Main Filter Plant Site Renovations					
Renovate Existing WTP Building	LS	1	\$ 200,000	\$	200,000
Generators - Well 4, 5, 10, & Treatment Plant	Ea	1	\$ 370,000	\$	370,000
Pressure Filter Tank	Ea	1	\$ 900,000	\$	900,000
Site Piping	LS	1	\$ 200,000	\$	200,000
Chemical Feed Equipment	LS	1	\$ 15,000	\$	15,000
SCADA Improvements	LS	1	\$ 200,000	\$	200,000
Booster Pump Station Renovations	LS	1	\$ 100,000	\$	100,000
Replace Booster Pump and Piping	LS	1	\$ 300,000	\$	300,000
Ground Storage Reservoir - 600,000 Gal	Ea	1	\$ 2,000,000	\$	2,000,000
Demolition of Reserviors, Booster Pump,					
Piping, & Pressure Filter	LS	1	\$ 400,000	\$	400,000
Well 8 & 9 Improvements					
Generators - Well 8 and 9	Ea	1	\$ 230,000	\$	230,000
Replace Pressure Filter Media - Well 9 only	Ea	1	\$ 100,000	\$	100,000
Subtotal				\$	5,015,000
Inflation 3% per year, 3 years	9%			\$	451,000
Contingency	15%			\$	752,000
Engineering	20%			\$	1,003,000
Admin/ Legal	2%			\$	100,000
Total Capital Cost				\$	7,321,000

Item	l Co.	ct Ectimata
	CO	st Estimate
Main Filter Plant at New Site		
Chemical Feed - Chlorine + Orthophosphate	\$	50,000
Chemical Feed - HMO	\$	30,000
Media Replacement - 15 years	\$	3,012
Wells Running - Electric Cost	\$	69,069
Labor	\$	63,385
Maintenance of Wells	\$	15,000
Well 8 & 9		
Chemical Feed - Chlorine + Orthophosphate	\$	50,000
Chemical Feed - HMO	\$	30,000
Media Replacement - every 15 years	\$	3,012
Well 8+9 Running - Electric Cost	\$	96,052
Labor	\$	63,385
Maintenance of Wells	\$	15,000
Total Annual Operating Cost	\$	488,000

20-year annual operating cost	\$ 9,760,000

Alternative 3 - Rebuild Water Treatment Plant Building and Reservoirs at Current Location Option 2 - Ion Exchange Water Treatment Process

October 20, 2023

Capital Costs

Item	Unit	Qty	Unit Price	Cost Estimate
Main Filter Plant Site Renovations				
Renovate Existing WTP Building & Addition	LS	1	\$ 1,000,000	\$ 1,000,000
Generators - Well 4, 5, 10, & Treatment Plant	Ea	1	\$ 370,000	\$ 370,000
Pressure Filter Tank	Ea	1	\$ 725,000	\$ 725,000
Site Piping	LS	1	\$ 200,000	\$ 200,000
Ion Exchange	LS	1	\$ 1,780,000	\$ 1,780,000
Chemical Feed Equipment	LS	1	\$ 30,000	\$ 30,000
SCADA Improvements	LS	1	\$ 200,000	\$ 200,000
Ground Storage Reservoir - 600,000 Gal	Ea	1	\$ 2,000,000	\$ 2,000,000
Demolition of Reserviors, Booster Pump,				
Piping, & Pressure Filter	Ea	1	\$ 400,000	\$ 400,000
Well 8 & 9 Improvements				
Generators - Well 8 & 9	Ea	1	\$ 230,000	\$ 230,000
Replace Pressure Filter Media - Well 9 only	Ea	1	\$ 100,000	\$ 100,000
Ion Exchange	LS	1	\$ 1,780,000	\$ 1,780,000
Chemical Feed Equipment	LS	1	\$ 30,000	\$ 30,000
SCADA Improvements	LS	1	\$ 200,000	\$ 200,000
Transmission Main to New Site	LF	6500	\$ 200	\$ 1,300,000
Reservoirs	Ea	1	\$ 300,000	\$ 300,000
Subtotal				\$ 10,645,000
Inflation 3% per year, 3 years	9%			\$ 958,000
Contingency	15%			\$ 1,597,000
Engineering	20%			\$ 2,129,000
Admin/ Legal	2%			\$ 213,000
Total Capital Cost				\$ 15,542,000

Alternative 3 - Rebuild Water Treatment Plant Building and Reservoirs at Current Location Option 2 - Ion Exchange Water Treatment Process

October 20, 2023

ltem	Co	ost Estimate
Main Filter Plant at New Site		
Chemical Feed - Chlorine + Orthophosphate	\$	50,000
Salt Costs + labor	\$	114,554
Energy	\$	2,130
Resin Changeout - Every 10 Years + labor	\$	7,320
Well Running	\$	69,069
Labor	\$	63,385
Maintenance of Wells	\$	15,000
Well 8 & 9		
Chemical Feed - Chlorine + Orthophosphate	\$	50,000
Well 8+9 Running	\$	96,052
Salt Costs	\$	114,554
Energy	\$	2,130
Resin Changeout - Every 10 Years	\$	7,320
Labor	\$	63,385
Maintenance of Wells	\$	15,000
Total Annual Operating Cost	\$	670,000
		·
20-year annual operating cost	\$	13,400,000
Capital cost plus 20-year annual operating cost	\$	28,942,000

Alternative 3 - Rebuilt at Current Main Filter Plant Site Option 3 - Reverse Osmosis/Nanofiltration Water Treatment Process

October 20, 2023

Capital Costs

Item	Unit	Qty	Unit Price	Cost Estimate
Main Filter Plant Site Renovations				
Renovate Existing WTP Building & Addition	LS	1	\$ 1,000,000	\$ 1,000,000
Generators - Well 4, 5, 10, & Treatment Plant	Ea	1	\$ 370,000	\$ 370,000
Pressure Filter Tank	Ea	1	\$ 725,000	\$ 725,000
Site Piping	LS	1	\$ 200,000	\$ 200,000
RO/ Nano Treatment	Ea	1	\$ 1,254,000	\$ 1,254,000
Booster Pump to RO	Ea	1	\$ 40,000	\$ 40,000
Chemical Feed Equipment	LS	1	\$ 45,000	\$ 45,000
SCADA Improvements	LS	1	\$ 200,000	\$ 200,000
Ground Storage Reservoir - 600,000 Gal	LS	1	\$ 2,000,000	\$ 2,000,000
Demolition of Reserviors, Booster Pump,				
Piping, & Pressure Filter	Ea	1	\$ 400,000	\$ 400,000
Well 8 & 9 Improvements				
Generators - Well 8 and 9	Ea	1	\$ 230,000	\$ 230,000
Replace Pressure Filter Media - Well 9 only	Ea	1	\$ 100,000	\$ 100,000
RO/ Nano Treatment	Ea	1	\$ 1,144,000	\$ 1,144,000
Booster Pump to RO	Ea	1	\$ 40,000	\$ 40,000
Chemical Feed Equipment	LS	1	\$ 45,000	\$ 45,000
SCADA Improvements	LS	1	\$ 100,000	\$ 100,000
Transmission Main to New Site	LF	6500	\$ 200	\$ 1,300,000
Reservoir	LS	1	\$ 300,000	\$ 300,000
Subtotal				\$ 9,493,000
Inflation 3% per year, 3 years	9%			\$ 854,000
Contingency	15%			\$ 1,424,000
Engineering	20%			\$ 1,899,000
Admin/ Legal	2%			\$ 190,000
Total Capital Cost				\$ 13,860,000

Alternative 3 - Rebuilt at Current Main Filter Plant Site

Option 3 - Reverse Osmosis/Nanofiltration Water Treatment Process October 20, 2023

Item	C	ost Estimate
Main Filter Plant at New Site		
Antiscalant Chemical	\$	21,627
Chemical cleaning (1/yr)	\$	25,625
Cartridge replacement	\$	20,970
Metabisulfite	\$	11,834
Membrane replacement	\$	132,770
Booster Pump for RO	\$	26,250
Chemical Feed - Chlorine + Orthophosphate	\$	50,000
Well Running * 1.2	\$	82,883
Labor	\$	82,401
Maintenance of Wells	\$	15,000
Well 8 & 9		
Antiscalant Chemical	\$	21,627
Chemical cleaning (1/yr)	\$	25,625
Cartridge replacement	\$	20,970
Metabisulfite	\$	11,834
Membrane replacement	\$	132,770
Booster Pump for RO	\$	26,250
Chemical Feed - Chlorine + Orthophosphate	\$	50,000
Well 8+9 Running * 1.2	\$	115,262
Labor	\$	63,385
Maintenance of Wells	\$	15,000
Total Annual Operating Cost	\$	952,000
20 years arrangle an existing east	<u>, </u>	10.040.000
20-year annual operating cost	\$	19,040,000
Capital cost plus 20-year annual operating cost	\$	32,900,000
	τ	,,

Alternative 3 - Rebuilt at Current Main Filter Plant Site Option 4 - Pellet Softening Water Treatment Process

February 22, 2024

Capital Costs

Item	Unit	Qty	Unit Price	Cost Estimate
Main Filter Plant at New Site				
Renovate Existing WTP Building & Addition	LS	1	\$ 1,500,000	\$ 1,500,000
Generators - Well 4, 5, 10, & Treatment Plant	Ea	1	\$ 370,000	\$ 370,000
Pressure Filter Tank	Ea	1	\$ 725,000	\$ 725,000
Site Piping	LS	1	\$ 200,000	\$ 200,000
Pellet Softener	Ea	1	\$ 1,415,000	\$ 1,415,000
Chemical Feed Equipment	Ea	6	\$ 10,000	\$ 60,000
SCADA Improvements	LS	1	\$ 200,000	\$ 200,000
Ground Storage Reservoir - 600,000 Gal	LS	1	\$ 2,000,000	\$ 2,000,000
Well 8 & 9 Improvements				
WTP Building Addition	Ea	1	\$ 800,000	\$ 800,000
Generators - Well 8 and 9	Ea	1	\$ 230,000	\$ 230,000
Iron Filter - Change Media Only	Ea	1	\$ 75,000	\$ 75,000
Pellet Softener	Ea	1	\$ 1,415,000	\$ 1,415,000
Chemical Feed Equipment	Ea	2	\$ 10,000	\$ 20,000
SCADA Improvements	LS	1	\$ 100,000	\$ 100,000
Transmission Main to New Site	LF	6500	\$ 200	\$ 1,300,000
Reservoir	LS	1	\$ 300,000	\$ 300,000
Main Filter Plant Site				
Demolition of Reserviors, Booster Pump,				
Piping, & Pressure Filter & Repurpose Main				
Filter Plant Building	Ea	1	\$ 500,000	\$ 500,000
Subtotal				\$ 11,210,000
Inflation 3% per year, 3 years	9%			\$ 1,009,000
Contingency	15%			\$ 1,682,000
Engineering	20%			\$ 2,242,000
Admin/ Legal	2%			\$ 224,000
Total Capital Cost				\$ 16,367,000

Alternative 3 - Rebuilt at Current Main Filter Plant Site Option 4 - Pellet Softening Water Treatment Process

February 22, 2024

Item	C	ost Estimate
Main Filter Plant at New Site		
Chemical Feed - Chlorine + Orthophosphate	\$	50,000
Pellet Softening O&M	\$	177,302
pH Down Chemical	\$	25,000
Chemical Feed - HMO	\$	30,000
Iron Filter Media Replacement - 15 years	\$	3,012
Well Running	\$	69,069
Maintenance of Wells	\$	15,000
Labor	\$	85,000
Well 8 & 9		
Chemical Feed - Chlorine + Orthophosphate	\$	50,000
Pellet Softening O&M	\$	177,302
pH Down Chemical	\$	25,000
Well 8+9 Running	\$	96,052
Labor	\$	85,000
Maintenance of Wells	\$	15,000
Total Annual Operating Cost	\$	903,000
20-year annual operating cost	\$	18,060,000
20-year annual operating cost	Ą	10,000,000
Capital cost plus 20-year annual operating cost	\$	34,427,000

Alternative 4 - New Water Treatment Plant Building at New Site Option 1 - Keep Existing Water Treatment Process - Filtration

October 24, 2023

Capital Costs

Item	Unit	Qty	Unit Price		Со	st Estimate
Water Treatment Plant at New Site						
New WTP Building	LS	1	\$	1,500,000	\$	1,500,000
Generators - Well 4, 5, 10, & Treatment Plant	Ea	1	\$	370,000	\$	370,000
Pressure Filter Tank	Ea	1	\$	725,000	\$	725,000
Site Piping	LS	1	\$	225,000	\$	225,000
Chemical Feed Equipment	LS	1	\$	60,000	\$	60,000
SCADA Improvements	LS	1	\$	200,000	\$	200,000
Transmission Main to/from New Site	LF	1400	\$	200	\$	280,000
Ground Storage Reservoir - 600,000 Gal	Ea	1	\$	1,500,000	\$	1,500,000
Well 8 & 9 Improvements						
Generators - Well 8 and 9	Ea	1	\$	230,000	\$	230,000
Replace Pressure Filter Media - Well 9 only	Ea	1	\$	75,000	\$	75,000
Main Filter Plant Site						
Demolition of Reserviors, Booster Pump,						
Piping, & Pressure Filter & Repurpose Main						
Filter Plant Building	Ea	1	\$	500,000	\$	500,000
Subtotal					\$	5,665,000
Inflation 3% per year, 3 years	9%				\$	510,000
Contingency	15%				\$	850,000
Engineering	20%				\$	1,133,000
Admin/ Legal	2%				\$	113,000
Total Capital Cost					\$	8,271,000

Annual Operating Costs

Capital cost plus 20-year annual operating cost

Item	Co	ost Estimate
Main Filter Plant at New Site		
Chemical Feed - Chlorine + Orthophosphate	\$	50,000
Chemical Feed - HMO	\$	30,000
Media Replacement - 15 years	\$	3,012
Wells Running - Electric Cost	\$	69,069
Labor	\$	63,385
Maintenance of Wells	\$	15,000
Well 8 & 9		
Chemical Feed - Chlorine + Orthophosphate	\$	50,000
Chemical Feed - HMO	\$	30,000
Media Replacement - every 15 years	\$	3,012
Well 8+9 Running - Electric Cost	\$	96,052
Labor	\$	63,385
Maintenance of Wells	\$	15,000
Total Annual Operating Cost	\$	488,000
20-year annual operating cost	\$	9,760,000

\$ 18,031,000

Alternative 4 - New Water Treatment Plant Building at New Site Option 2 - Ion Exchange Water Treatment Process

October 24, 2023

Capital Costs

Item	Unit	Qty	Unit Price	Cost Estimate
Water Treatment Plant at New Site				
New WTP Building	LS	1	\$ 1,500,000	\$ 1,500,000
Generators - Well 4, 5, 10, & Treatment Plant	Ea	1	\$ 370,000	\$ 370,000
Pressure Filter Tank	Ea	1	\$ 725,000	\$ 725,000
Site Piping	LS	1	\$ 150,000	\$ 150,000
Ion Exchange	LS	1	\$ 1,780,000	\$ 1,780,000
Chemical Feed Equipment	LS	1	\$ 30,000	\$ 30,000
SCADA Improvements	LS	1	\$ 200,000	\$ 200,000
Transmission Main to/from New Site	LF	1400	\$ 200	\$ 280,000
Ground Storage Reservoir - 600,000 Gal	Ea	1	\$ 1,500,000	\$ 1,500,000
Well 8 & 9 Improvements				
Generators - Well 8 and 9	Ea	1	\$ 230,000	\$ 230,000
Replace Pressure Filter Media - Well 9 only	Ea	1	\$ 75,000	\$ 75,000
Ion Exchange	LS	1	\$ 1,780,000	\$ 1,780,000
Chemical Feed Equipment	LS	1	\$ 30,000	\$ 30,000
SCADA Improvements	LS	1	\$ 200,000	\$ 200,000
Transmission Main to New Site	LF	6500	\$ 200	\$ 1,300,000
Reservoir - Well 9	Ea	1	\$ 300,000	\$ 300,000
Main Filter Plant Site				
Demolition of Reserviors, Booster Pump,				
Piping, & Pressure Filter & Repurpose Main				
Filter Plant Building	Ea	1	\$ 500,000	\$ 500,000
Subtotal				\$ 10,950,000
Inflation 3% per year, 3 years	9%			\$ 986,000
Contingency	15%			\$ 1,643,000
Engineering	20%			\$ 2,190,000
Admin/ Legal	2%			\$ 219,000
Total Capital Cost				\$ 15,988,000

Alternative 4 - New Water Treatment Plant Building at New Site

Option 2 - Ion Exchange Water Treatment Process

October 24, 2023

Item	Co	st Estimate
Main Filter Plant at New Site		
Chemical Feed - Chlorine + Orthophosphate	\$	50,000
Salt Costs + labor	\$	114,554
Energy	\$	2,130
Resin Changeout - Every 10 Years + labor	\$	7,320
Well Running	\$	69,069
Labor	\$	63,385
Maintenance of Wells	\$	15,000
Well 8 & 9		
Chemical Feed - Chlorine + Orthophosphate	\$	50,000
Well 8+9 Running	\$	96,052
Salt Costs	\$	114,554
Energy	\$	2,130
Resin Changeout - Every 10 Years	\$	7,320
Labor	\$	63,385
Maintenance of Wells	\$	15,000
Total Annual Operating Cost	\$	670,000
20-year annual operating cost	\$	13,400,000
Capital cost plus 20-year annual operating cost	\$	29,388,000

Alternative 4 - New Main Filter Plant Site

Option 3 - Reverse Osmosis/Nanofiltration Water Treatment Process

October 24, 2023

Capital Costs

Item	Unit	Qty	Unit Price		Cost Estimate
Main Filter Plant at New Site					
New WTP Building	LS	1	\$ 1,500,000	\$	1,500,000
Generators - Well 4, 5, 10, & Treatment Plant	Ea	1	\$ 370,000	\$	370,000
Pressure Filter Tank	Ea	1	\$ 725,000	\$	725,000
Site Piping	LS	1	\$ 200,000	\$	200,000
RO/ Nano Treatment	Ea	1	\$ 1,254,000	\$	1,254,000
Booster Pump to RO	Ea	1	\$ 40,000	\$	40,000
Chemical Feed Equipment	LS	1	\$ 45,000	\$	45,000
SCADA Improvements	LS	1	\$ 200,000	\$	200,000
Transmission Main to/from New Site	LF	1400	\$ 200	\$	280,000
Ground Storage Reservoir - 600,000 Gal	LS	1	\$ 1,500,000	\$	1,500,000
Well 8 & 9 Improvements					
Generators - Well 8 and 9	Ea	1	\$ 230,000	\$	230,000
Replace Pressure Filter Media - Well 9 only	Ea	1	\$ 75,000	\$	75,000
RO/ Nano Treatment	Ea	1	\$ 1,144,000	\$	1,144,000
Booster Pump to RO	Ea	1	\$ 40,000	\$	40,000
Chemical Feed Equipment	LS	1	\$ 45,000	\$	45,000
SCADA Improvements	LS	1	\$ 100,000	\$	100,000
Transmission Main to New Site	LF	6500	\$ 200	\$	1,300,000
Reservoir	LS	1	\$ 300,000	\$	300,000
Main Filter Plant Site					
Demolition of Reserviors, Booster Pump,					
Piping, & Pressure Filter & Repurpose Main					
Filter Plant Building	Ea	1	\$ 500,000	\$	500,000
Subtotal				\$	9,848,000
Inflation 3% per year, 3 years	9%			\$	886,000
Contingency	15%			\$ \$	1,477,000
Engineering	20%				1,970,000
Admin/ Legal	2%			\$	197,000
Total Capital Cost				\$	14,378,000

Alternative 4 - New Main Filter Plant Site

Option 3 - Reverse Osmosis/Nanofiltration Water Treatment Process

October 24, 2023

ltem	(Cost Estimate
Main Filter Plant at New Site		
Antiscalant Chemical	\$	21,627
Chemical cleaning (1/yr)	\$	25,625
Cartridge replacement	\$	20,970
Metabisulfite	\$	11,834
Membrane replacement	\$	132,770
Booster Pump for RO	\$	26,250
Chemical Feed - Chlorine + Orthophosphate	\$	50,000
Well Running * 1.2	\$	82,883
Labor	\$	82,401
Maintenance of Wells	\$	15,000
Well 8 & 9		
Antiscalant Chemical	\$	21,627
Chemical cleaning (1/yr)	\$	25,625
Cartridge replacement	\$	20,970
Metabisulfite	\$	11,834
Membrane replacement	\$	132,770
Booster Pump for RO	\$	26,250
Chemical Feed - Chlorine + Orthophosphate	\$	50,000
Well 8+9 Running * 1.2	\$	115,262
Labor	\$	63,385
Maintenance of Wells	\$	15,000
Total Annual Operating Cost	\$	952,000
20-year annual operating cost	\$	19,040,000
Capital cost plus 20-year annual operating cost	\$	33,418,000

Alternative 4 - New Main Filter Plant Site

Option 4 - Pellet Softening Water Treatment Process

February 22, 2024

Capital Costs

Item	Unit	Qty	ı	Unit Price		Cost Estimate
Main Filter Plant at New Site						
New WTP Building	LS	1	\$	1,600,000	\$	1,600,000
Generators - Well 4, 5, 10, & Treatment Plant	Ea	1	\$	370,000	\$	370,000
Pressure Filter Tank	Ea	1	\$	725,000	\$	725,000
Site Piping	LS	1	\$	200,000	\$	200,000
Pellet Softener	Ea	1	\$	1,415,000	\$	1,415,000
Chemical Feed Equipment	Ea	6	\$	10,000	\$	60,000
SCADA Improvements	LS	1	\$	200,000	\$	200,000
Transmission Main to/from New Site	LF	1400	\$	200	\$	280,000
Ground Storage Reservoir - 600,000 Gal	LS	1	\$	1,500,000	\$	1,500,000
Well 8 & 9 Improvements						
WTP Building Addition	Ea	1	\$	800,000	\$	800,000
Generators - Well 8 and 9	Ea	1	\$	230,000	\$	230,000
Iron Filter - Change Media Only	Ea	1	\$	75,000	\$	75,000
Pellet Softener	Ea	1	\$	1,415,000	\$	1,415,000
Chemical Feed Equipment	Ea	2	\$	10,000	\$	20,000
SCADA Improvements	LS	1	\$	100,000	\$	100,000
Transmission Main to New Site	LF	6500	\$	200	\$	1,300,000
Reservoir	LS	1	\$	300,000	\$	300,000
Main Filter Plant Site						
Demolition of Reserviors, Booster Pump,						
Piping, & Pressure Filter & Repurpose Main						
Filter Plant Building	Ea	1	\$	500,000	\$	500,000
Subtotal					\$	11,090,000
Inflation 3% per year, 3 years	9%				\$	998,000
Contingency	15%				\$	1,664,000
Engineering	20%				\$ \$	2,218,000
Admin/ Legal	2%				\$	222,000
Total Capital Cost					\$	16,192,000

Alternative 4 - New Main Filter Plant Site

Option 4 - Pellet Softening Water Treatment Process

February 22, 2024

Item	Cost Estimate		
Main Filter Plant at New Site			
Chemical Feed - Chlorine + Orthophosphate	\$	50,000	
Pellet Softening O&M	\$	177,302	
pH Down Chemical	\$	25,000	
Chemical Feed - HMO	\$	30,000	
Iron Filter Media Replacement - 15 years	\$	3,012	
Well Running	\$	69,069	
Maintenance of Wells	\$	15,000	
Labor	\$	85,000	
Well 8 & 9			
Chemical Feed - Chlorine + Orthophosphate	\$	50,000	
Pellet Softening O&M	\$	177,302	
pH Down Chemical	\$	25,000	
Well 8+9 Running	\$	96,052	
Labor	\$	85,000	
Maintenance of Wells	\$	15,000	
Total Annual Operating Cost	\$	903,000	
20-year annual operating cost	\$	18,060,000	
Capital cost plus 20-year annual operating cost	\$	34,252,000	

Kaukauna Utilities Surface Water From Appleton

August 10, 2023

Capital Costs

Item	Unit	Qty	Unit Price		Cost Estimate
Surface Water from Appleton					
Water main Connection	LF	14500	\$	200	\$ 2,900,000
Booster Pump	Ea	1	\$	1,500,000	\$ 1,500,000
Generator	Ea	1	\$	100,000	\$ 100,000
Subtotal					\$ 4,500,000
Inflation 3% per year, 3 years	9%				\$ 405,000
Contingency	15%				\$ 675,000
Engineering	20%				\$ 900,000
Admin/ Legal	2%		·		\$ 90,000
Total Capital Cost					\$ 6,570,000

Item	Co	ost Estimate
Surface Water from Appleton		
Purchased water	\$	2,078,059
Base Charge	\$	2,664
Fire Protection Cost	\$	141,536
Maintenance of wells	\$	50,000
Maintenance of pipeline	\$	5,000
Total Annual Operating Cost	\$	2,277,000

20-year annual operating cost	\$ 45,540,000
Capital cost plus 20-year annual operating cost	\$ 52,110,000

Surface Water From Green Bay

August 10, 2023

Capital Costs

ltem	Unit	Qty	Unit Price		Unit Price		Unit Price		Unit Price		Unit Price		Unit Price		Unit Price		Unit Price		Unit Price		Unit Price		Unit Price		Cost Estimate
Surface Water from Green Bay																									
Water main Connection	LF	23760	\$	200	\$ 4,752,000																				
Booster Pump	Ea	1	\$	1,500,000	\$ 1,500,000																				
Generator	Ea	1	\$	100,000	\$ 100,000																				
Subtotal					\$ 6,352,000																				
Inflation 3% per year, 3 years	9%				\$ 572,000																				
Contingency	15%				\$ 953,000																				
Engineering	20%				\$ 1,270,000																				
Admin/ Legal	2%				\$ 127,000																				
Total Capital Cost					\$ 9,274,000																				

Annual Operating Costs

Capital cost plus 20-year annual operating cost

C	ost Estimate
\$	1,207,073
\$	392,890
\$	50,000
\$	5,000
\$	1,655,000
\$	33,100,000

42,374,000

APPENDIX B

Water Study Report Figures

Table of Figures

- Figure 1 General Location Map
- Figure 2 Water Study Limits Map
- Figure 3 Topographic Map
- Figure 4 Wetland Inventory Map
- Figure 5 Floodplain Map
- Figure 6 Floodplain Map: Main Filter Plant Location
- Figure 7 Kaukauna Water Facilities Location Map
- Figure 8 Schematic of Existing Water System
- Figure 9 Schematic of Main Filter Plant Treatment Process
- Figure 10 Proposed Main Filter Plant Sites
- Figure 11 Schematic of Proposed Water System

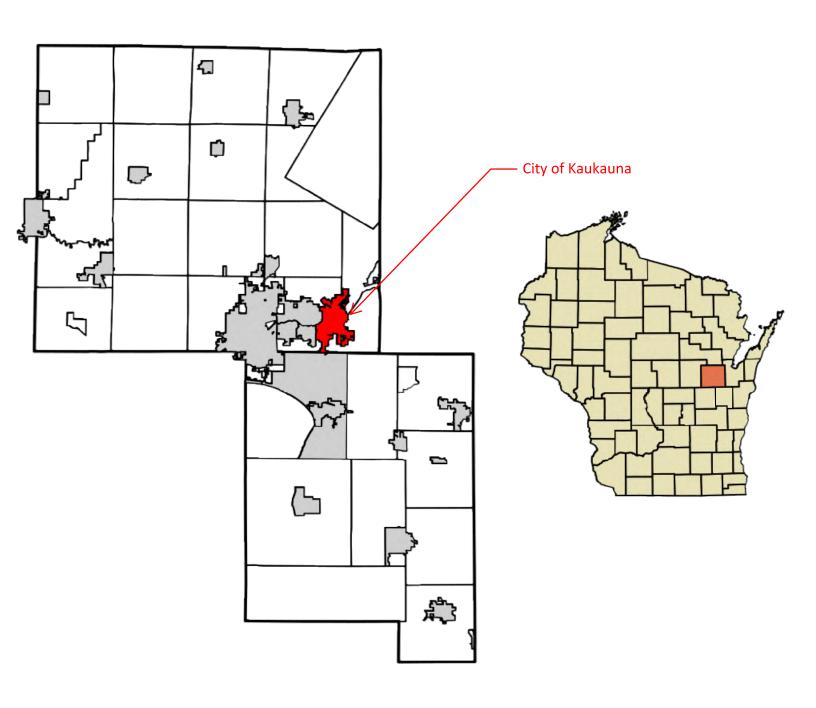
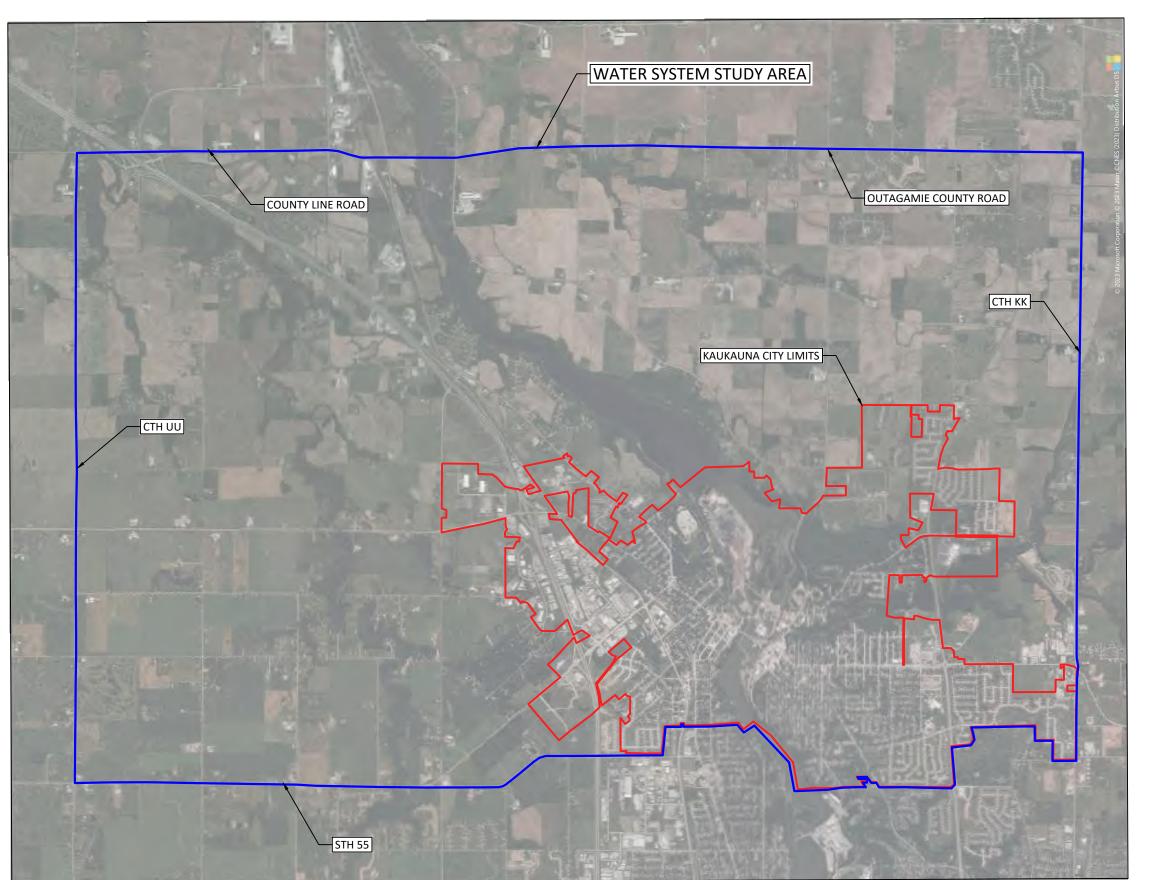



Figure 1: General Location Map

KAUKAUNA UTILITIES

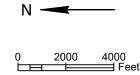
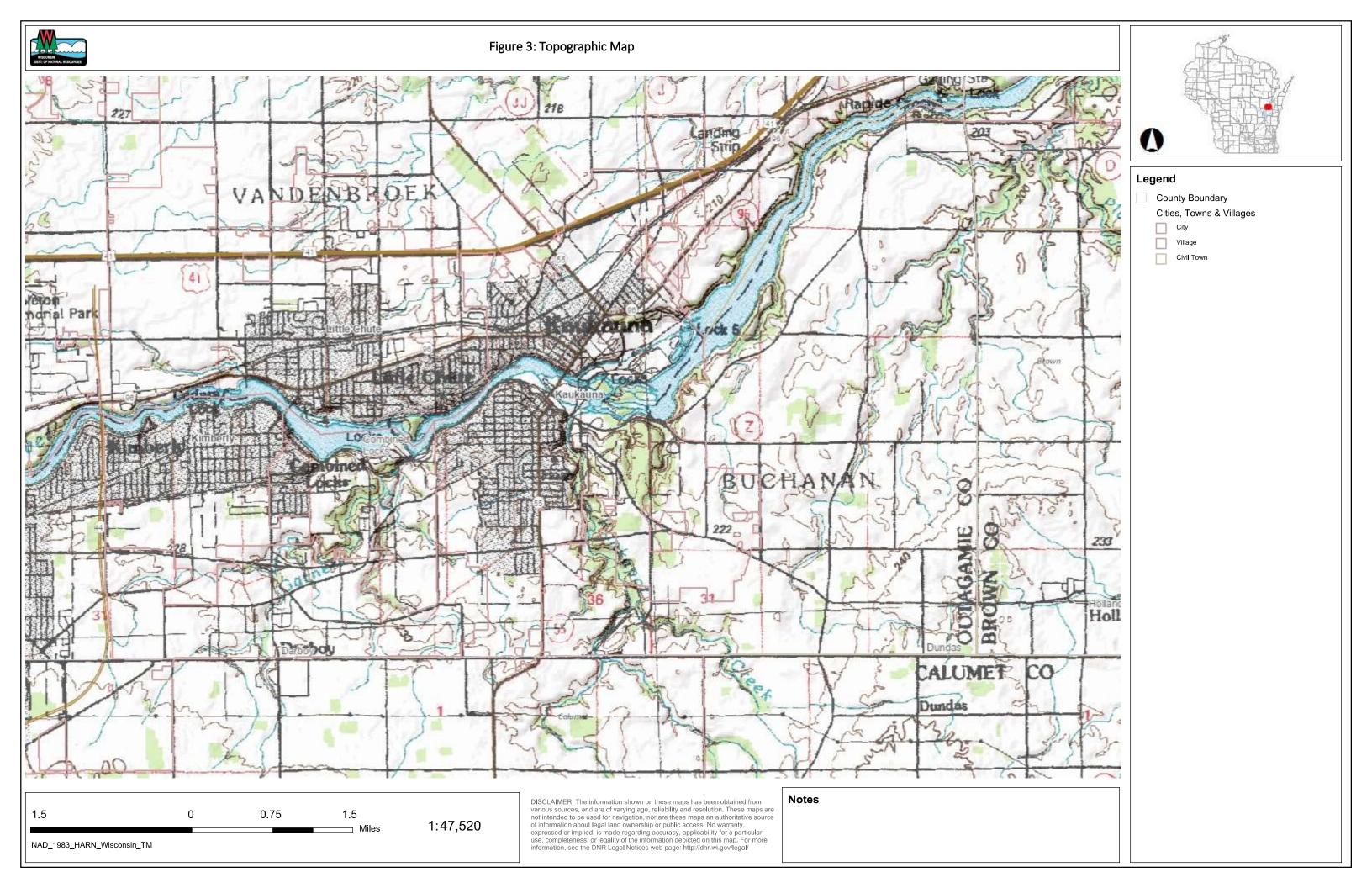
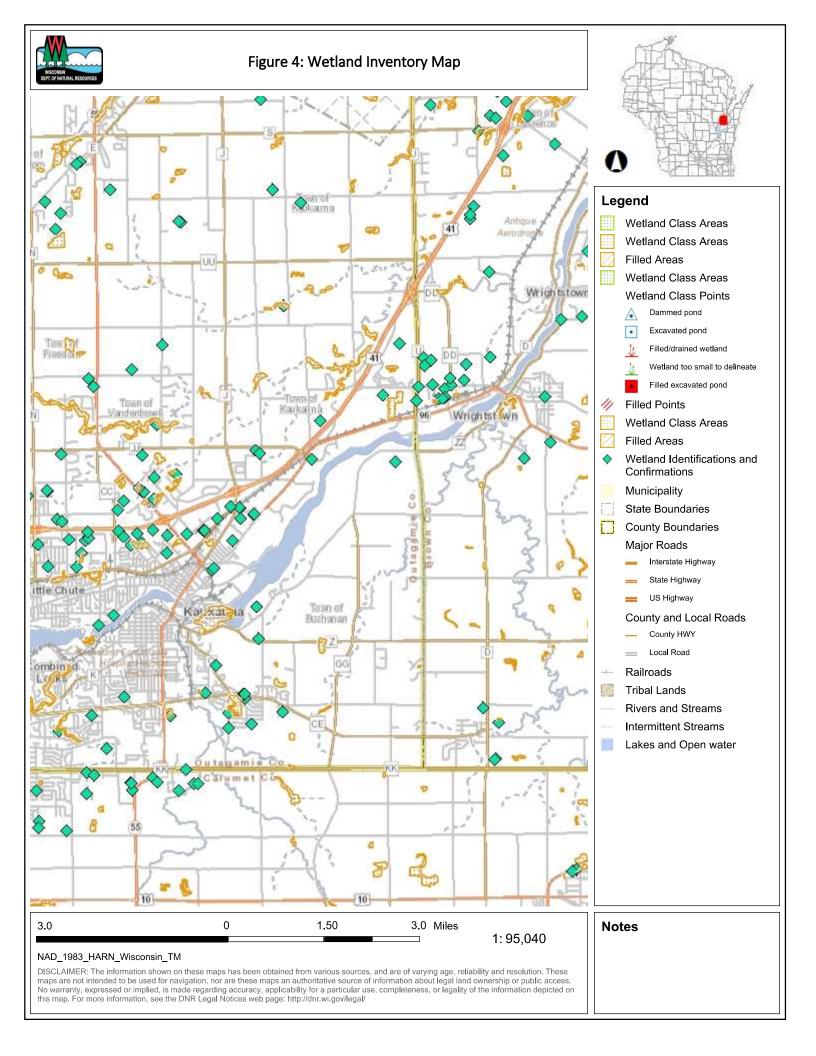
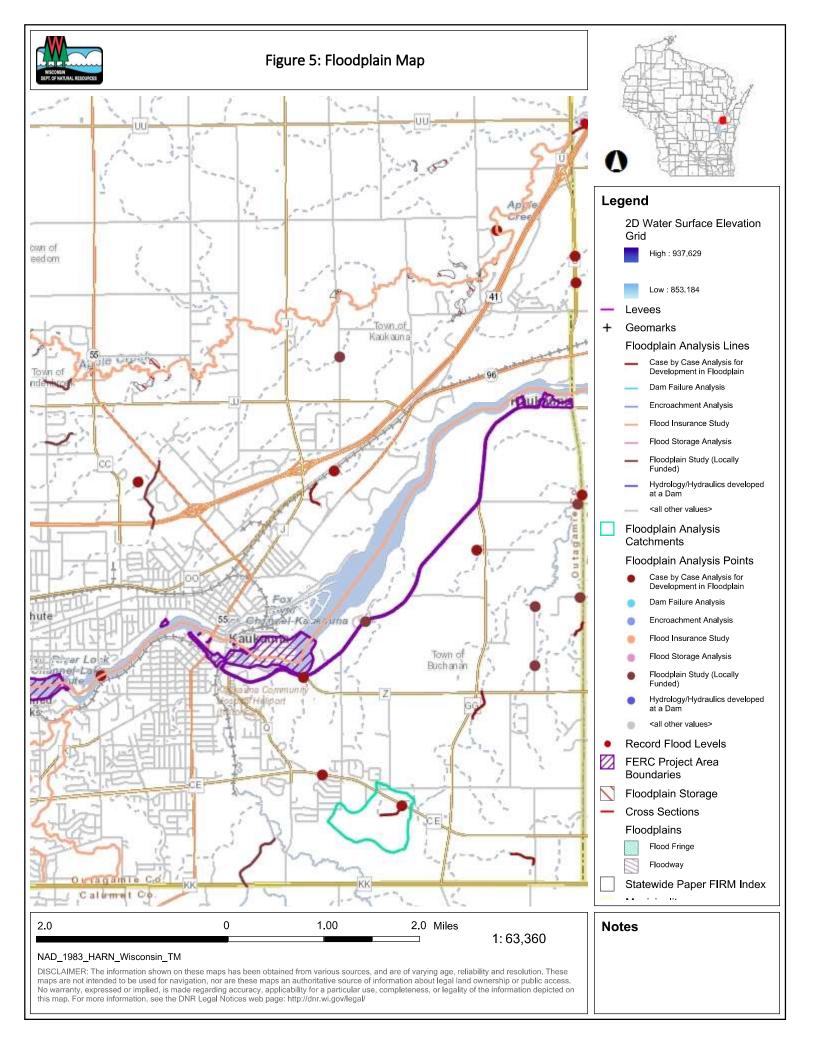
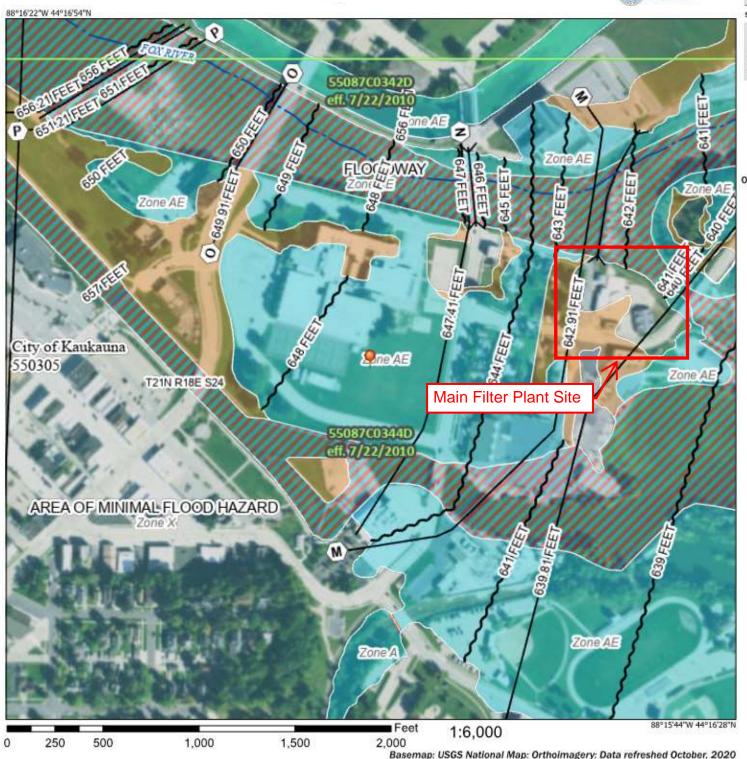
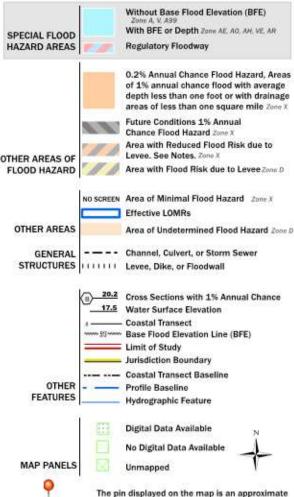




FIGURE 2: WATER STUDY LIMITS

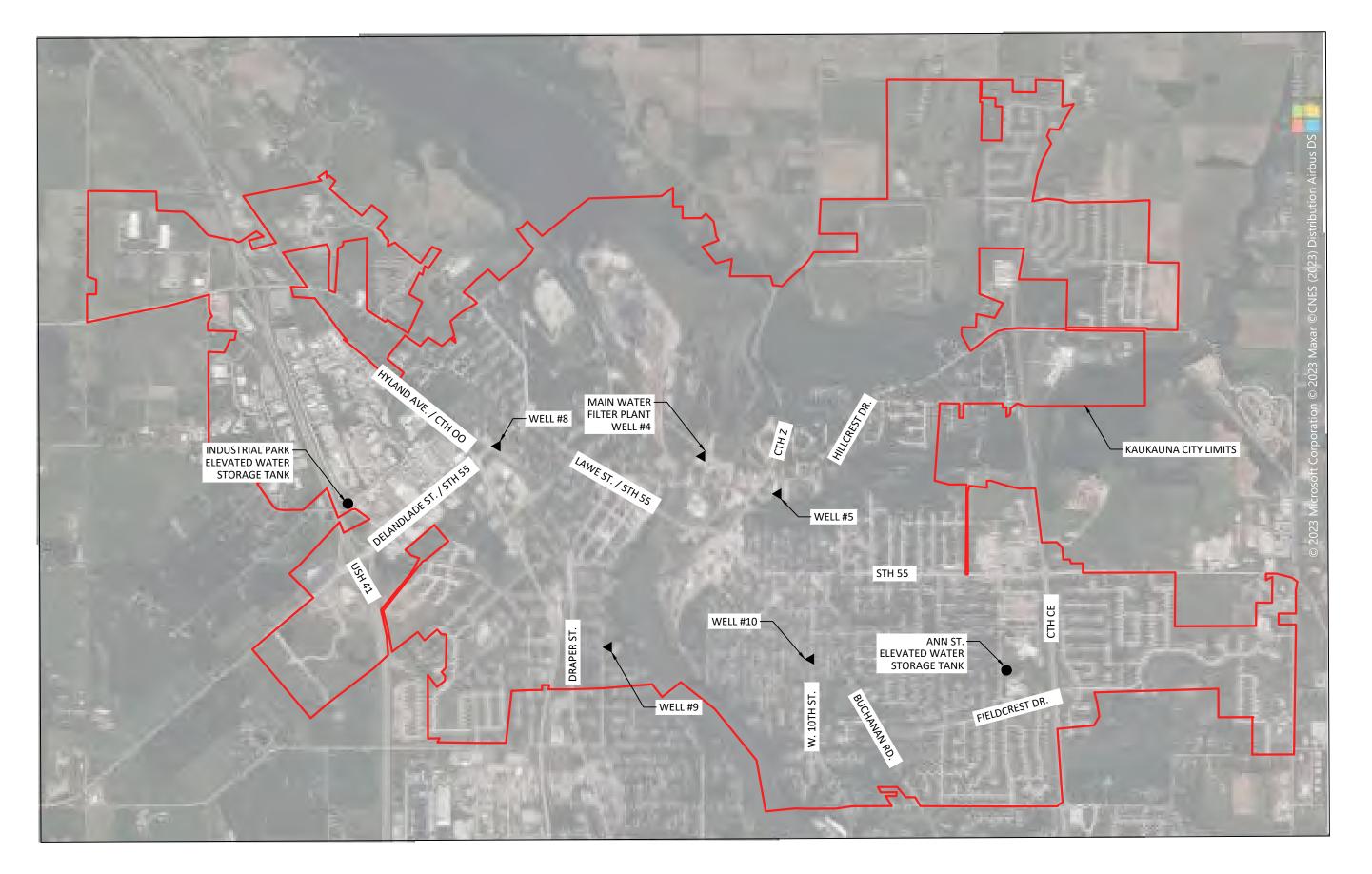
Engineers—Surveyors—Architects 2500 E. Enterprise Avenue Suite A Appleton, WI 54913 Phone: 920.574.3135 www.cbssquaredinc.com

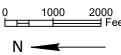



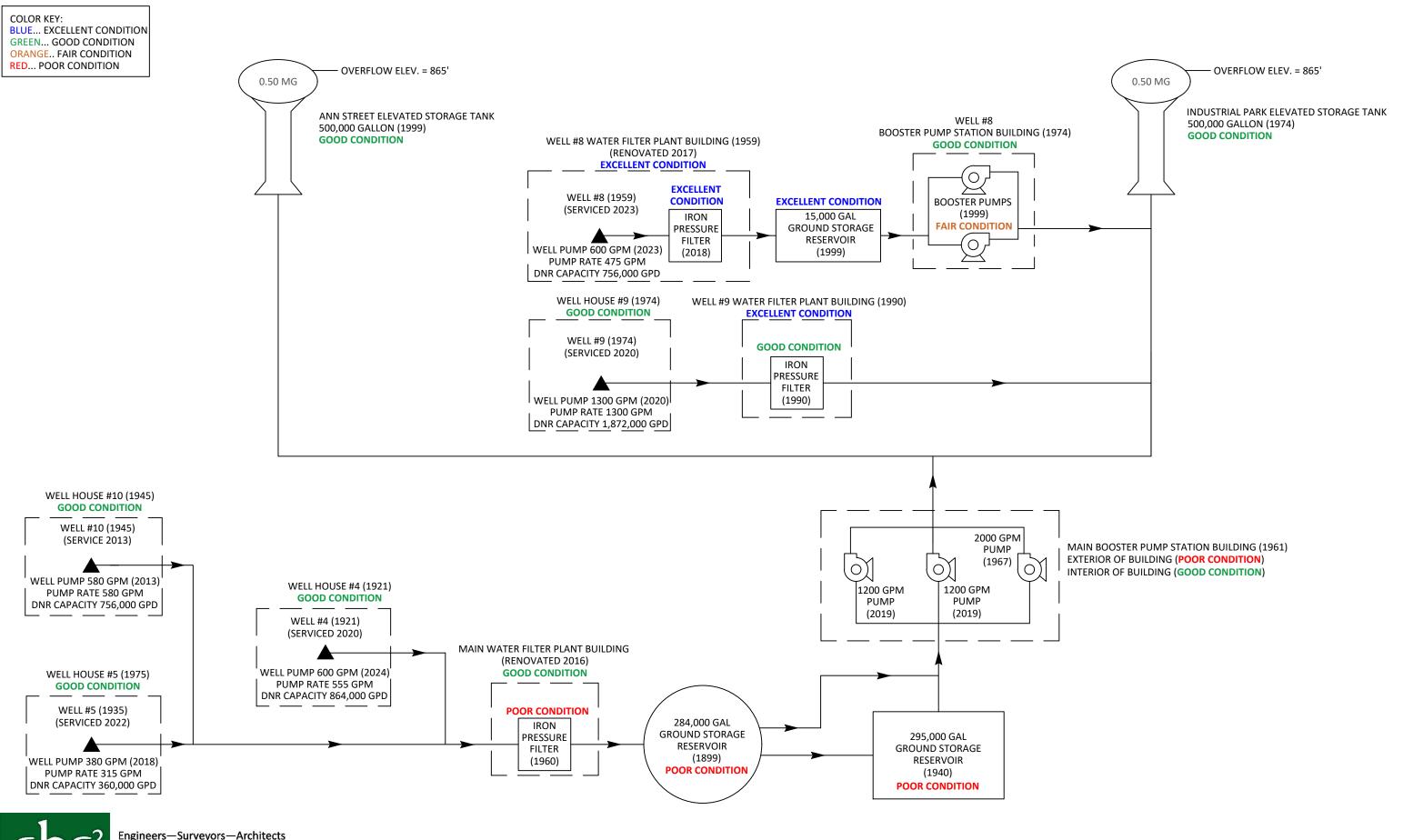

Figure 6: Floodplain Map, Main Filter Plant Location

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

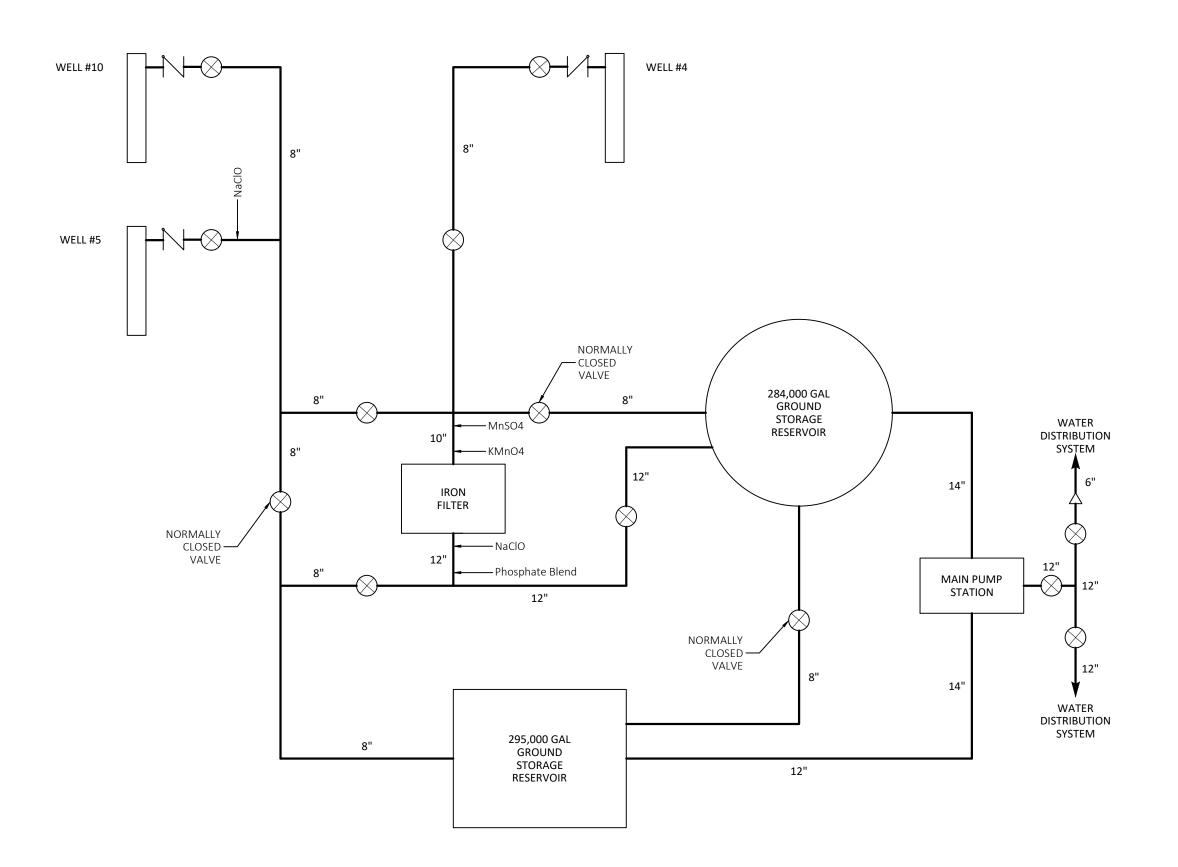

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards


point selected by the user and does not represent


an authoritative property location.

The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 9/28/2022 at 3:03 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.



Engineers—Surveyors—Architects

2500 E. Enterprise Avenue Suite A Appleton, WI 54913 Phone: 920.574.3135 www.cbssquaredinc.com

KAUKAUNA WATER DISTRIBUTION SYSTEM HAS ONE PRESSURE ZONE.

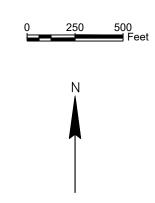
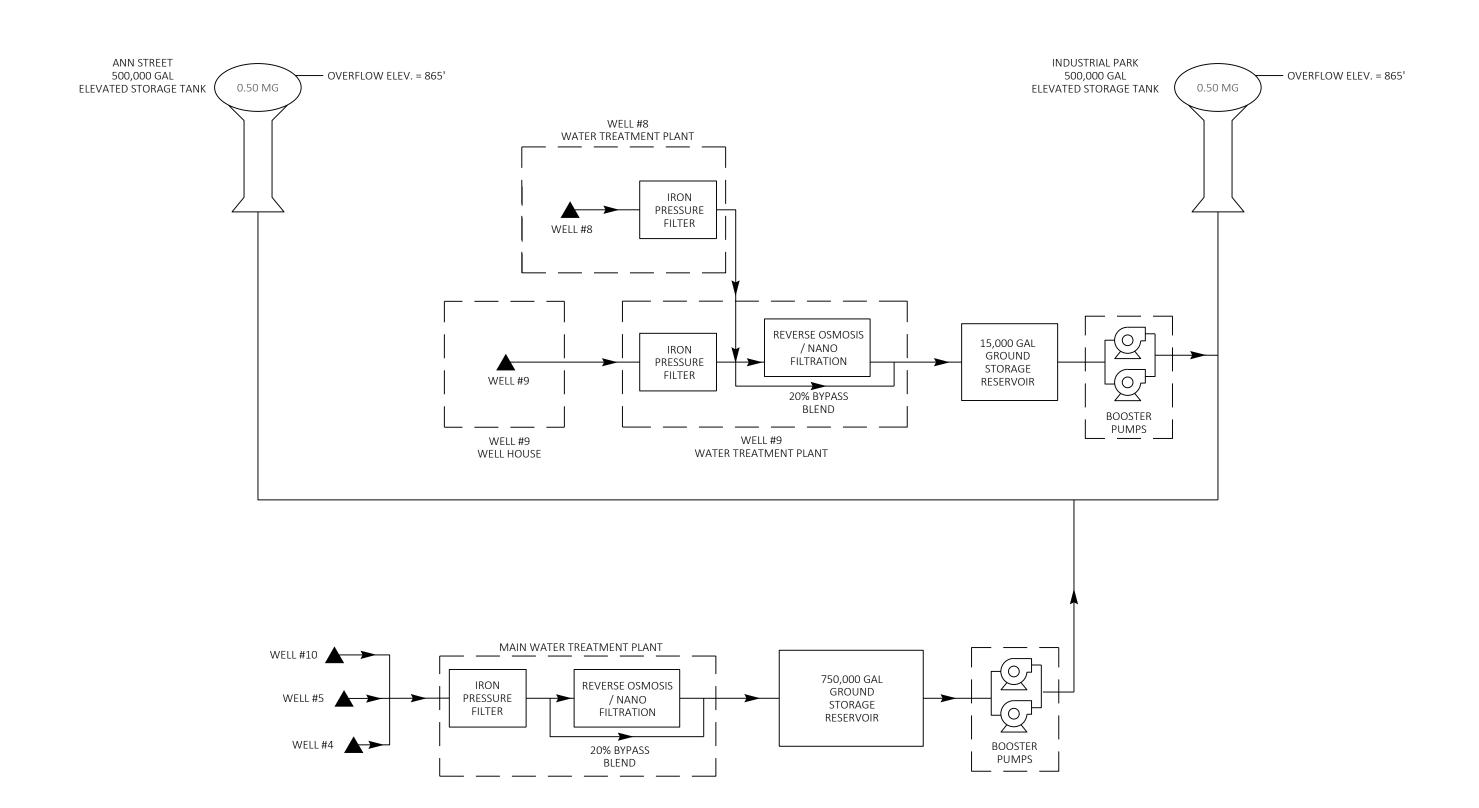



FIGURE 10: PROPOSED MAIN FILTER PLANT SITES

Engineers—Surveyors—Architects
2500 E. Enterprise Avenue
Suite A
Appleton, WI 54913
Phone: 920.574.3135
www.cbssquaredinc.com

APPENDIX C

Condition Report for Existing Water Filter Plants

KAUKAUNA UTILITIES Outagamie County, WI

Kaukauna Utilities

Condition
Report for
Existing Water
Filter Plants

October 23, 2023

Prepared by: CBS Squared, Inc. 2500 E Enterprise Avenue Appleton, WI 54913 920.574.3135

KAUKA 22001

Table of Contents

Introduction

The purpose of this report is to document the evaluation performed by CBS Squared, Inc. of the three water filter plants owned by Kaukauna Utilities. The evaluation includes evaluating the existing structures and water filter plant equipment. Kaukauna Utilities is currently in the process of a detailed water system study and is looking into water system upgrades. This report documents the condition of the existing water filter plants.

Main Water Filter Plant Site

The existing Main Water Filter Plant site is located at 304 Elm Street. The existing Main Filter Plant Site Plan Drawing is shown in **Appendix A**. The Main Filter Plant Site was originally constructed in 1899. The Main Filter Plant Site treats and stores water from Wells 4, 5, and 10. The Main Filter Plant Building has a pressure filter tank. The treatment includes chemical addition for radium removal and pressure filtration for radium and iron removal. The finished potable water is then stored in two ground storage reservoirs. The finished potable water is then pumped into the distribution system using booster pumps. The Main Filter Plant Site has several structures:

- 1. Main Filter Plant building which houses the chemical feed equipment and pressure filter tank
- 2. Two ground storage water reservoirs
- 3. Maintenance Facility building that includes the Well #4 Well House
- 4. Booster Pump Station building
- 5. Water Storage Facility building

Floodplain

The DNR defines the following terms in DNR Wisconsin Administrative Code Chapter NR116.03:

Floodway: The channel of a river or stream, and those portions of the floodplain adjoining the channel required to carry the regional flood discharge.

Floodplain: That land which has been or may be covered by flood water during the regional flood. The floodplain includes the floodway, floodfringe, shallow depth flooding, flood storage and coastal floodplain areas.

None of the Main Filter Plant is located in the floodway of the Fox River but part of the Main Filter Plant site is located in the 100-year floodplain as established by US Federal Emergency Management Agency (FEMA). The FEMA mapping is located in **Appendix D**. The FEMA mapping shows that the southwest area of the Main Filter Plant site would be flooded during a 100-year flood event with 1 foot of water or less. The Main Filter Plant Building, the Maintenance Facility, Well #4 Well House, and part of Ground storage Reservoir #1 would be flooded with 1 foot of water or less.

The current DNR Wisconsin Administrative Code Chapter NR811.25(d) requires a floor elevation at least 2 feet above the regional flood elevation as determined in s. NR116.07(4). The excerpt from the current DNR code is shown in **Appendix E**. We anticipate that the DNR would require a water facility to comply with current code when a major renovation is performed to that water facility.

Year-Round Dry Land Access

The current DNR Wisconsin Administrative Code Chapter NR811.25(d) states: Buildings shall be provided with year-round dry land access. The current DNR Wisconsin Administrative Code Chapter NR811.63(3) Year-Round Access states: Storage facilities shall be located in an area accessible during the entire year. If necessary, road improvements shall be installed to provide year-round dry land access. The excerpt from the current DNR code is shown in **Appendix E**. The DNR will not provide clarification if the current Main Filter Plant site meets the requirement of year-round dry land access. The existing site is grandfathered in the Wisconsin Administrative Code until a major renovation occurs at the site, then the DNR would decide if the site complies with the current code.

Main Filter Plant Building

The Main Filter Plant Building is located in the 100-year floodplain as shown on the FEMA mapping located in **Appendix D**. The Main Filter Plant building was last renovated in 2016. The renovation included a new roof, new doors, and repairing the exterior brick. The windows are original block windows. The building is currently in good condition. There is no standby power at this facility.

Figure 1: Main Filter Plant Building

Main Filter Plant - Pressure Filter Tank

There is one horizontal pressure filter tank inside the Main Filter Plant building. The pressure filter tank is over 60 years old and is in extremely poor condition. The pressure filter tank is made of steel and coated with paint on the inside and outside for corrosion protection. The pressure filter tank works using low pressure around 10-15 pounds per square inch. The pressure filter tank was leaking in 2016. Upon visual inspection of the interior of the pressure filter tank in 2016, the tank was failing due to pitting of the interior steel surface caused by corrosion. The tank was repaired in 2016 by installing a concrete liner inside the bottom half of the tank to extend the useful life of the pressure filter. This type of repair was possible due to the low working pressure of the tank. This type of repair was estimated to extend the life of the tank another 10 years. The repair has been a good temporary solution because the

pressure filter tank is still producing satisfactory water quality. The pressure filter tank currently has signs of mineral buildup on the exterior of the tank in two locations due to the tank starting to leak.

Metal thickness testing of the pressure filter tank wall was performed on September 28, 2023 using a R7900 Ultrasonic Thickness Gauge tester manufactured by Reed Instruments. The instrument can detect a metal thickness range of 0.03 inch-15.7 inch with an accuracy of +/-0.1 percent. The instrument uses ultrasonic sound waves to pass through the object and listens for the sound waves to bounce back. The instrument then calculates the thickness of the object. The instrument can detect thickness in metals, plastics, ceramics, composites, epoxies, and glass by entering the sound velocity for each type of media being tested. The instrument can detect a metal thickness reading through painted steel. The only type of media being tested was painted steel so a sound velocity of 5920 meters per second was entered into the instrument. Testing time is less than 1 second for instrument to display a reading at each location. The thickness tester instrument information is included in **Appendix F**.

Several locations on the pressure filter were selected for testing. A grid was set up at each location. The columns across the top were labeled A -Z. The rows were labeled in sequential numbering. The metal thickness of the tank varied greatly over the testing locations. Thickness testing locations and results are included in **Appendix G.** The results show that the 60-year old pressure filter tank has severe pitting on the interior of the tank walls. This result is consistent with the visual inspection performed on the interior of the tank in 2016. The structural integrity of the tank is in poor condition.

Figure 2: Main Pressure Filter Tank

Figure 3: Main Pressure Filter Tank

Main Filter Plant Site – Ground Storage Reservoirs

The Main Filter Plant Site has two ground storage reservoirs for storing finished water. Ground Storage Reservoir #1 is circular and was constructed in 1899. Ground Storage Reservoir #1 has a capacity of 284,000 gallons and is approximately 60 feet in diameter and 18 feet deep. Ground Storage Reservoir #2 is rectangular and was constructed in 1940. Ground Storage Reservoir #2 has a capacity of 295,000 gallons and is approximately 13 feet deep.

The structures have outlived their useful life Reservoir #1 is located in the floodplain., Reservoir #2 is not located in the floodplain. The bottom of both reservoirs are located below the groundwater table. The elevation of each reservoir violates the current DNR Wisconsin Administrative Code Chapter NR 811.63(1), Floodway and Floodplain, which states:

- (a) Floodway. Storage facilities may not be located within a floodway, as defined by in s.NR116.03 (22).
- (b) Floodplain. If it is necessary to locate a reservoir in a floodplain, as defined in s. NR 116.03 (16), outside of the floodway, the lowest elevation of the bottom floor, including sumps, shall be a minimum of 2 feet above the regional flood elevation as determined in s. NR116.07 (4). All projects shall conform to the requirements of that chapter.

The excerpt from the current DNR code is shown in **Appendix E**. The regional flood elevation refers to the 100-year flood elevation. Existing reservoir #1 is located in the 100-year floodplain. Reservoir #2 is not located in the 100-year floodplain. The bottom floor of each reservoir is located below the 100-year floodplain and the groundwater table. The existing reservoirs are grandfathered in the Wisconsin

Administrative Code until a major renovation occurs on site to the reservoirs. We anticipate that the DNR may require the reservoirs to be brought up to the current code at the time the major renovation occurs.

Figure 4: Reservoir #1 at Main Filter Plant

Figure 5: Reservoir #2 at Main Filter Plant

Main Filter Plant Site – Maintenance Facility Building and Well #4 Well House

The Maintenance Facility Building and Well 4 Well House are located in the 100-year floodplain as shown on the FEMA mapping located in **Appendix D**. The Maintenance Facility building is the green building shown in Figure 4 and is in poor condition. The Maintenance Facility Building is a post and beam construction consisting of a galvanized metal roof and sheet metal exterior walls. The roof is rusted and shows signs of leaking on the interior. The roof is in poor condition and is nearing the end of its useful life. The metal exterior walls are in fair condition.

Well 4 Well House Building is the white building shown in Figure 4 and is in good condition. The well house door is in poor condition. The floor elevation is not located 2 feet above the 100-year floodplain. We anticipate that the DNR may require the first floor to be raised during the next major renovation to Well #4 Well House. There is no standby power at this facility.

Figure 6: Maintenance Building and Well #4 Well House

Main Filter Plant Site – Booster Pump Station Building

The Booster Pump Station Building is attached to the North end of the Maintenance Facility Building. The Booster Pump Station Building has a concrete basement and concrete walls with a galvanized metal roof and metal exterior walls. The exterior of the building is in poor condition. The interior of the building is in good condition.

The Booster Pump Station Building is not located in the 100-year floodplain as shown on the FEMA mapping located in **Appendix D**. The first floor of the building is located 2 feet above the 100-year flood plain.

The Booster Pump Station building houses three booster pumps. Two booster pumps operate regularly. The third booster pump is for emergency backup use only. The third booster pump is operated by an engine driven right-angle drive which is not considered a good emergency backup pump. The third booster pump will only provide water until the two ground storage reservoirs are empty. The two standard booster pumps are in good condition but nearing the end of their useful life.

Figure 7: Booster Pump Station Building

Several locations on the booster pump suction and discharge piping were selected for pipe thickness testing. A grid was set up at each location. The columns across the top were labeled A -Z. The rows were labeled in sequential numbering. The metal thickness of the pipe was relatively the same over the testing locations. Thickness testing locations and results are included in **Appendix H.** The results show that the suction and discharge piping is in good condition.

Main Filter Plant Site – Water Storage Facility

The Water Storage Facility building was built in 2021. The building is in excellent condition.

Figure 8: Water Storage Facility Building

Well 8 Water Filter Plant Site

The existing Well 8 Site is located at 311 Delanglade Street (1099 Blackwell Street) and 1101 Blackwell Street. The existing Well 8 Water Filter Plant Site Plan Drawing is shown in **Appendix B**. Well 8 Site consists of a Water Filter Plant Building, a ground storage reservoir, and a Booster Pump Station Building. Well 8 Water Filter Plant Building is located at 311 Delanglade Street (1099 Blackwell Street) at the Southwest corner of the intersection of Delanglade Street and Blackwell Street. Well 8 Water Filter Plant Building contains Well 8, a Pressure Filter Tank, and chemical feed systems. Well 8 Water Filter Plant building was originally built in 1959. Well 8 Water Filter Plant Building was recently renovated in 2018. The Well 8 Water Filter Plant building is in excellent condition. There is no standby power at this site.

There is one horizontal pressure filter tank inside the Well 8 Water Filter Plant building. The pressure filter tank is in excellent condition. The current pressure filter tank was installed in 2018 along with the media bed, underdrain piping, and diffuser piping. The pressure filter tank is made of steel and coated with paint on the inside and outside for corrosion protection. The pressure filter tank works using low pressure around 10-15 pounds per square inch but is at 53-65 pounds per square inch (distribution system pressure) during backwash cycles.

The metal thickness testing on the pressure filter tank confirmed the excellent condition of the tank. The metal thickness readings were very consistent between all the readings. No signs of pitting were found. Results from the metal thickness testing are included in **Appendix J.**

Figure 9: Well 8 Pressure Filter Tank

Well 8 Ground Storage Reservoir and Booster Pump Station Building are located at 1101 Blackwell Street at the Northeast corner of the intersection of Delanglade Street and Blackwell Street. The ground storage reservoir has a capacity of 15,000 gallons. The ground storage reservoir was built in 1999. The ground storage reservoir is in excellent condition. The booster pumps at well 8 are located in the Booster Pump Station Building. The building and booster pumps are in good condition.

Well 9 Water Filter Plant Site

The existing Well 9 Site is located at Riverside Park. The existing Well 9 Water Filter Plant Site Plan Drawing is shown in **Appendix C**. Well 9 Site consists of two buildings. A Well House building and a Water Filter Plant building. The Well 9 Well House building was originally built in 1974. The Well House is constructed of exterior stone and interior concrete block. The Well House building is in very good condition.

The Water Filter Plant building was originally built in 1990. The Water Filter Plant building is constructed of exterior brick and interior concrete block. The Well 9 Filter Plant building is in excellent condition.

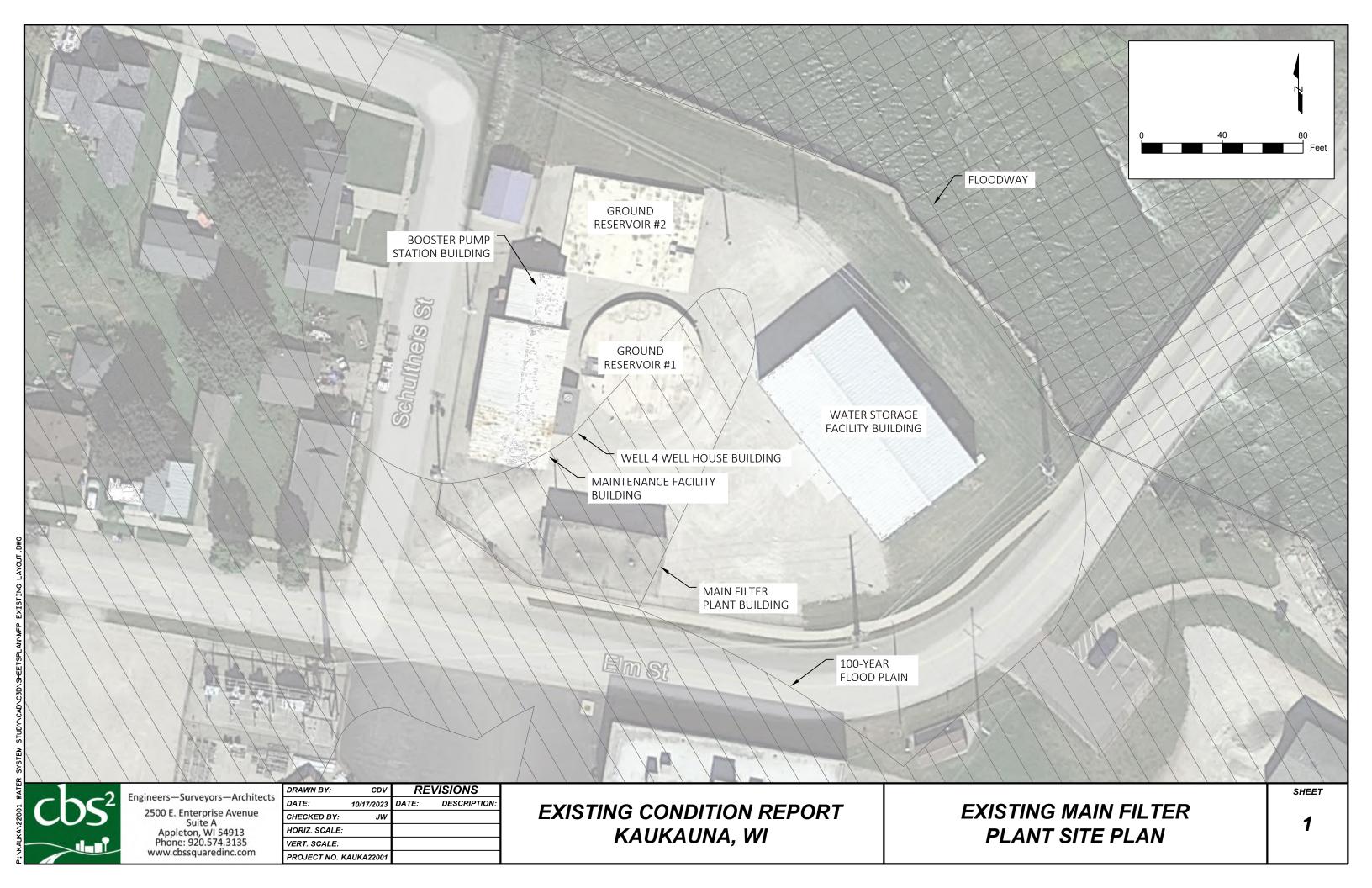
Well 9 Site has a generator for backup power. The generator is only sized to run the heaters, lights, and chemical pumps. The generator is not sized to run the well pump motors. The well pump is equipped with a right-angle drive with a natural gas motor which was installed in 2015 and operates the well pump at 850 gallons per minute during an electrical outage instead of 1300 gallons per minute normally.

There are two horizontal pressure filter tanks inside the Well 9 Water Filter Plant building. The pressure filter tanks were installed in 1990. The pressure filter tank is made of steel and coated with paint on the inside and outside for corrosion protection. The pressure filter tank works using 75-82 pounds per square inch (distribution system pressure) all the time. The media was replaced in 2010 along with the media bed, underdrain piping, and diffuser piping.

Several locations on the pressure filter tanks were selected for testing. A grid was set up at each location. The columns across the top were labeled A -Z. The rows were labeled in sequential numbering. The metal thickness of the tank varied slightly over the testing locations. Thickness testing locations and results are included in **Appendix K.** The results show that the 33-year old pressure filter tank has some moderate pitting on the interior of the tank walls. This result is consistent with the visual inspection performed on the interior of the tank in 2010. The structural integrity of the tank is in good condition.

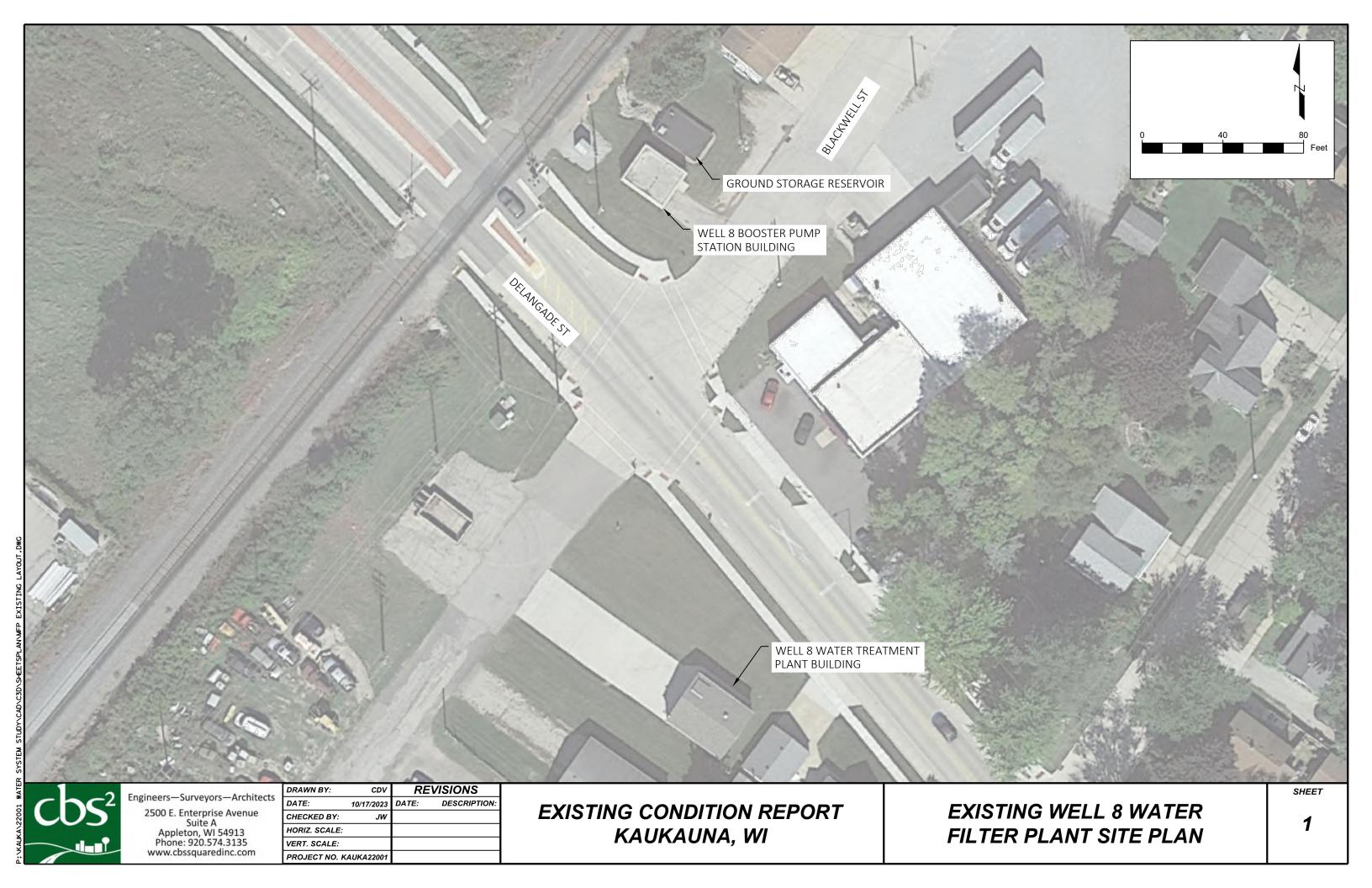
Figure 10: Well 9 Pressure Filter Tank

Chemical Feed System Equipment


There are four chemical feed systems used at each well:

- 1. Manganese sulfate For radium removal
- 2. Potassium permanganate For radium removal
- 3. Sodium hypochlorite For iron removal and disinfection
- 4. Orthophosphate polyphosphate blend For corrosion control

In 2022, the chemical feed system equipment for sodium silicate was replaced and the chemical feed system for orthophosphate polyphosphate blend was added. The new chemical feed system equipment for sodium hypochlorite and orthophosphate polyphosphate blend included new chemical pumps, new chemical storage tanks, and new containment tanks. The chemical feed equipment for sodium hypochlorite and orthophosphate polyphosphate blend are in excellent condition at all Water Filter Plants. The chemical feed equipment for manganese sulfate and potassium permanganate are in good condition.


Appendix A

Existing Main Filter Plant Site Plan Drawing

APPENDIX B

Existing Well 8 Filter Plant Site Plan Drawing

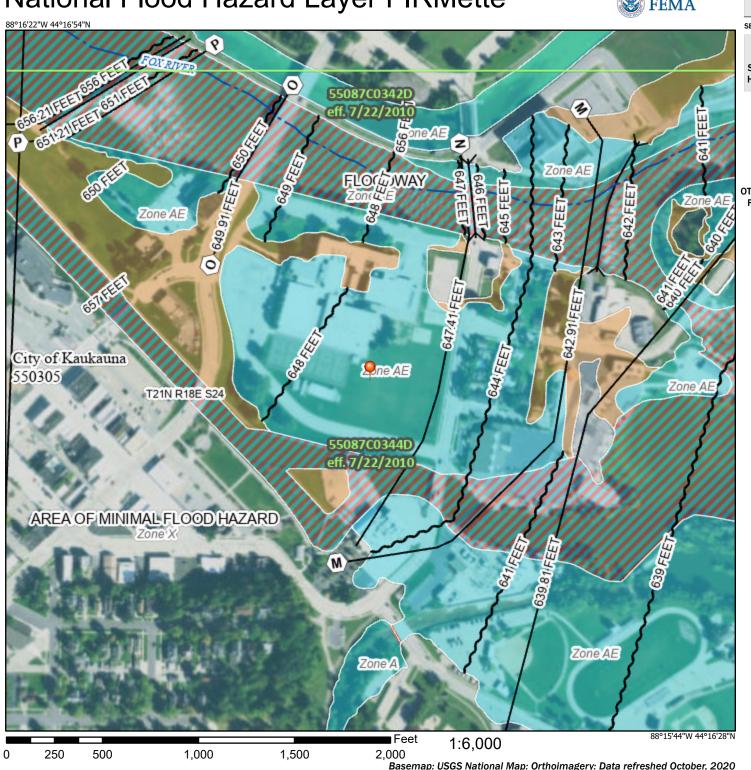
APPENDIX C

Existing Well 9 Filter Plant Site Plan Drawing

2500 E. Enterprise Avenue Suite A Appleton, WI 54913 Phone: 920.574.3135 www.cbssquaredinc.com

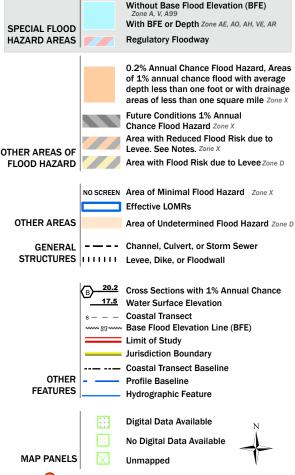
DRAWN BY:	CDV	REVISIONS	
DATE:	10/17/2023	DATE:	DESCRIPTION:
CHECKED BY:	JW		
HORIZ. SCALE:			
VERT. SCALE:			
PROJECT NO. K.	AUKA22001		

KAUKAUNA, WI


FILTER PLANT SITE PLAN

APPENDIX D

Federal Emergency Management Agency: 100-year flood map


National Flood Hazard Layer FIRMette

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap

accuracy standards

The pin displayed on the map is an approximate point selected by the user and does not represent

an authoritative property location.

The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 9/28/2022 at 3:03 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

APPENDIX E

Wisconsin Department of Natural Resources Administrative Code: NR811.25 & NR811.63

Chapter NR 811

REQUIREMENTS FOR THE OPERATION AND DESIGN OF COMMUNITY WATER SYSTEMS

NR 811.01	Applicability.	NR 811.51	Fluoridation.			
NR 811.02	Definitions.	NR 811.52	Iron and manganese control.			
NR 811.03	Alternative requirements.	NR 811.53	Organics removal.			
NR 811.04		NR 811.54	Ozonation.			
NR 811.05		NR 811.55	Radionuclide removal.			
NR 811.06		NR 811.56	Sequestration.			
NR 811.07	Interconnections with other acceptable water sources.	NR 811.57	Softening.			
Subabant	er I — Submission of Plans	NR 811.58	Stabilization.			
		NR 811.59	Taste and odor control.			
NR 811.08		NR 811.60	Ultraviolet (UV) Light.			
NR 811.09			, , ,			
	neering reports.	Subchapter '	VIII — Hydro-Pneumatic Tanks			
NR 811.10	Owner approval requirement.	NR 811.61	General.			
NR 811.11	Resident project representative.					
			IX — Storage Facilities			
	er II — Source Development — Groundwater	NR 811.62	Volume and pressure.			
NR 811.12		NR 811.63	Location.			
NR 811.13	Abandonment of wells.	NR 811.64	Construction details.			
NR 811.14	Special requirements for wells developed in unconsolidated forma-	NR 811.65	Plant storage.			
	tions.	NR 811.66	Distribution system storage.			
NR 811.15	Special requirements for collector wells.	1111 011100	2 isate attent of stem storage.			
NR 811.16		Subchapter 2	X — Distribution Systems			
NR 811.17		NR 811.67	Applicability.			
NR 811.18		NR 811.68	Ownership of municipal water distribution systems.			
		NR 811.69	Materials.			
NR 811.19						
NR 811.20	Special requirements for granite wells.	NR 811.70	Water main design.			
Subchant	er III — Source Development — Surface Water	NR 811.71	Hydrants.			
		NR 811.72	Air-relief facilities and valve and meter chambers.			
NR 811.21		NR 811.73	Installation of mains.			
NR 811.22		NR 811.74	Separation of water mains and sanitary or storm sewer mains.			
NR 811.23		NR 811.75	Separation of water mains and other contamination sources.			
NR 811.23	Off–Stream raw water storage.	NR 811.76	Surface water crossings.			
NR 811.23	2 Intake chemical treatment.	NR 811.77	Common casing crossings.			
011	TY D COLUMN D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NR 811.78	Water loading stations.			
	er IV — Pumping Stations, Pumphouses, and Water Treatment	1416 011.70	water loading stations.			
Plant Buil		Subchapter 2	XI — Water Pressure Booster Stations			
NR 811.24		NR 811.79	General.			
NR 811.25	Buildings.	NR 811.80	Location.			
NR 811.26	Number of pumping units.	NR 811.81	Pumps and pressures.			
NR 811.27						
NR 811.28		NR 811.82	Storage requirements.			
1111 011120	Traditional requirements	NR 811.83	Emergency power requirements.			
Subchapter V — Pumping Equipment and Appurtenances NR 811.84 Station requirements.						
NR 811.29	Pumping capacity requirements.	Cubahantan	XII — Waste Disposal			
NR 811.30						
NR 811.31		NR 811.85	General.			
NR 811.32	1 1	NR 811.851	Sanitary wastes.			
NR 811.33		NR 811.852	Floor drainage.			
		NR 811.853	Backwash wastewater from iron and manganese filters.			
NR 811.34		NR 811.854	Brine wastes from ion exchange plants.			
NR 811.35		NR 811.855	Wastewater from reverse osmosis plants.			
NR 811.36		NR 811.856	Water treatment plant wastewater radionuclide content compliance			
NR 811.37	Pump discharge lines.	1111 0111.000	with the unity equation.			
Cubahant	on VI Chemical Addition	NR 811.857	Backwash wastewater from lime softening water treatment plants.			
	er VI — Chemical Addition					
NR 811.38		NR 811.858	Lime softening sludge.			
NR 811.39		NR 811.859	Spent media.			
NR 811.40	Storage and handling.	NR 811.860	Backwash wastewater from surface water treatment plants.			
6114	TITE TO 4 4	NR 811.861	Alum or other coagulant sludge.			
	er VII — Treatment	NR 811.862	Recycling backwash wastewater.			
NR 811.41						
NR 811.42			XIII — Aquifer Storage Recovery			
NR 811.43		NR 811.87	General.			
NR 811.44	Pilot testing.	NR 811.88	ASR well performance requirements.			
NR 811.45		NR 811.89	Well construction requirements for ASR wells.			
NR 811.46		NR 811.90	Equipment, appurtenances and piping for ASR wells and ASR sys-			
NR 811.47			tems.			
NR 811.48		NR 811.91	ASR system pilot studies.			
NR 811.40						
INK ALL 40	Filtration gravity	NID 011 02				
	8	NR 811.92	ASR system development testing.			
NR 811.50	8	NR 811.92 NR 811.93	ASR system development testing. Operating an ASR system.			

Note: Chapter NR 111 as it existed on April 30, 1992 was repealed and a new chapter NR 811 was created effective May 1, 1992. Chapter NR 811 as it existed on November 30, 2010, was repealed and a new chapter NR 811 was created effective December 1, 2010.

NR 811.01 Applicability. This chapter governs the general operation, design and construction of community water systems and the construction of any water system serving 7 or more

single family homes, 10 or more duplex living units, 10 or more mobile homes, 10 or more condominium units or 10 or more apartment units. One duplex equals 2 living units. The standards for design and construction shall be considered minimum standards for new facilities and the minimum standards to which facilities in existence on December 1, 2010, shall be upgraded when improvements are undertaken at those facilities except for sys-

of good quality and high stream flow for future release to the treatment facilities.

- **(2)** CONSTRUCTION. Off-stream raw water storage reservoirs shall be constructed to assure all of the following:
- (a) Water quality is protected by controlling runoff into the reservoir.
- (b) Dikes are structurally sound and protected against wave action and erosion.
 - (c) Intake structures meet the requirements of s. NR 811.22.
- (d) Point of influent flow is separated from the point of withdrawal.
 - (e) Water is regularly circulated to prevent stagnation.
- (f) The reservoir is surrounded by a fence and unauthorized access is prevented.
 - (g) The reservoir is covered, where practical.
- (h) The requirements of s. NR 811.47 (7) are met if the reservoir is to be used as a pre-sedimentation basin.

History: CR 09–073: cr. Register November 2010 No. 659, eff. 12–1–10.

- **NR 811.232** Intake chemical treatment. If the department determines that chemical treatment is warranted for taste and odor control or the control of zebra and other mussels and other nuisance organisms in an intake, the following requirements shall be met:
- (1) Chemical treatment shall be installed in accordance with subch. VI and plans and specifications shall be approved by the department prior to installation.
- (2) Solution piping and diffusers shall be installed within the intake pipe or in a suitable carrier pipe. Provisions shall be made to prevent dispersal of chemicals into the water environment outside the intake. Diffusers shall be located and designed to protect all intake structure components.
- **(3)** A spare solution line shall be installed to provide redundancy and to facilitate the use of alternate chemicals, where practicable.
- **(4)** A sample line out to the intake shall be provided which will allow for collecting raw water samples unless the chemical control system will be shut off for periods sufficient to collect raw water samples at the shore well.

History: CR 09–073: cr. Register November 2010 No. 659, eff. 12–1–10; renumbering of (1) to (4) made under s. 13.92 (4) (b) 1., Stats., Register November 2010 No. 659.

Subchapter IV — Pumping Stations, Pumphouses, and Water Treatment Plant Buildings

NR 811.24 General requirements. All water system related buildings shall be designed to maintain the sanitary quality of the water supply. Buildings subject to the requirements of this subchapter include surface water and groundwater water treatment plant buildings, structures and pumping stations, well pumphouses and enclosures, and booster pumping stations. Uses of the buildings shall be compatible with the protection of the water supply.

History: CR 09–073: cr. Register November 2010 No. 659, eff. 12–1–10.

- NR 811.25 Buildings. (1) CONSTRUCTION. All water system related buildings under s. NR 811.24 shall meet all of the following requirements:
- (a) Have adequate space for the installation of additional pumping units, water treatment equipment, chemical feed equipment, or controls, if needed, and for the safe servicing of all equipment.
- (b) Be durable, fire and weather resistant, and constructed in a manner to maximize sanitary protection of the water supply.
- (c) Be secure. Buildings shall have at least one outward opening door to the outside. All doors, windows, and hatches shall have locks. Any security alarms installed shall be connected to

telemetry control and SCADA systems where such systems are used.

- (d) Be landscaped to conduct surface drainage away from the station and have a floor elevation at least 6 inches above the finished grade and at least 2 feet above the regional flood elevation as determined in s. NR 116.07 (4). Buildings shall be provided with year round dry land access. Below grade installations may be permitted only if the terrain at the site is such that a gravity drain system can be provided. Subsurface pits or pumprooms and inaccessible installations intended to house well heads, pumps, pump motors, or pump controls for pumping stations are prohibited except for below grade booster pumping stations as allowed per s. NR 811.80 (3) and (4).
- (e) Provide for all floors to drain so that floor runoff does not enter the treatment process or source water. Floors shall be sloped to a drain or sump.
- (f) Provide a suitable outlet for drainage water from pump glands so that the disposal of any drainage water is piped to waste or otherwise disposed of in a controlled manner. Pump gland drainage piping shall not be directly connected to a hub drain or a floor drain.
 - (g) Be provided with concrete floors.
- (h) Be provided with at least one floor drain meeting the following requirements:
- 1. Floor drains and hub drains shall be properly separated from a well. A floor or hub drain and associated piping accepting water from pump gland drainage, a pressure relief or control valve, a sampling faucet, or the floor shall be located no closer than 2 feet to the outer well casing. No building drain piping, except that piping leading to the aforementioned floor or hub drains, containing blackwater or graywater, may be located closer than 8 feet to the outer well casing.
- 2. Floor drains and hub drains shall have a discharge location that complies with all of the following requirements:
- a. Floor drains and hub drains may be connected to a sanitary sewer where available if the building floor elevation is at least one foot above the rim elevation of the nearest upstream sanitary sewer manhole. If a sanitary sewer is available but a manhole is not located nearby or the manhole does not comply with the upstream location or the one foot requirement, the department may require installation of an additional manhole on the sanitary sewer main or on the sanitary building sewer.

Note: The department recommends that the floor drains from chemical feed rooms discharge to a sanitary sewer whenever practicable.

- b. Floor drains and hub drains may discharge to the ground surface if the building drain and building sewer piping will only carry water from the floor or hub drain, the discharge location shall be at least 25 feet from the pumphouse, the exterior invert of the building sewer pipe shall be at least 6 inches below the building floor elevation and the exterior pipe opening shall be covered with a corrosion resistant rodent screen. A greater distance may be required for drains of pump stations serving wells constructed in sand and gravel formations. The piping shall terminate in a location that will not allow backflow of surface water into the building.
- c. Floor drains and hub drains may discharge to a buried tank located a minimum of 50 feet from the well if the discharge to the building drain and building sewer piping will contain only water from pump gland drainage, a pressure relief or control valve, a sampling faucet or floor drainage. These buried tanks may not be installed unless approved by the department's bureau of watershed management wastewater section prior to installation. Floor drains and hub drains may discharge to a POWTS holding component located a minimum of 200 feet from the well if the discharge will contain toilet, sink or other sanitary or domestic waste. These POWTS holding components may not be installed unless approved by the department of safety and professional services prior to installation. In either case the rim elevation of the access manhole to the tank shall be at least one foot below the building

equipment consisting of a pressure gauge, a pressure relief valve, a water sight glass, an automatic air blow-off, and pressure or probe operated start-stop controls for the pumps.

- **(4)** Each tank not equipped with a bladder or diaphragm to separate the air and water and with a gross volume of 500 gallons or more or that will be painted inside shall be provided with an access manhole. If the tank interior is to be painted it shall be painted with NSF/ANSI approved paints in accordance with s. NR 810.09 (5).
- (5) Each tank not equipped with a bladder or diaphragm to separate the air and water and with a gross volume of 500 gallons or more shall be provided with an automatically controlled air compressor to add air to the tank. All compressors used to routinely add air to tanks shall be oil–less. Larger capacity compressors that are not oil–less may be used temporarily to fill a tank upon startup, repair or service but shall be fitted with one or more filters and any other appurtenances necessary to remove particulates and oil from the air prior to injection.
- **(6)** Each tank equipped with a diaphragm or bladder shall be equipped with an air inlet for adding air manually, a pressure relief valve for each tank or bank of tanks sized to handle the maximum flow rate, and pressure—operated start up and shut down controls for the well pump.
- (7) The gross volume, in gallons, of any tank or combination of tanks, shall be at least 10 times the capacity of the largest pump, rated in gallons per minute, unless the proposed pump motor or motors will be controlled by a variable output control device in a manner intended to reduce the volume of required pressure tank storage in accordance with s. NR 811.34 (6). For a standard installation, the required storage volume is intended to provide a minimum pump run time of 2 to 3 minutes.
- **(8)** Each tank shall be identified by stamping or labeling showing the manufacturer's name, a serial number, the tank volume, the allowable working pressure, and the year fabricated.
- **(9)** Each tank not equipped with a bladder or diaphragm to separate the air and water and with a gross volume of 500 gallons or more shall be constructed of steel and have a 0.25 inch minimum side wall and head wall thickness.

History: CR 09-073: cr. Register November 2010 No. 659, eff. 12-1-10.

Subchapter IX — Storage Facilities

NR 811.62 Volume and pressure. (1) VOLUME REQUIREMENTS. A sufficient quantity of water, as determined from engineering studies, shall be maintained in elevated storage when only one pumping unit to the distribution system is available to serve the water system. This shall be at least an average—day supply under normal operating conditions. When more than one distribution pump is available, the storage shall be in accordance with standard engineering practice. Standard engineering practice is based upon an engineering review of existing and future water supply needs including: type of service and population served; average day, maximum day, peak hour and fire flow demands and durations; water source quality, availability and treatment, pump capacities, auxiliary power, storage capacity, water distribution and costs.

- **(2)** PRESSURE REQUIREMENTS. Storage facilities shall be designed to meet all the following requirements:
- (a) Minimum and maximum pressures. The storage facilities shall be designed to meet the minimum and maximum pressure requirements specified in s. NR 811.66 (1).
- (b) Fire flows and residual pressures. When fire protection is to be provided, the storage facilities shall be designed in conjunction with distribution system design to provide the minimum fire flows and residual pressures specified in s. NR 811.70 (6).
- (c) Alternative means for maintaining pressure. A hydropneumatic tank, booster pumping facilities, or other reliable

means shall be provided to maintain system pressure when a gravity storage reservoir or tank is not available.

(3) ELEVATED STORAGE REQUIREMENT WAIVED. The department may waive the requirement for elevated storage if the system is designed to serve less than 50 homes, if it is not economically feasible to provide elevated storage, if elevated storage facilities are proposed for a later development phase, or if service is proposed for domestic use only.

History: CR 09-073: cr. Register November 2010 No. 659, eff. 12-1-10.

- **NR 811.63 Location.** Storage facilities shall be located in accordance with all the following requirements:
- (1) FLOODWAY AND FLOODPLAIN. (a) *Floodway*. Storage facilities may not be located within a floodway, as defined in s. NR 116.03 (22).
- (b) *Floodplain*. If it is necessary to locate a reservoir in a floodplain, as defined in s. NR 116.03 (16), outside of the floodway, the lowest elevation of the bottom floor, including sumps, shall be a minimum of 2 feet above the regional flood elevation as determined in s. NR 116.07 (4). All projects shall conform to the requirements of that chapter.

Note: Refer to ch. NR 116 for floodplain and floodway requirements.

- (2) Grading. The area surrounding structures shall be graded in a manner that will prevent surface water from standing within 50 feet of the structure.
- (3) YEAR-ROUND ACCESS. Storage facilities shall be located in an area accessible during the entire year. If necessary, road improvements shall be installed to provide year-round dry land access. Storage facilities and access roads shall be located on property owned by the water supply owner or for which the owner has obtained easements.
- (4) FLOOR ELEVATIONS. The department recommends that the lowest elevations of floors and sump floors of ground level reservoirs and standpipes should be placed at or above the normal ground surface. If the department allows the floor or sump to be below the normal ground surface, it shall be placed a minimum of 2 feet above the groundwater table. Borings shall be made to determine groundwater elevations if that information is not available.
- **(5)** CONTAMINATION SOURCES. (a) Sewers, drains, fuel storage tanks, standing water, and similar sources of contamination shall be kept a minimum of 50 feet from the reservoir.
- (b) The department may approve gravity or force main sewers within 50 feet of a reservoir if the sewer or force main is constructed of water main class pipe meeting the requirements of s. NR 811.69 and is pressure tested in place to meet the requirements of s. NR 811.12 (5) (d) 2.
- **(6)** ROOF SURFACE ABOVE GRADE. (a) The top roof surface of a ground level reservoir may not be less than 2 feet above normal ground surface.
- (b) The department shall require a higher exposed elevation if high groundwater, poor surface drainage, or tight soils are encountered that will deter subsurface drainage or if necessary to provide positive pressures for pump intake or discharge lines in accordance with s. NR 811.37.

Note: It is recommended that no more than one-half of the reservoir depth be constructed below grade.

(c) The department may except clearwells constructed under filters from the 2 foot requirement when the total design gives the same protection.

History: CR 09–073: cr. Register November 2010 No. 659, eff. 12–1–10.

- NR 811.64 Construction details. (1) MATERIALS. Materials used in the construction of storage facilities shall meet all the following requirements:
- (a) General requirements. The materials and designs used for finished water storage structures shall provide stability and durability as well as protect the quality of the stored water. Unless the design engineer can justify the use of other materials, the depart-

APPENDIX F

Thickness Testing Instrument Information

Ultrasonic Thickness Gauge

Instruction Manual

Table of Contents

Introduction	4
Product Quality	4
Safety	4
Features	4
Specifications	5
Included	5
Instrument Description	6
Keypad Description	6
Display Description	7
Operating Instructions	8-13
Setting Ultrasonic Sensor Frequency	8
Zero Calibration	
Adjusting the Sound Velocity	8-9
Preparing the Measurement Surface	
Taking Thickness Measurements	10
Auto Power OFF	10
Sound Velocity Measurements of a Material with a Known Thickness	11
Sound Velocity Calibration	11-12
Two Point Calibration	
Setting Alarm Thickness Limits	13
Minimum Capture Measurements	
Measurement Methods	13-14
Menu Options	14-15
System Setup	14-15
Memory Manager	15
System Reset	
Internal Memory Operation	
Reviewing Stored Data	16

Maintenance	16
Cleaning the Test Piece	16
Protecting the Ultrasonic Sensor	16
Replacing the Ultrasonic Sensor	16
Battery Replacement	17
Applications	17
Accessories and Replacement Parts	17
Appendix	18-22
Measurements on Cylindrical Surfaces	
Measuring Compound Profiles	18
Measuring an Un-Parallel Surface	
Influence of Material's Temperature	19
Material with Large Attenuation	19
Measuring Castings	19
Preventing Errors	20
Reference Test Pieces	20
Ultra-Thin Material	21-22
Rust, Corrosion, and Pits	21
Error in Identifying Material	
Degradation of Probe	
Overlapped Material and Compound Material	21
Influence of Metal Surface Oxidation	21-22
Abnormal Readout of Thickness	
Utilization and Selection of a Coupling Gel (R7950)	22
Product Care	
Product Warranty	
Product Disposal and Recycling	
Product Support	

Introduction

Thank you for purchasing your REED R7900 Ultrasonic Thickness Gauge. Please read the following instructions carefully before using your instrument. By following the steps outlined in this manual your meter will provide years of reliable service.

Product Quality

This product has been manufactured in an ISO9001 facility and has been calibrated during the manufacturing process to meet the stated product specifications. If a certificate of calibration is required please contact the nearest authorized REED distributor or authorized Service Center. Please note an additional fee for this service will apply.

Security

Never attempt to repair or modify your instrument. Dismantling your product, other than for the purpose of replacing batteries, may cause damage that will not be covered under the manufacturer's warranty. Servicing should only be provided by an authorized service center.

Features

- Measures a wide range of material including; metals, plastic, ceramics, composites, epoxies, glass, and other ultrasonic conductive materials
- Easy-to-read backlit LCD display
- User selectable unit of measure (in/mm)
- Internal memory stores up to 500 measurements
- Displays sound velocity at the touch of a button
- Zero adjustment button
- User adjustable High/Low alarms
- Built-in two-point calibration function
- Auto sleep, shut off and low battery indicator

Specifications

Measuring Range: 0.03 to 15.7" (0.65 to 400mm)

Accuracy: ±0.04mm (< 10mm)

 $\pm (0.1\% \text{ rdg.} + 0.04\text{mm}) (< 100\text{mm})$

±(0.3% rdg.) (> 100mm)

Resolution: 0.01mm or 0.1mm (< 100mm)

0.1mm (>100mm)

Velocity Range: 1000 to 9999 m/s (0.039 to 0.394 in/μs)

Compatible Materials: Ultrasonic conductive materials

(ie. metals, plastics, ceramics, composites, epoxies, glass)

Sampling Time: Less than 1 second

Display: 4-Digit, LCD

Backlit Display: Yes
Probe Length: 3' (36")

Internal Memory: Yes (up to 500 readings, 5 files up to 100 each)

Low Battery Indicator: Yes

Power Supply: 2 AA Batteries

Battery Life: Approx. 100 hours (Alkaline)

Product Certifications: CE

Operating Temperature: 32 to 122°F (0 to 50°C)
Storage Temperature: -4 to 140°F (-20 to 60°C)

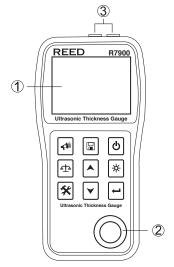
Operating Humidity Range: 20 to 80%

Dimensions: 5.9 x 2.9 x 1.3" (150 x 74 x 32mm)

Weight: 8.4oz (238g)

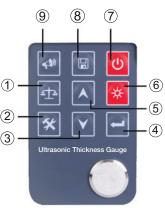
Included

Ultrasonic Couplant Gel

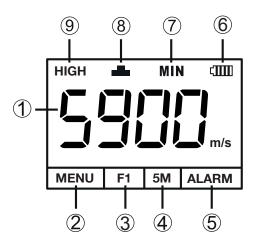

Probe

Hard Carrying Case

Batteries


Instrument Description

- 1. LCD Display
- 2. Calibration Test Block
- 3. Probe Inputs



Keyboard Description

- 1. Zero Button
- 2. Mode Button
- 3. Down Button
- 4. Enter Button
- 5. Up Button
- 6. Backlight ON/OFF Button
- 7. Power Button
- 8. Save/Browse Button
- 9. Velocity Button

Display Description

- 1. Measured Value
- 2. Menu Settings
- 3. Saved File Name
- 4. Ultrasonic Sensor Frequency
- 5. Alarm Thickness Settings

- 6. Battery Indicator
- 7. Minimum Capture Mode
- 8. Coupling Indicator
- 9. Gain Indicator

Operating Instructions

- 1. Insert the ultrasonic sensor into the probe sockets on the meter.
- Press, hold an release the (1) button for 2 seconds to turn the meter on. Press the (1) button to turn the meter off.
- The LCD will briefly display information about the meter, and then show the current set sound velocity.

Setting Ultrasonic Sensor Frequency

- Press the \$\frac{\text{\$}}{\text{\$}}\$ button to highlight the ultrasonic sensor frequency setting on the display.
- 3. To exit, press the houtton or by carrying out a measurement.

Zero Calibration

- After setting the correct ultrasonic sensor frequency, set the sound velocity to 5900m/s (see Adjusting the Sound Velocity for details).
- 2. Select the proper receiving gain (see System Setup for details).
- 3. Coat the 4mm calibration test block with coupling gel (R7950) and place the sensor on the calibration test block while ensuring the coupling indicator "

 "appears on the LCD display.
- Once the coupling indicator appears on the LCD display press the button to initiate zero calibration.
- 5. The meter will beep and then the screen will indicate that the calibration is complete.
- If zero calibration is not properly completed the meter will retain the original value.
- 7. To delete the calibration data, see *Memory Manager* section for details.

Adjusting the Sound Velocity

- While the meter is on, press the button and the meter will display the current sound velocity.

Material	Motorial Sound Velocity			
Materiai	(m/s)	(inch/µs)		
Aluminum	6320 to 6400	0.250		
Zinc	4170	0.164		
Silver	3607	0.142		
Gold	3251	0.128		
Tin	2960	0.117		
Steel, Common	5920	0.233		
Steel, Stainless	5740	0.226		
Brass	4399	0.173		
Copper	4720	0.186		
Iron	5930	0.233		
Case Iron	4400 to 5820	0.173 to 0.229		
Lead	2400	0.094		
Nylon	2680	0.105		
Titanium	5990	0.236		
SUS	5970	0.240		
Epoxy Resin	2540	0.100		
Ice	3988	0.222		
Plexiglass	2692	0.106		
Grey Cast	4600	0.180		
Porcelain	5842	0.230		
Glass (Quartz)	5570	0.220		
Polystyrene	2337	0.092		
PVC	2388	0.094		
Quartz Glass	5639	0.222		
Rubber, Vulcanized	2311	0.091		
Teflon	1422	0.058		
Water	1473	0.058		

Preparing the Measurement Surface

- Clean any dust, dirt or rust off the object, and remove any coating such as paint.
- Smooth the surface of the object by grinding or polishing it. You can also use a coupling gel with a high viscosity.

Important Note: In any ultrasonic measurement scenario, the shape and roughness of the desired test material are of great importance. Rough, uneven surfaces will prevent the ultrasonic sensor from seating properly against the surface, thus limiting the penetration of ultrasound through the material, resulting in unstable and therefore, unreliable measurements.

Taking Thickness Measurements

- 1. Set the sound velocity on the meter (see *Adjusting the Sound Velocity* for details).
- Apply coupling gel on the material, place the sensor firmly against the desired measurement area.

Note: For most applications a single droplet of coupling gel is sufficient.

- 3. Verify that the coupling Indicator "— appears on the LCD display.
- 4. Read the measurement on the LCD display.
- 5. When you remove the ultrasonic sensor the value will stay on the LCD and the coupling indicator "—" will disappear.
- 6. Press the 🖫 button to save the measurement if applicable.
- 7. If the coupling indicator " does not appear on the display, or the measured values appear to be erratic, verify that there is an adequate amount of coupling gel in between the ultrasonic sensor and the material under test. It is also important that the ultrasonic sensor sits flat against the material.

Auto Power OFF

To preserve battery life, the meter is programmed to turn itself after approximately 3 minutes of inactivity. To disable this option, please see *System Setup* section for details.

Sound Velocity Measurements of a Material with a Known Thickness

The sound velocity of a material can be measured using a test piece with a known thickness. Select a test piece with a minimum wall thickness of 20.0mm. Turn off the minimum capturing function (see *System Setup* section for details) prior to taking measurement.

- Measure the test piece with a caliper or micrometer to confirm the thickness.
- 2. Apply coupling gel on the material, place the sensor firmly against the desired measurement area.

Note: For most applications a single droplet of coupling gel is sufficient.

- Remove the ultrasonic sensor from the measurement area and adjust the measuring display until the actual thickness is met by pressing the ▲ and ➤ buttons and press the ➡ button to confirm your selection.
- 4. The LCD will display the sound velocity.
- 5. Press the button to save the value if applicable.

Sound Velocity Calibration

- 1. Start by performing a zero calibration to the ultrasonic sensor.
- Measure the actual thickness of the test piece with a caliper or micrometer.
- 3. Select a sound velocity from the pre-loaded list (choose any one).
- 4. Apply coupling gel on the material, place the sensor firmly against the desired measurement area.

Note: For most applications a single droplet of coupling gel is sufficient.

5. The LCD will display a measurement reading of the test piece.

Note: The reading will be off as the sound velocity is not correct.

- 7. Take another measurement of the test piece to verify if the thickness reading is getting closer to the known thickness or not. If for some reason it is now farther away than before, reduce the velocity a little by pressing the button. Check the thickness again to make sure that you are getting closer. Continue adjusting the sound velocity until the thickness reading is correct.
- Once you have reached the known thickness of the test piece, press
 the button to confirm your sound velocity setting. From this point,
 the sound velocity is calibrated and you can now take measurements of
 the same material with confidence.

Two Point Calibration

- Select two standard samples of the same material to be measured, among which one has a thickness equal to or slightly higher than the tested piece, and the thickness of another test piece is slightly lower than the tested piece.
- Before carrying out 2-point calibration, turn off the "Minimum Capture" function and erase the CAL data in the "Memory Manager".
- 3. Set the 2-point calibration to ON in the "System Setup" menu.
- 4. Press twice on the *\text{button to return to the main display.}
- Press the button at any time during measurement to enter the 2-Point CAL.
- 6. Measure the thinner standard test piece.
- Remove the ultrasonic sensor from the test piece and use the and buttons to adjust the measurement to standard value.
- Press the button and the LCD will prompt to measure the thicker piece.
- 9. Measure the thicker standard test piece.
- Remove the ultrasonic sensor from the test piece and use the ▲
 and ▼ buttons to adjust the measurement to standard value.
- 11. Press the button when the two-point calibration is completed.

Setting Alarm Thickness Limits

The R7900 will alarm when the measured value is beyond the pre-set limits. When the measurement is lower than the low pre-set limit or higher than the high pre-set limit, the alarm will sound. To enter the alarm setting, follow steps 1 through 6 below.

- 1. Press the X button to highlight the "Alarm" setting on the LCD.
- Press the button to adjust the LOW limit.
- Press the ▲ and ➤ buttons to adjust the user defined LOW alarm value.
- 4. Press the button to save the LOW limit, and to set the HIGH limit.
- Press the ▲ and ➤ buttons to adjust the user defined HIGH alarm value, and press the ■ button to save the HIGH limit.

Minimum Capture Measurements

When the ultrasonic sensor couples with the test piece it will display the current measurement. When it is lifted away it will display the minimum value of the measurement carried out while the MIN Indicator flashes for several seconds. Measurements taken during the MIN indicator flashing cycle will continue to be part of the minimum value capturing. If you carry out measurements after the MIN Indicator stops flashing the minimum value capturing will re-start. The MIN indicator will only display when the minimum capture function is ON (see *System Setup* section for details).

Measurement Methods

There are three base measurement methods:

- Single measurement method: This method involves measuring the thickness at a single point.
- Double measurement method: This method involves performing two thickness measurements near a single spot rotating the ultrasonic sensor from 0 to 90° respectively, with respect to the split face (see Figure A). Take the smaller of the two indicated values as the thickness of the material.

 Multi-point measurement: This method involves performing a number of measurements within a circle having a maximum diameter of about 1.18" (30mm) (see image below). Take the minimum indicated value as the thickness of the material.

Menu Options

The menu function controls the settings and functions of the meter. To enter the menu, press the 🛠 button to highlight the menu option on the LCD and press the 📥 button.

System Setup

- While in the menu, highlight the "System Setup" option and press the button to enter this menu.
- 2. Press the ▲ and ➤ buttons to scroll through the "System Setup" menu.
- When the required setting as shown below, is highlighted, press the button to select it and toggle between units.

Note: To set brightness, press ← button to enter the setting, and use the ▲ and ▼ buttons to adjust the brightness.

4. Once completed, press the note to save and exit.

System Setup Menu Settings are as follows:

- 1. Measurement Units: Metric and Imperial
- Receiving Gain: LOW (resolution of 0.1mm) and HIGH (resolution of 0.01mm). LOW is mainly used for measuring coarse material with high scatter and small sound absorption, such as cast aluminum, cast copper, and other metallic parts.
- 3. Minimum Capture Measurement: OFF and ON
- 4. 2-Point Calibration: OFF and ON
- 5. Auto Down: Power-saving mode ON (default)

- 6. **Baud Rate**: 1200, 2400, 4800, 9600
- 7. Set Brightness: UP to darken, DOWN to lighten

Memory Manager

- While in the menu, highlight the "Memory Manager" option and press the button to enter this menu.
- Press the ▲ and ➤ buttons to scroll through the "Memory Manager" menu.
- 3. Press the button to select the required option as shown below:
 - Erase File: Clears selected files
 - Erase All Data: Clears all saved files
 - Erase CAL data: Clears calibrating data
- 4. Press the button again to confirm (YES) or "Menu" to escape.

System Reset

While in the menu, highlight the "About Software" option and press the button to enter this menu. Press the button to restore the meter to its factory default settings for. Upon completion, the meter will shut down.

Internal Memory Operation

The internal memory is divided into 5 files, F1 to F5. Each file can save up to 100 measurement values.

Note: Before saving your data, be sure to set the file number first.

- 1. Press the X button to highlight the "Save File Name" on the LCD.
- 2. Press the button to scroll through the memory files, F1 to F5.
- 3. Press the button to save and exit.

Reviewing Stored Data

- 1. Press the X button to highlight the "Save File Name" on the LCD.
- 2. Press the button to scroll through the memory files, F1 to F5.
- 3. Press the 🗔 button to select the appropriate file number and to view the saved values.
- 4. Press the ▲ and ➤ buttons to scroll through the saved values.
- 5. If required, press the button to erase the current saved value.

Maintenance

Cleaning the Test Piece

After taking a measurement, clean the test pieces to prevent them from rusting. If the pieces are not to be used for a long period of time, coat them with oil to prevent rust.

Protecting the Ultrasonic Sensor

Be sure to clean the ultrasonic sensor and cable after each use. Grease, oil and dust will cause the cable to dry out and shorten life expectancy. The temperature of the surface being measured should not exceed $140^{\circ}F$ ($60^{\circ}C$).

Replacing the Ultrasonic Sensor

The degradation and wear of the probe's interlayer plate will influence measurements. Replace the probe when the following occurs:

- If it always displays the same value when measuring different thicknesses or;
- When a measurement displays no value.

Battery Replacement

- When the low battery symbol appears on the display, replace the batteries.
- 2. Remove the battery cover on the back and insert two new AA batteries.

Note: If the unit will not be used for a long period of time, remove the batteries to avoid battery leakage and corrosion of the battery contacts.

Applications

- Monitoring and verifying pipes and pressure vessels
- · Industrial manufacturing

Accessories and Replacement Parts

- R7900-PROBE Replacement Probe
- R7950 Ultrasonic Couplant Gel
- R7950/5L Ultrasonic Couplant Gel, 5L
- R7950/12 Ultrasonic Couplant Gel, pack of 12
- R9060 5-Step Calibration Block
- CA-52A Soft Carrying Case
- R8888 Hard Carrying Case

Don't see your part listed here? For a complete list of all accessories and replacement parts visit your product page on www.reedinstruments.com.

Appendix

Measurements on Cylindrical Surfaces

When measuring cylindrical material, such as pipes or oil tubes, it is important to properly adjust the angle between the ultrasonic sensor's crosstalk interlayer plate and the axial line of the material being measured.

- 1. Couple the sensor with the material being measures.
- Make the sensor's crosstalk interlayer plate perpendicular or parallel to the axial line of the material under test.
- Shake the sensor vertically along the axial line of the material under test, the readouts displayed on screen will change regularly.
- 4. Use the minimum readout.

The standard for selecting the angle between the sensor's crosstalk interlayer plate and the axial line of the material under test depends on the curvature of the material under test. For a pipe with a large diameter the sensor's crosstalk interlayer plate should be perpendicular to the axial line of the material under test. For a pipe with small diameter, the sensor's crosstalk interlayer plate can be both parallel and perpendicular to the axial line of the material under test, and take the minimum readout as the thickness.

Measuring Compound Profiles

When the material being measured has a compound profile (such as a bend in a pipe), one can use the procedures to measure cylindrical surfaces. The exception is that one should have two analyses and get two results when the sensor's crosstalk interlayer plate is both parallel and perpendicular to the axial line of the material under test. Take the minimum readout as the material thickness.

Measuring an Un-Parallel Surface

To get a satisfactory ultrasonic response, the other surface of the material under test must be parallel to or co-axial with the surface being measured, otherwise it will cause a measuring error or even provide no displayed reading.

Influence of Material's Temperature

Both the thickness and transmitting speed of ultrasonic waves are influenced by temperature. If there is a high requirement of measuring accuracy, please use one of the comparison methods listed below:

- Use a test piece of the same material being measured, under the same temperature.
- 2. Obtain the temperature compensation coefficient.
- Use this coefficient to correct the actual measurement of the material being tested.

Material with Large Attenuation

Material with porous and coarse particles (such as fibre) will cause a large scatter and energy attenuation in the ultrasonic wave. This will cause abnormal readings or provide no readings on the display (generally, the abnormal readings are less than the actual thickness). These type of materials cannot be measured by our ultrasonic thickness gauges.

Measuring Castings

Castings will cause large attenuations in sound energy due to coarse crystal particles and a not-so-dense structure. The attenuation is due to the material's scatter and absorption of sound energy. Coarse out-phase structures and coarse crystal particles will cause abnormal reflection (i.e. a grass-shaped or tree-shaped echo) resulting in errors in the readings. When the crystal particle is coarse, the anisotropy in flexibility in metal's crystallizing direction will be obvious. This results in difference in sound velocities in different directions, with the maximum difference being up to 5.5%. The compactness in different positions of the workpiece is different, which will also cause difference in sound velocity. All of these will produce inaccuracies in the measurements.

While measuring castings pay attention to the following:

- When measuring casting with an un-machined surface use engine oil, consistent grease, or water glass as a coupling gel.
- Calibrate the sound velocity for the material under test with a standard test piece having the same material and measuring direction as that of the material being measured.
- 3. If necessary, take a 2-point calibration.

Preventing Errors

Reference Test Pieces

To maintain high accuracy when taking measurements of different materials, it is important to use a standard test piece that resembles the material and conditions being measured. The ideal reference test pieces should be a group of test pieces with different thicknesses made of the same materials that is going to be measured. The test pieces can provide calibrating factors for the meter (such as the microstructure of the material, heat-treating condition, direction of particles, surface roughness, etc.). To meet the highest requirements of accuracy a set of reference test pieces are critical.

Under most situations satisfactory measuring accuracies can be met with only one reference test piece. This should be the same material and similar thickness to the material under test. Take an even-surfaced object, measure it by using a micrometer, then use it as a test piece.

For thin material, when its thickness is near to the low limit of the sensor's measuring range, you can use a test piece to determine the accurate low limit. Never measure a material with a thickness lower than the low limit.

When the material under test is thick, especially an alloy with complex internal structure, select a test piece similar to the object from a group of test pieces, giving you an idea of calibration.

For most casting and forging, their internal structures have some direction. In different directions, the sound velocity will experience some change. To solve this problem, the test piece should have an internal structure with same direction as that of the material under test, and the transmitting direction of sound wave in it should also be same as that of the material.

Under certain circumstances, referring to a material speed-of-sound table can replace reference test pieces. The value in the speed-of-sound table may have some difference from the actual measured values due to difference in the material's physical and chemical characteristics. This is usually used for measuring low-carbon steel, and can only be taken as a rough measurement.

Ultra-Thin Material

An error will occur when the thickness of a material under test is less than the low limit of the ultrasonic sensor. When necessary, measure the minimum limit thickness by comparing it with test pieces. When measuring an ultra-thin material, sometimes errors called "double refraction" may occur. This results in a displayed measuring reading that is twice the actual thickness of the material under test. Another error result is called "pulse envelop or cyclic leap". This results in the measured value being larger than the actual thickness. To prevent these kinds of errors repeat the measurement to confirm the results.

Rust, Corrosion, and Pits

Rust and pits on the surface of the object will cause irregular change in the measured reading. In extreme situations it will even cause no readings on the display. To avoid errors, orient the sensor's crosstalk interlayer plate in different directions to take multiple measurements.

Error in Identifying Material

If you calibrate the meter with one material and then measure another material, an error will occur. Be careful in selecting the correct sound velocity.

Degradation of Probe

The surface of the probe is allyl resin. Over time its roughness will increase resulting in reduced sensitivity. If it is determined that this is the reason for the errors, grind the surface with sandpaper or oilstone to make it smooth again. If the readings are still not stable, the sensor must be replaced.

Overlapped Material and Compound Material

It is impossible to measure uncoupled overlapped material because the ultrasonic wave can't pass through an uncoupled space. Since the ultrasonic wave can't transmit in a compound material in even speed you cannot use an ultrasonic thickness-gauge to measure overlapped material and compound material.

Influence of Metal Surface Oxidation

Some metals can produce a dense oxidation layer on the surface, such as aluminum. Even though the layer is in close contact with the substrate and provides no obvious interface, the ultrasonic wave will have different transmitting speeds in these two materials which will cause an error.

In addition, different thicknesses in oxidation layers will cause different errors. Make a reference piece from a batch of objects by measuring with a micrometer or calliper, and using it to calibrate the instrument.

Abnormal Readout of Thickness

The operator should be able to identify an abnormal measuring reading. Generally the rust, corrosion, pit, and internal defect of the material under test will cause abnormal measuring readings.

Utilization and Selection of a Coupling Gel (R7950)

Coupling gel is used for transmitting high-frequency energy between the ultrasonic gel and the material under test. If the type of gel or utilization is wrong, or the utilization it will cause an error. For most applications a single droplet of coupling gel coated evenly is sufficient. When measuring a smooth surface use a gel with low viscosity (such as the coupling gel provided or light engine oil). When measuring a coarse object surface, vertical surface or top surface, use a gel with high viscosity (such as glycerin grease, consistent grease, and lubricating grease, etc.).

Product Care

To keep your instrument in good working order we recommend the following:

- Store your product in a clean, dry place.
- · Change the battery as needed.
- If your instrument isn't being used for a period of one month or longer please remove the battery.
- Clean your product and accessories with biodegradable cleaner. Do not spray the cleaner directly on the instrument. Use on external parts only.

Product Warranty

REED Instruments guarantees this instrument to be free of defects in material or workmanship for a period of one (1) year from date of shipment. During the warranty period, REED Instruments will repair or replace, at no charge, products or parts of a product that proves to be defective because of improper material or workmanship, under normal use and maintenance. REED Instruments total liability is limited to repair or replacement of the product. REED Instruments shall not be liable for damages to goods, property, or persons due to improper use or through attempts to utilize the instrument under conditions which exceed the designed capabilities. In order to begin the warranty service process, please contact us by phone at 1-877-849-2127 or by email at info@reedinstruments.com to discuss the claim and determine the appropriate steps to process the warranty.

Product Disposal and Recycling

Please follow local laws and regulations when disposing or recycling your instrument. Your product contains electronic components and must be disposed of separately from standard waste products.

Product Support

If you have any questions on your product, please contact your authorized REED distributor or REED Instruments Customer Service by phone at 1-877-849-2127 or by email at info@reedinstruments.com.

Please visit www.REEDInstruments.com for the most up-to-date manuals, datasheets, product guides and software.

Product specifications subject to change without notice.

All rights reserved. Any unauthorized copying or reproduction of this manual is strictly prohibited without prior written permission from REED Instruments.

REED INSTRUMENTS

TEST & MEASURE WITH CONFIDENCE

CHECK OUT OUR LATEST PRODUCTS!

REED Instruments

1-877-849-2127 | info@reedinstruments.com | www.reedinstruments.com

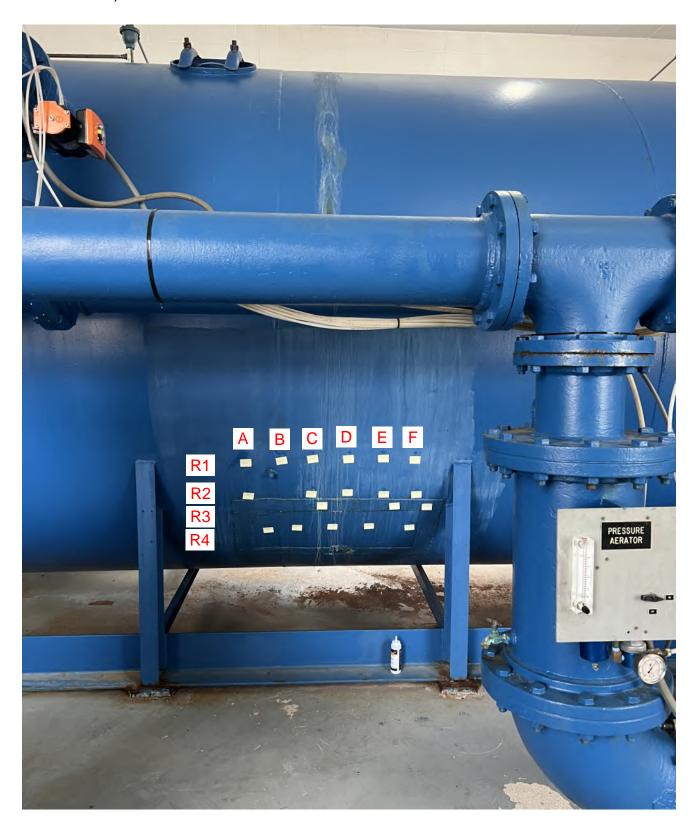
APPENDIX G

Main Filter Plant: Pressure Filter Tank
Thickness Test Results

Main Filter Plant Pressure Tank North Side, East End

Pressure Tank North Side, East End D E F Α С В G Н R1 R2 R4 R5 R6 R7

Main Filter Plant


Pressure Tank North Side, East End G Н В R6 R7 R8 R9 R10 R11 R12 R13

Main Filter Plant

Main Fi	lter Plan	t - Press	ure Filte	er Tank				
North Side East End								
	Α	В	С	D	E	F	G	Н
R1		0.456				0.438	0.133	0.102
R2		0.132	0.157			0.150	0.197	0.228
R3		0.090	0.463	0.135		0.148	0.096	0.099
R4	0.210	0.449	0.194	0.382		0.386		
R5	0.141	0.150	0.199	0.431		0.092	0.211	0.138
R6	0.150	0.185	0.197	0.200		0.449		
R7	0.166	0.148	0.180	0.414		0.119		
R8	0.449	0.124	0.433	0.391	0.391	0.431		
R9	0.443	0.443	0.411	0.157	0.215	0.407		
R10	0.423	0.121	0.437	0.078	0.121	0.085		
R11		0.209	0.402	0.248	0.135	0.139		
R12		0.174	0.174	0.456				
R13		0.520	0.450	0.171				

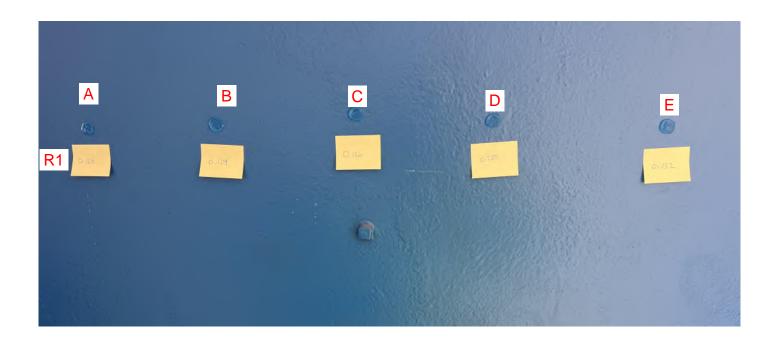
Main Filter Plant Pressure Tank North Side, Center

Main Filter Plant Pressure Tank North Side, Center

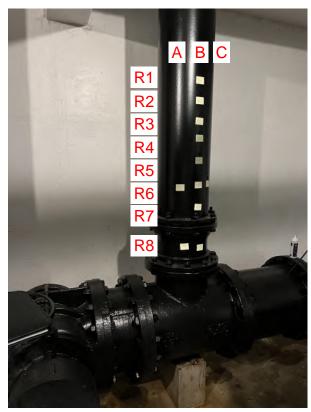


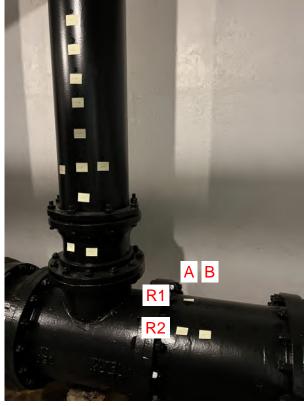
Main Filter Plant - Pressure Filter Tank							
North Side Center							
	Α	В	С	D	E	F	
R1	0.165	0.157	0.118	0.175	0.167	0.141	
R2	0.444		0.257	0.239	0.174	0.207	
R3			0.153		0.148	0.144	
R4		0.157	0.127	0.146	0.132	0.169	

Main Filter Plant Pressure Tank North Side, West End

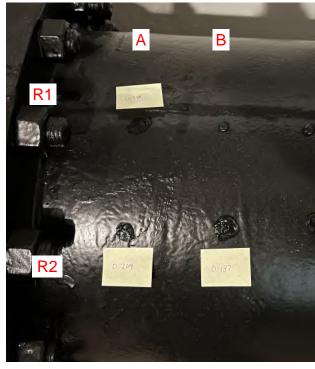


Main Fi	lter Plan	t - Press	ure Filte	er Tank	
North Side	e, West En	d			
	Α	В	С	D	E
R1	0.379	0.423	0.081	0.087	0.082
R2				0.447	0.441
R3	0.119	0.139	0.423	0.420	0.243
R4	0.187	0.138	0.454	0.456	0.491
R5	0.215	0.203	0.182	0.130	
R6	0.150	0.147	0.213	0.472	0.479

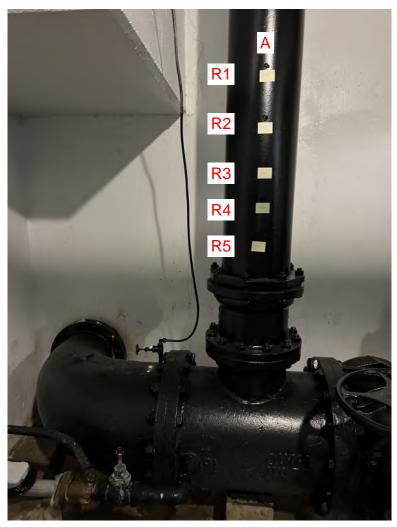

Main Fi	lter Plan	t - Press	ure Filte	er Tank	
West Side	ļ				
	Α	В	С	D	E
R1	0.168	0.124	0.126	0.23	0.132


APPENDIX H

Booster Pump Station: Piping Thickness Test Results

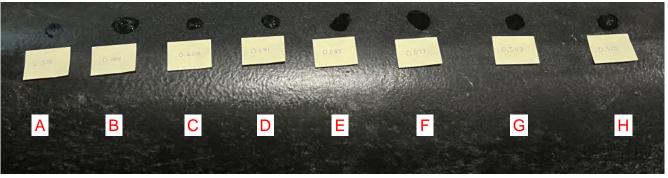

Booster Station Pressing Piping Vertical Pipe 1

Booster Station Pressing Piping Horizontal Pipe 1

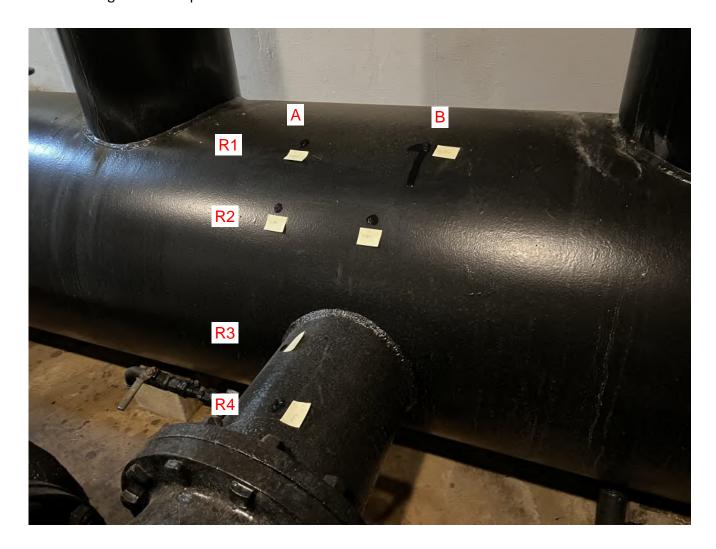


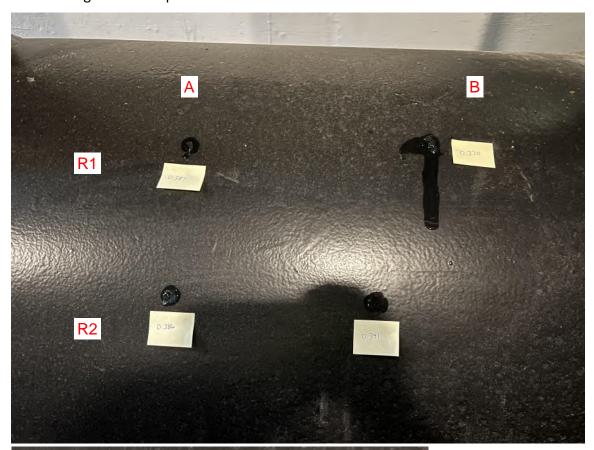
Booster	Station				
Pressure F	ressure Piping - Vertical Pipe 1				
	Α	В	С		
R1		0.651			
R2		0.643			
R3		0.608			
R4		0.623			
R5		0.623			
R6	0.593	0.471	0.572		
R7		0.534			
R8	0.523	0.587			

Booster Station				
Pressure Piping - Horizontal Pipe 1				
	Α	В		
R1	0.248			
R2	0.209	0.137		


Booster Station Pressing Piping Vertical Pipe 2

Booster Station				
Pressure Piping -				
Vertical Pipe 2				
	Α			
R1	0.502			
R2	0.522			
R3	0.515			
R4	0.526			
R5	0.535			

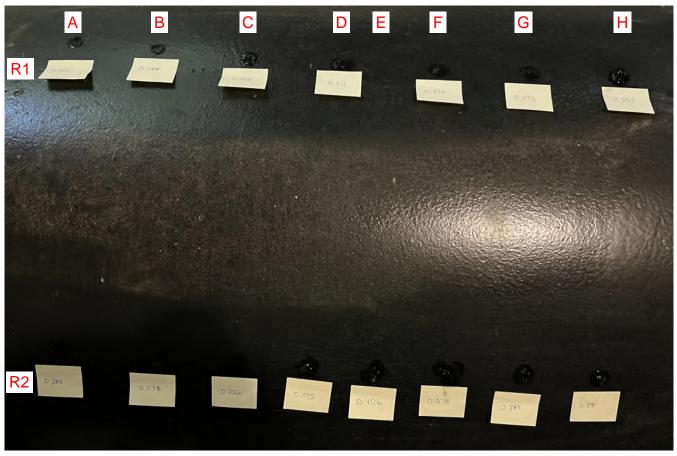



Booster	Station							
Suction Pi	pe - 12 Pip	e						
	Α	В	С	D	E	F	G	Н
R1	0.572	0.084	0.608	0.081	0.085	0.077	0.543	0.520

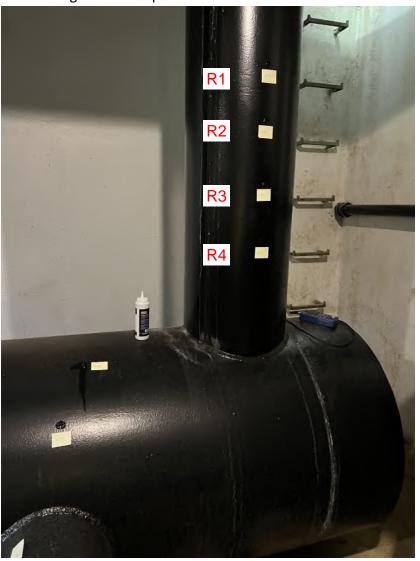
R1

Booster Station Suction Piping Middle Large Header Pipe

Booster Station Suction Piping Middle Large Header Pipe

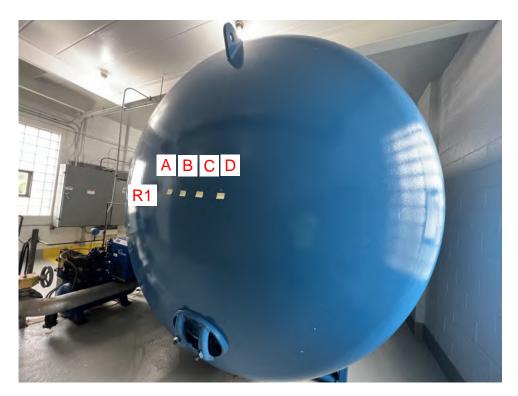


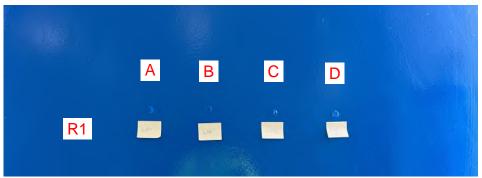
Booster Station Suction Pipe - Middle Large Header Pipe A B R1 0.387 0.370 R2 0.386 0.391 R3 0.361 R4 0.115

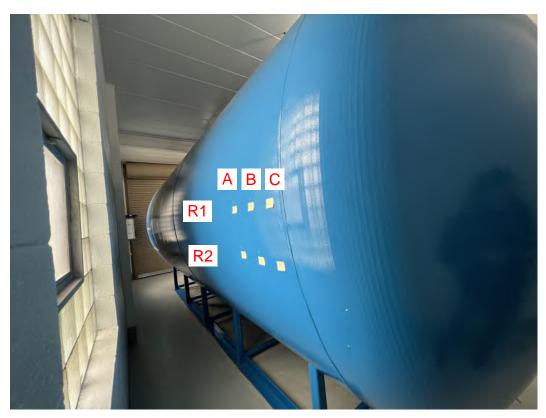

Booster Station Suction Piping North Large Header Pipe

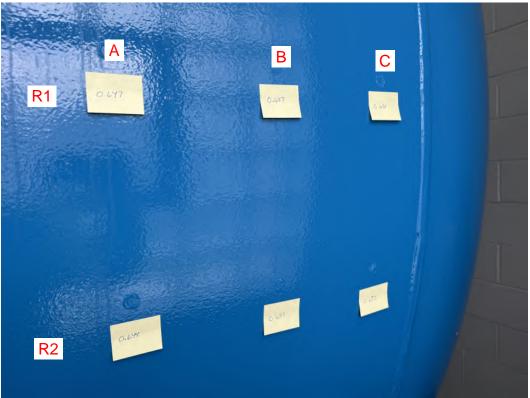
Booster	Station								
Suction Pi	pe - North	Large Hea	der Pipe						
	Α	В	С	D	E	F	G	Н	
R1	0.382	0.388	0.385	0.211		0.379		0.2	21
R2	0.385		0.336		0.406		0.382	0.3	91

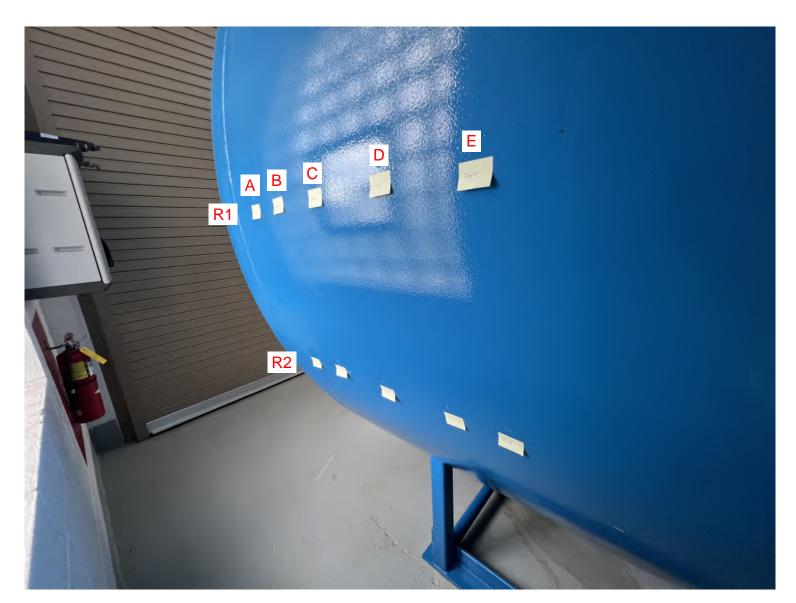
Booster Station Suction Piping South Large Header Pipe




Booster Station		
Suction Pi	pe -	
South Large Header		
	Α	
R1	0.394	
R2	0.165	
R3	0.394	
R4	0.379	


APPENDIX J


Well 8 Filter Plant: Pressure Filter Tank
Thickness Test Results

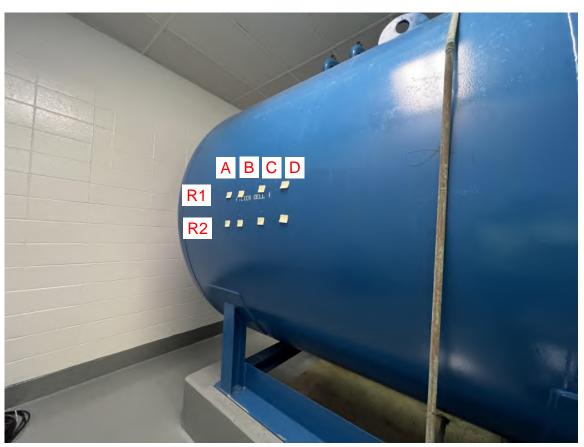


Well 8				
North End				
	Α	В	С	D
R1	0.587	0.58	34 0.5	0.582

Well 8			
West Side	, South En	d	
	Α	В	С
R1	0.647	0.647	0.651
R2	0.644	0.651	0.652

Well 8					
West Side	, North En	d			
	Α	В	С	D	E
R1	0.647	0.644	0.644	0.647	0.644
R2	0.646	0.641	0.648	0.641	0.638

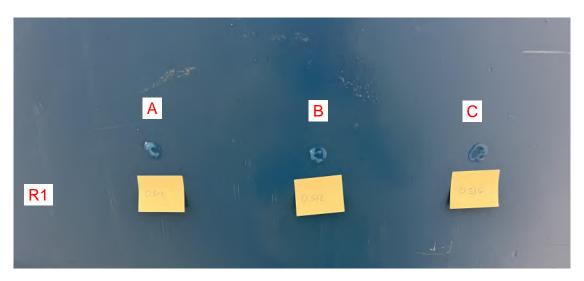
Well 8 Pressure Tank West Side, North End



APPENDIX K

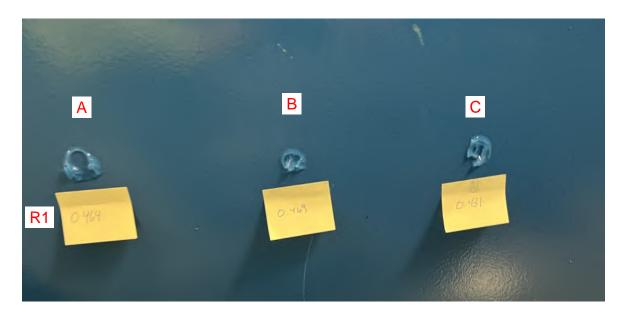
Well 9 Filter Plant: Pressure Filter Tank
Thickness Test Results

Well 9 Pressure Tank East Tank, East Side, South End

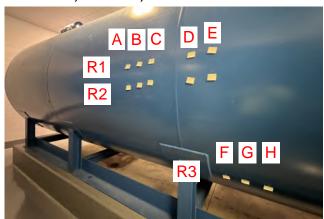


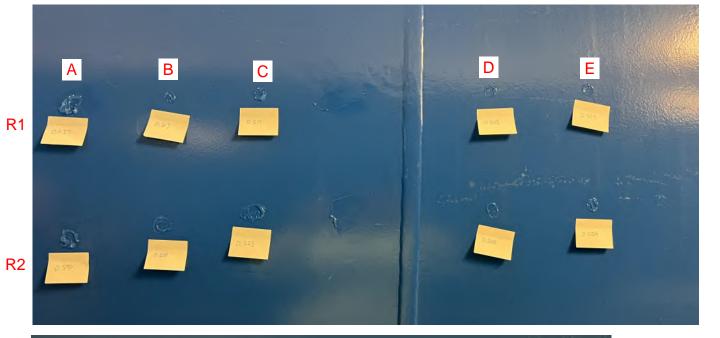
Well 9				
East Tank,	East Side,			
	Α	В	С	D
R1	0.519	0.446	0.396	0.426
R2	0.482	0.465	0.491	0.491

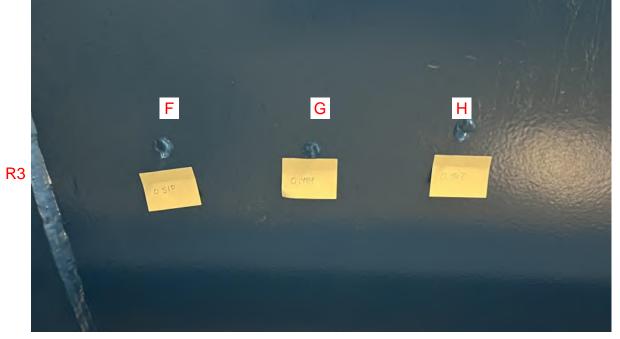
Well 9 Pressure Tank East Tank, South End



Well 9							
East Tank, South End							
	Α	В	С				
R1	0.509	0.532	0.536				

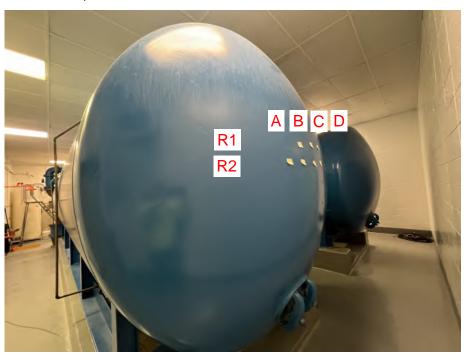

Well 9 Pressure Tank East Tank, West Side, Middle





Well 9			
East Tank,	, Middle		
	Α	В	С
R1	0.464	0.469	0.431

Well 9 Pressure Tank West Tank, East Side, Middle



Well 9								
West Tank	, East Side	, Middle						
	Α	В	С	D	E	F	G	Н
R1	0.537	0.517	0.517	0.523	0.514			
R2	0.590	0.538	0.523	0.508	0.528			
R3						0.510	0.484	0.467

Well 9 Pressure Tank West Tank, South End

Well 9							
West Tank	, South En	d					
	Α	В		С		D	
R1			0.613		0.541		0.547
R2	0.364		0.272		0.254		0.310

Well 9 Pressure Tank West Tank, West Side, North End

Well 9 Pressure Tank West Tank, West Side, North End

Well 9					
West Tank	, South En	d			
	Α	В	С	D	E
R1	0.367	0.407	0.529	0.385	0.437
R2	0.517	0.394	0.517	0.511	0.502
R3	0.394	0.419	0.370	0.414	0.381
R4	0.436	0.511	0.514	0.511	0.502
R5	0.431	0.415	0.453	0.526	
R6	0.479	0.420	0.523	0.491	

APPENDIX D

Water Demand Summary and Calculations

2017 - 2022 Water Demand Breakdown

		2022			2021			2020			2019			2018			2017	
	No. of	Metered Water	% of Total	No. of	Metered Water	% of Total	No. of	Metered Water	% of Total	No. of	Metered Water	% of Total	No. of	Metered Water	% of Total	No. of	Metered Water	% of Total
Customer Classification	Customers	Use (gal)	Flow	Customers	Use (gal)	Flow	Customers	Use (gal)	Flow	Customers	Use (gal)	Flow	Customers	Use (gal)	Flow	Customers	Use (gal)	Flow
Residential	6,354	235,529,000	67%	6,263	235,008,000	67%	6,167	243,177,000	69%	6,083	224,918,000	66%	6,015	227,084,000	65%	5,983	220,464,000	67%
Commercial	408	48,301,000	14%	397	46,457,000	13%	397	43,227,000	12%	398	51,086,000	15%	397	50,533,000	15%	396	46,678,000	14%
Industrial	26	39,477,000	11%	20	39,363,000	11%	20	38,398,000	11%	20	33,654,000	10%	19	38,939,000	11%	19	30,771,000	9%
Public	33	10,095,000	3%	32	10,301,000	3%	32	10,155,000	3%	32	11,546,000	3%	32	11,791,000	3%	31	12,259,000	4%
Multifamily Residential	133	18,202,000	5%	132	18,256,000	5%	132	18,660,000	5%	132	18,753,000	6%	132	19,419,000	6%	132	17,682,000	5%
Total	6,954	351,604,000		6,844	349,385,000		6,748	353,617,000		6,665	339,957,000		6,595	347,766,000		6,561	327,854,000	
Total Gallons Pumped into Dist.	System	473,362,000			422,636,000			409,484,000			416,569,000			432,995,000			432,714,000	
Average Day Demand		1,300,445			1,161,088			1,121,874			1,144,420			1,189,547			1,188,775	
Total Water Loss		23%			10%			6%			9%			10%			12%	
Maximum Day Demand		2,213,000			1,922,000			1,827,000			2,192,000			2,030,000			2,288,000	
Day of Max Demand		5/24/2022			8/17/2021			4/22/2020			1/17/2017			6/15/2018			6/27/2017	
Reason for Max Day		Water main break			Hydrant flushing			Hydrant flushing			Water main break		I	Hydrant flushing			Hydrant flushing	
Max Day Ratio		1.70			1.66			1.63			1.92			1.71			1.92	
																		
Population		17,372			17,170			17,088			16,274			16,219			16,080	
Average Person per Household		2.73			2.74			2.77			2.68			2.70			2.69	
Residential gpcd		37.2			37.6			39.0			38.0			38.5			37.7	
Total gpcd	<u> </u>	55.60			55.90			56.70			57.39			58.91			56.01	

PSC Numerical Project Justification Equations

Equation 1: Maximum Day Demand

$$SC = [FWC * 18 hr/24 hr] - MD$$

Equation 2: Average Day Demand

$$SC = [FWC * 12 hr/24 hr] - AD$$

Equation 3: Fire Flow Demand and Maximum Day Demand

$$SC = FWC + \frac{ES}{T * 60} - F - \frac{R + MD}{24 * 60}$$

Equation 4: Maximum Hour Demand

$$SC = FWC + \frac{ES}{60} - \frac{R + MH * 60}{60}$$

Firm Well Capacity (FWC)

*Firm well capacity is the total well capacity of the wells in the system, with the largest well out of service.

Well
$$4 = 555$$
 gpm
Well $5 = 315$ gpm

Well
$$10 = 580 \text{ gpm}$$

Well
$$8 = 475 \text{ gpm}$$

Well
$$9 = 1,300 \text{ gpm}$$

$$FWC = Total capacity - Well 9 = 1,925 gpm$$

Additional calculations were performed with different well capacities. Some scenarios were evaluated with Well 9 also running to show how the system performs in a better-case scenario than FWC. Although this does not provide the most conservative calculation, it was performed to show Kaukauna how their system can perform when all the wells are operational.

Customer Demand

Current Average Day Demand (AD)

2022 PSC WEGS report total gallons of water of 473,362,000 gallons.

This also assumes as 12-hour pumping day.

$$473,362,000 \text{ gal/year} \div 365 \text{ days} \div 12 \text{ pumping hours/day} \div 60 \text{ min/hr} = 1,801 \text{ gpm}$$

Current Maximum Day Demand (MD)

Using average maximum day from PSC WEGS reports 2017-2022 and an 18-hour pumping day.

$$2,078,667 \text{ gal} \div 24 \div 18 = 1,925 \text{ gpm}$$

Current Maximum Hour Demand (MH)

1,925 gpm x 2 = 2,028 gpm

20-Year Projections

Year	Total Water Demand (gal)	Average Day Demand (gal)	Maximum Day Demand (gal)
2000	464,305,000	1,272,068	2,252,000
2001	484,189,000	1,326,545	1,961,000
2002	501,160,000	1,373,041	2,011,000
2003	536,283,000	1,469,268	2,204,000
2004	512,887,000	1,405,170	3,026,000
2005	534,648,000	1,464,789	2,336,000
2006	516,376,000	1,414,729	2,495,000
2007	510,719,000	1,399,230	2,261,000
2008	506,623,000	1,388,008	2,556,000
2009	471,048,000	1,290,542	2,135,000
2010	430,703,000	1,180,008	2,308,000
2011	444,951,000	1,219,044	2,022,000
2012	457,694,000	1,253,956	1,862,000
2013	444,685,000	1,218,315	1,929,000
2014	469,407,000	1,286,047	1,911,000
2015	435,258,500	1,192,489	2,057,000
2016	432,127,000	1,183,910	2,064,000
2017	432,714,000	1,185,518	2,288,000
2018	432,995,000	1,186,288	2,030,000
2019	416,569,000	1,141,285	2,192,000
2020	409,484,000	1,121,874	1,827,000
2021	422,636,000	1,157,907	1,922,000
2022	473,362,000	1,296,882	2,213,000
2025	480,497,991	1,316,433	2,316,922
2030	492,631,168	1,349,674	2,375,427
2035	505,070,722	1,383,755	2,435,410
2040	517,824,391	1,418,697	2,496,907
2043	525,630,658	1,440,084	2,534,548

Projections were determined assuming a 0.5% annual growth rate, starting from the total water demand from 2022. This was decided on as the growth rate following discussions with Kaukauna Utilities.

Future max day determined by multiplying average day by 2.53. This ratio of MD:AD demand is the average of MD:AD demand from the PSC WEGS reports from 2017-2022.

Future Average Day (AD)

1,440,084 gal
$$\div$$
 12 pumping $\frac{\text{hours}}{\text{day}} \div 60 \frac{\text{min}}{\text{hr}} = 2,000 \text{ gpm}$

Future Maximum Day (MD)

$$2,534,548 \text{ gal} \div 24 \div 18 = 2,347 \text{ gpm}$$

Future Maximum Hour (MH)

$$2,347 \text{ gpm x } 2 = 4,928 \text{ gpm}$$

Additional demand scenarios were also considered. In the report, an RO treatment system is being considered for all wells. This would involve a waste stream of approximately 17% of total water pumped. Therefore, calculations for the RO scenario include an additional 1.17% demand in the system.

Calculations were also performed for maximum day demand assuming a 24-hour pumping day instead of 18-hour pumping day. This would be a realistic short-term solution to meet maximum day demand with Well 9 down.

Fire Demand

Using ISO Fire Demands for schools.

Maximum fire flow = 3,500 gpm (F)

Maximum fire flow duration = 3 hr (T)

Maximum fire flow volume = 630,000 gal

Storage

Current Water Storage (ES)

Assuming 10% of the water tower capacity must be set aside for operational needs.

$$1M \text{ gal } \times 0.90 = 900,000 \text{ gal}$$

Note: following discussions with the sanitary district, it was determined to use a reserve (R) of 0 for a more conservative estimate of demand needs.

Equation Results

Scenario	Equation 1 - Max Day	Equation 2 - Average Day	Equation 3 - Fire Flow on Max Day	Equation 4 - Max Hour
Current	0	124	1,500	12,883
Future - FWC	(422)	(75)	1,078	11,997
Future - With Well 9	878	1,225		
Current Demand + RO	(327)	(182)	1,173	1,318
Future - FWC + RO	(821)	(415)	679	1,085
Future - with Well 9, RO	479	885	1,979	2,385

Current Demand + RO treatment, assuming a 24-hour pumping day for maximum day demand 236 gpm spare capacity

Future Demand + RO treatment, assuming a 24-hour pumping day for maximum day demand -134 gpm spare capacity

APPENDIX E Water Quality Testing Results

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130 Project Number: Report Date: Sampled By: 23003991 3/6/2023 CLIENT

Attn: EUGENE KLISTER

PO#: # Samples: 14351

Sample Number:

53008864

Sample ID:

RAW WATER WELL #4

Sample Date: Date Received: 2/22/2023 2/22/2023

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
FIELD PARAMETER	nesults	OTILS	LOD	LUQ	ווט.	MELHOU	Anaryzeu	codes
TEMPERATURE	53.2	F				EPA170.1	2/22/2023	
GENERAL ANALYSIS	33.2	Г				EPA170.1	2/22/2023	
ALKALINITY, TOTAL AS CACO3	185	mg/l	20	67		SM2320B	2/24/2023	
CHLORIDE	9.3	mg/l	0.10	0.33	1	EPA300.0	2/22/2023	
CONDUCTIVITY-LAB	1360	umho/cm	0.10	0.33	1	EPA300.0	2/22/2023	
FLUORIDE	1.7	mg/l	0.10	0.1	1	EPA300.0	2/22/2023	
HARDNESS AS CACO3	1.7 754	•			1			
		mg/l	0.28	0.93	1	EPA200.7	3/1/2023	
M-ALKALINITY	185	mg/l	20	67		SM2320B	2/24/2023	
P-ALKALINITY	<20	mg/l	20	67		SM2320B	2/24/2023	
pH-LAB	7.2	S.U.	0.05	2.2	_	SM4500HB	2/22/2023	
SILICA, DISSOLVED	6.6	mg/l	0.95	3.2	5	SM4500SiO2C	3/1/2023	
SULFATE	583	mg/l	18	60	35	EPA300.0	2/28/2023	
SUSPENDED SOLIDS	<2.0	mg/l	2.0	2.0		SM2540D	2/23/2023	
TOTAL DIS. SOLIDS	1088	mg/l	20	20		SM2540C	2/24/2023	
TURBIDITY-LAB	8.3	NTU	0.10	0.10	1	EPA180.1	2/24/2023	
<u>METALS</u>								
ALUMINUM, TOTAL	< 0.014	mg/l	0.014	0.047	1	EPA200.7	3/1/2023	
BARIUM, TOTAL	< 0.0004	mg/l	0.0004	0.0013	1	EPA200.7	3/1/2023	
BORON	0.123	mg/l	0.0035	0.012	1	EPA200.7	3/1/2023	
CALCIUM, TOTAL	271	mg/l	0.08	0.27	1	EPA200.7	3/1/2023	
IRON, TOTAL	0.61	mg/l	0.06	0.20	1	EPA200.7	3/1/2023	
MAGNESIUM, TOTAL	19	mg/l	0.02	0.07	1	EPA200.7	3/1/2023	
MANGANESE, TOTAL	0.021	mg/l	0.0007	0.0023	1	EPA200.7	3/2/2023	
METALS DIGESTION	DONE					EPA200.2	2/28/2023	
POTASSIUM, TOTAL	4.69	mg/l	0.15	0.50	1	EPA200.7	3/1/2023	
SODIUM, TOTAL	13	mg/l	0.15	0.50	1	EPA200.7	3/1/2023	
STRONTIUM, TOTAL	24	mg/l	2.0	6.67	10	EPA200.7	3/2/2023	
NUTRIENTS		J.					• •	
AMMONIA NITROGEN	0.12	mg/l	0.11	0.37	1	SM4500NH3G	2/27/2023	
NITRATE NITROGEN	<0.10	mg/l	0.10	0.33	1	EPA300.0	2/22/2023	
PHOSPHORUS, TOTAL	<0.03	mg/l	0.03	0.10	1	EPA365.4	3/2/2023	
ORGANICS		01 .			-		-, -,	
TOTAL ORGANIC CARBON	0.698	mg/l	0.284	0.946	1	SM5310C	2/24/2023	47,J

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

Sample Number: 53008865

Sample ID: RAW WATER WELL #5

Sample Date: 2/22/2023 Date Received: 2/22/2023

Parameter Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
FIELD PARAMETER							
TEMPERATURE 52.1	С				EPA170.1	2/22/2023	
GENERAL ANALYSIS							
ALKALINITY, TOTAL AS CACO3 180	mg/l	20	67		SM2320B	2/24/2023	
CHLORIDE 13	mg/l	0.20	0.67	2	EPA300.0	2/28/2023	
CONDUCTIVITY-LAB 1390	umho/cm	0.1	0.1		EPA120.1	2/24/2023	
FLUORIDE 1.7	mg/l	0.10	0.33	1	EPA300.0	2/22/2023	
HARDNESS AS CACO3 778	mg/l	0.28	0.93	1	EPA200.7	3/1/2023	
M-ALKALINITY 180	mg/l	20	67		SM2320B	2/24/2023	
P-ALKALINITY <20	mg/l	20	67		SM2320B	2/24/2023	
pH-LAB 7.2	S.U.				SM4500HB	2/22/2023	
SILICA, DISSOLVED 5.6	mg/l	0.95	3.2	5	SM4500SiO2C	3/1/2023	
SULFATE 607	mg/l	18	60	35	EPA300.0	2/28/2023	
SUSPENDED SOLIDS <2.0	mg/l	2.0	2.0		SM2540D	2/23/2023	
TOTAL DIS. SOLIDS 1173	mg/l	20	20		SM2540C	2/24/2023	
TURBIDITY-LAB 11	NTU	0.10	0.10	1	EPA180.1	2/24/2023	
METALS							
ALUMINUM, TOTAL <0.014	mg/l	0.014	0.047	1	EPA200.7	3/1/2023	
BARIUM, TOTAL <0.0004	1 mg/l	0.0004	0.0013	1	EPA200.7	3/1/2023	
BORON 0.128	mg/l	0.0035	0.012	1	EPA200.7	3/1/2023	
CALCIUM, TOTAL 279	mg/l	0.08	0.27	1	EPA200.7	3/1/2023	
IRON, TOTAL 0.81	mg/l	0.06	0.20	1	EPA200.7	3/1/2023	
MAGNESIUM, TOTAL 20	mg/l	0.02	0.07	1	EPA200.7	3/1/2023	
MANGANESE, TOTAL 0.024	mg/l	0.0007	0.0023	1	EPA200.7	3/2/2023	
METALS DIGESTION DONE					EPA200.2	2/28/2023	
POTASSIUM, TOTAL 4.86	mg/l	0.15	0.50	1	EPA200.7	3/1/2023	
SODIUM, TOTAL 16	mg/l	0.15	0.50	1	EPA200.7	3/1/2023	
STRONTIUM, TOTAL 21	mg/l	0.0002	0.0007	1	EPA200.7	3/1/2023	
<u>NUTRIENTS</u>							
AMMONIA NITROGEN <0.11	mg/l	0.11	0.37	1	SM4500NH3G	2/27/2023	
NITRATE NITROGEN <0.10	mg/l	0.10	0.33	1	EPA300.0	2/22/2023	
PHOSPHORUS, TOTAL <0.03	mg/l	0.03	0.10	1	EPA365.4	3/2/2023	
ORGANICS							
TOTAL ORGANIC CARBON 0.656	mg/l	0.284	0.946	1	SM5310C	2/24/2023	47,J

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

Sample Number: 53008866

Sample ID: RAW WATER WELL #8

Sample Date: 2/22/2023 Date Received: 2/22/2023

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
FIELD PARAMETER								
TEMPERATURE	52.7	С				EPA170.1	2/22/2023	
GENERAL ANALYSIS								
ALKALINITY, TOTAL AS CACO3	175	mg/l	20	67		SM2320B	2/24/2023	
CHLORIDE	7.5	mg/l	0.10	0.33	1	EPA300.0	2/22/2023	
CONDUCTIVITY-LAB	1090	umho/cm	0.1	0.1		EPA120.1	2/24/2023	
FLUORIDE	1.8	mg/l	0.10	0.33	1	EPA300.0	2/22/2023	
HARDNESS AS CACO3	565	mg/l	0.28	0.93	1	EPA200.7	3/1/2023	
M-ALKALINITY	175	mg/l	20	67		SM2320B	2/24/2023	
P-ALKALINITY	<20	mg/l	20	67		SM2320B	2/24/2023	
pH-LAB	7.2	S.U.				SM4500HB	2/22/2023	
SILICA, DISSOLVED	6.6	mg/l	0.95	3.2	5	SM4500SiO2C	3/1/2023	
SULFATE	441	mg/l	13	43	25	EPA300.0	2/28/2023	
SUSPENDED SOLIDS	<2.0	mg/l	2.0	2.0		SM2540D	2/23/2023	
TOTAL DIS. SOLIDS	862	mg/l	20	20		SM2540C	2/24/2023	
TURBIDITY-LAB	8.8	NTU	0.10	0.10	1	EPA180.1	2/24/2023	
<u>METALS</u>								
ALUMINUM, TOTAL	<0.014	mg/l	0.014	0.047	1	EPA200.7	3/1/2023	
BARIUM, TOTAL	0.0023	mg/l	0.0004	0.0013	1	EPA200.7	3/1/2023	
BORON	0.11	mg/l	0.0035	0.012	1	EPA200.7	3/1/2023	
CALCIUM, TOTAL	195	mg/l	0.08	0.27	1	EPA200.7	3/1/2023	
IRON, TOTAL	0.55	mg/l	0.06	0.20	1	EPA200.7	3/1/2023	
MAGNESIUM, TOTAL	19	mg/l	0.02	0.07	1	EPA200.7	3/1/2023	
MANGANESE, TOTAL	0.022	mg/l	0.0007	0.0023	1	EPA200.7	3/2/2023	
METALS DIGESTION	DONE	_				EPA200.2	2/28/2023	
POTASSIUM, TOTAL	4.20	mg/l	0.15	0.50	1	EPA200.7	3/1/2023	
SODIUM, TOTAL	11	mg/l	0.15	0.50	1	EPA200.7	3/1/2023	
STRONTIUM, TOTAL	20	mg/l	0.0002	0.0007	1	EPA200.7	3/1/2023	
NUTRIENTS		_						
AMMONIA NITROGEN	0.12	mg/l	0.11	0.37	1	SM4500NH3G	2/27/2023	
NITRATE NITROGEN	<0.10	mg/l	0.10	0.33	1	EPA300.0	2/22/2023	
PHOSPHORUS, TOTAL	<0.03	mg/l	0.03	0.10	1	EPA365.4	3/2/2023	
ORGANICS		<u>.</u>						
TOTAL ORGANIC CARBON	0.871	mg/l	0.284	0.946	1	SM5310C	2/24/2023	47,J

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

Sample Number: 53008867

Sample ID: RAW WATER WELL #9

Sample Date: 2/22/2023 Date Received: 2/22/2023

FIELD PARAMETER TEMPERATURE 52.8 C EPA170.1 2/22/2023 GENERAL ANALYSIS ALKALINITY, TOTAL AS CACO3 205 mg/l 20 67 SM2320B 2/24/2023 CHLORIDE 5.8 mg/l 0.10 0.33 1 EPA300.0 2/22/2023 CONDUCTIVITY-LAB 1170 umho/cm 0.1 0.1 EPA120.1 2/24/2023
GENERAL ANALYSIS ALKALINITY, TOTAL AS CACO3 205 mg/l 20 67 SM2320B 2/24/2023 CHLORIDE 5.8 mg/l 0.10 0.33 1 EPA300.0 2/22/2023
ALKALINITY, TOTAL AS CACO3 205 mg/l 20 67 SM2320B 2/24/2023 CHLORIDE 5.8 mg/l 0.10 0.33 1 EPA300.0 2/22/2023
CHLORIDE 5.8 mg/l 0.10 0.33 1 EPA300.0 2/22/2023
9
CONDUCTIVITY-LAB 1170 umho/cm 0.1 0.1 EPA120.1 2/24/2023
FLUORIDE 1.6 mg/l 0.10 0.33 1 EPA300.0 2/22/2023
HARDNESS AS CACO3 619 mg/l 0.28 0.93 1 EPA200.7 3/1/2023
M-ALKALINITY 205 mg/l 20 67 SM2320B 2/24/2023
P-ALKALINITY <20 mg/l 20 67 SM2320B 2/24/2023
pH-LAB 7.2 S.U. SM4500HB 2/22/2023
SILICA, DISSOLVED 8.7 mg/l 0.95 3.2 5 SM4500SiO2C 3/1/2023
SULFATE 451 mg/l 13 43 25 EPA300.0 2/28/2023
SUSPENDED SOLIDS <2.0 mg/l 2.0 2.0 SM2540D 2/23/2023
TOTAL DIS. SOLIDS 918 mg/l 20 20 SM2540C 2/24/2023
TURBIDITY-LAB 7.6 NTU 0.10 0.10 1 EPA180.1 2/24/2023
METALS
ALUMINUM, TOTAL <0.014 mg/l 0.014 0.047 1 EPA200.7 3/1/2023
BARIUM, TOTAL <0.0004 mg/l 0.0004 0.0013 1 EPA200.7 3/1/2023
BORON 0.11 mg/l 0.0035 0.012 1 EPA200.7 3/1/2023
CALCIUM, TOTAL 210 mg/l 0.08 0.27 1 EPA200.7 3/1/2023
IRON, TOTAL 0.53 mg/l 0.06 0.20 1 EPA200.7 3/1/2023
MAGNESIUM, TOTAL 23 mg/l 0.02 0.07 1 EPA200.7 3/1/2023
MANGANESE, TOTAL 0.014 mg/l 0.0007 0.0023 1 EPA200.7 3/2/2023
METALS DIGESTION DONE EPA200.2 2/28/2023
POTASSIUM, TOTAL 4.38 mg/l 0.15 0.50 1 EPA200.7 3/1/2023
SODIUM, TOTAL 10 mg/l 0.15 0.50 1 EPA200.7 3/1/2023
STRONTIUM, TOTAL 26 mg/l 0.0002 0.0007 1 EPA200.7 3/1/2023
<u>NUTRIENTS</u>
AMMONIA NITROGEN 0.13 mg/l 0.11 0.37 1 SM4500NH3G 2/27/2023
NITRATE NITROGEN <0.10 mg/l 0.10 0.33 1 EPA300.0 2/22/2023
PHOSPHORUS, TOTAL <0.03 mg/l 0.03 0.10 1 EPA365.4 3/2/2023
<u>ORGANICS</u>
TOTAL ORGANIC CARBON 0.876 mg/l 0.284 0.946 1 SM5310C 2/24/2023 47,J

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

Sample Number: 53008868

Sample ID: RAW WATER WELL #10

Sample Date: 2/22/2023 Date Received: 2/22/2023

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
FIELD PARAMETER								
TEMPERATURE	52.3	С				EPA170.1	2/22/2023	
GENERAL ANALYSIS								
ALKALINITY, TOTAL AS CACO3	198	mg/l	20	67		SM2320B	2/24/2023	
CHLORIDE	10	mg/l	0.10	0.33	1	EPA300.0	2/22/2023	
CONDUCTIVITY-LAB	1050	umho/cm	0.1	0.1		EPA120.1	2/24/2023	
FLUORIDE	1.6	mg/l	0.10	0.33	1	EPA300.0	2/22/2023	
HARDNESS AS CACO3	536	mg/l	0.28	0.93	1	EPA200.7	3/1/2023	
M-ALKALINITY	198	mg/l	20	67		SM2320B	2/24/2023	
P-ALKALINITY	<20	mg/l	20	67		SM2320B	2/24/2023	
pH-LAB	7.2	S.U.				SM4500HB	2/22/2023	
SILICA, DISSOLVED	8.5	mg/l	0.95	3.2	5	SM4500SiO2C	3/1/2023	
SULFATE	381	mg/l	13	43	25	EPA300.0	2/28/2023	
SUSPENDED SOLIDS	<2.0	mg/l	2.0	2.0		SM2540D	2/23/2023	
TOTAL DIS. SOLIDS	802	mg/l	20	20		SM2540C	2/24/2023	
TURBIDITY-LAB	9.0	NTU	0.10	0.10	1	EPA180.1	2/24/2023	
<u>METALS</u>								
ALUMINUM, TOTAL	<0.014	mg/l	0.014	0.047	1	EPA200.7	3/1/2023	
BARIUM, TOTAL	< 0.0004	mg/l	0.0004	0.0013	1	EPA200.7	3/1/2023	
BORON	0.124	mg/l	0.0035	0.012	1	EPA200.7	3/1/2023	
CALCIUM, TOTAL	178	mg/l	0.08	0.27	1	EPA200.7	3/1/2023	
IRON, TOTAL	0.59	mg/l	0.06	0.20	1	EPA200.7	3/1/2023	
MAGNESIUM, TOTAL	22	mg/l	0.02	0.07	1	EPA200.7	3/1/2023	
MANGANESE, TOTAL	0.018	mg/l	0.0007	0.0023	1	EPA200.7	3/2/2023	
METALS DIGESTION	DONE					EPA200.2	2/28/2023	
POTASSIUM, TOTAL	4.68	mg/l	0.15	0.50	1	EPA200.7	3/1/2023	
SODIUM, TOTAL	14	mg/l	0.15	0.50	1	EPA200.7	3/1/2023	
STRONTIUM, TOTAL	27	mg/l	0.0002	0.0007	1	EPA200.7	3/1/2023	
<u>NUTRIENTS</u>								
AMMONIA NITROGEN	0.13	mg/l	0.11	0.37	1	SM4500NH3G	2/27/2023	
NITRATE NITROGEN	<0.10	mg/l	0.10	0.33	1	EPA300.0	2/22/2023	
PHOSPHORUS, TOTAL	<0.03	mg/l	0.03	0.10	1	EPA365.4	3/2/2023	
<u>ORGANICS</u>		=-						
TOTAL ORGANIC CARBON	0.771	mg/l	0.284	0.946	1	SM5310C	2/24/2023	47,J

Quality Assurance Code(s):

All LOD/LOQs adjusted for dilution and/or solids content. ${\rm LOD = Limit\ of\ Detection} \qquad {\rm LOQ = Limit\ of\ Quantitation}$

BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

Amanda Hordus

J. Analyte detected between the LOD and LOQ.

^{47.} Analyzed by Badger Laboratories, Inc Certification #750110460

SAMPLE RE	SAMPLE REQUEST & CHAIN OF CUSTODY FORM	AIN OF CUST	FODY F	ORM					C		C	
CLIENT NAME / ADDRESS	IESS			TURN AROUND TIME	D TIME			Y Y Y	Y	1	<i>S</i> .	
	Lan Lama	Ş		STANDARD 10 DAY:) •	ANALYTIC	AL LABORATORY	& ENVIRON	IMENTAL SE	RVICES	
BILLING ADDRESS/ EMAIL	MAIL			RUSH (200% UPCHARGE): DATE NEEDED:]		Neenah: 50 Green Bav: 7 Stevens Poi	est. 1 Green Bav: 2150 Memorial Drive Suite 106 Green Bav, WI 54303 Stevens Point: 3426 E. Maria Drive Stevens Point, WI 54481	Wi 54956 2 Suite 106 Gr rive Stevens F	e: reen Bav. WI 54 Point, WI 5448	est. 1900 54303 481	
							TW A	ANALYTICAL REQUESTS	EQUESTS	8	CERTIF	CERTIFICATION
REPORT TO:		PO NUMBER:		MATRIX				<u></u>	<u> </u>		NEENA WISCONSI	NEENA VISCONSI
EMAIL:				WW = WASTEWA GW = GROUNDW,			<u></u>	<u> </u>	<u> </u>	_	HQ-DATC	CP Cert. #105-20
PHONE:	FAX:	ţ;		CW = COOLING W S = SOLID/SLUDGE D = DARED		GROUNDWATER SAMPLES (CHECK ONE)	WPLES	_	<u> </u>	<u> </u>	W \$ C O N \$ GB-WDNR Cert. Lab #40522565 GB-DATCP Cert. #105-45	V I S C O N S Lab #4052226 P Cert. #105-4
PROJECT NAME/ SITE:				F = FUEL OTHER:		Field Filtered	\ \ \ \	_	_	_	STEVENS POIN W I S C O W S I SP-WDNR Cert Lab #7501242 SP-DATCP Cert #105-53	EVENS POIN N 1 S C O N S I T Lab #7501242 CP Cert #105-5
								<i> </i>	\ \ \ !	_		
ar a rayers	LAB USE ONLY SAMPLE COLLECTION	AMPLE COLLECTION		PRESERVATIVE		<u> </u>					LAB USE ONLY	
SAMPLE ID	SAMPLE #	DATE TIME	NP H2SO4	HN03 HCL	NAOH	(SEE ABOVE) COMP	COMPOSITE			PRO	PROJECT # PI	PH OK REC'D
7	6864	-	<u>۲</u>	7	Ω.	کاھ				1	156	
	و											
	33)											
	6 1											
	(e,ř											
	- N. -											
						, ,						
					CHAINO	CHAIN OF CHISTORY BECORD	uaooa					
FILLED IN BY CLIENT SAMPLED BY:	IN		RECEI	FILLED IN BY BADGER LABS RECEIVED/SAMPLED BY:	CR LABS	a.		ADDITIONAL COMMENTS	OMMENTS:			
DATE/ITME SAMPLED:	LED:		DATE/	DATE/TIME RECEIVED:	ÆD:			<u> </u>				
RELINQUISHED BY:	Y:		LOGGED IN:	ED IN:	Š	5	5462)	T				
DELIVERY METHOD:	OD:		ICE?	N (A)	_)					

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

22016126

CLIENT

11/10/2022

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130

Report Date: Sampled By:

Attn: EUGENE KLISTER

PO#: 13489 7

Samples:

Project Number:

Sample Number: 52036566 Sample ID: EP-8 Sample Date: 10/20/2022 Date Received: 10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
FIELD PARAMETER								
FREE CHLORINE	1.37	mg/l	0.01	0.03			10/20/2022	
TEMPERATURE	54	F				EPA170.1	10/20/2022	
TOTAL CHLORINE	1.71	mg/l					10/20/2022	
GENERAL ANALYSIS								
ALKALINITY, TOTAL AS CACO3	200	mg/l	20	67		SM2320B	10/28/2022	
CHLORIDE	9.3	mg/l	0.20	0.67	2	EPA300.0	10/31/2022	
CONDUCTIVITY-LAB	1060	umho/cm	0.1	0.1		EPA120.1	11/2/2022	
HARDNESS AS CACO3	618	mg/l	0.28	0.93	1	EPA200.7	11/7/2022	
pH-LAB	7.4	S.U.				SM4500HB	10/21/2022	
SILICA	6.9	mg/l				SM4500SiO2C	10/20/2022	
SULFATE	430	mg/l	10	33	20	EPA300.0	11/1/2022	
TURBIDITY-LAB SCREENING	0.10	NTU	0.10	0.10	1	EPA180.1	10/25/2022	
METALS								
ALUMINUM, TOTAL	<14	ug/l	14	47	1	EPA200.7	11/7/2022	
CALCIUM, TOTAL	215	mg/l	0.08	0.27	1	EPA200.7	11/7/2022	
IRON, TOTAL	<0.06	mg/l	0.06	0.20	1	EPA200.7	11/7/2022	
MANGANESE, TOTAL	19	ug/l	0.7	2.3	1	EPA200.7	11/7/2022	
NUTRIENTS								
ORTHO PHOSPHORUS	2.48	mg/l	0.01	0.03			10/20/2022	

Sample Number: 52036567 Sample ID: EP-9 Sample Date: 10/20/2022 Date Received: 10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
FIELD PARAMETER								
FREE CHLORINE	1.37	mg/l	0.01	0.03			10/20/2022	
TEMPERATURE	54	F G				EPA170.1	10/20/2022	
TOTAL CHLORINE	1.80	mg/l					10/20/2022	
GENERAL ANALYSIS		_						
ALKALINITY, TOTAL AS CACO3	200	mg/l	20	67		SM2320B	10/28/2022	
CHLORIDE	7.2	mg/l	0.20	0.67	2	EPA300.0	10/31/2022	
CONDUCTIVITY-LAB	1140	umho/cm	0.1	0.1		EPA120.1	11/2/2022	
HARDNESS AS CACO3	670	mg/l	0.28	0.93	1	EPA200.7	11/7/2022	
pH-LAB	7.3	S.U.				SM4500HB	10/21/2022	
SILICA	6.8	mg/l				SM4500SiO2C	10/20/2022	
SULFATE	464	mg/l	10	33	20	EPA300.0	11/1/2022	
TURBIDITY-LAB SCREENING	0.20	NTU	0.10	0.10	1	EPA180.1	10/25/2022	
<u>METALS</u>								
ALUMINUM, TOTAL	<14	ug/l	14	47	1	EPA200.7	11/7/2022	
CALCIUM, TOTAL	229	mg/l	0.08	0.27	1	EPA200.7	11/7/2022	
IRON, TOTAL	<0.06	mg/l	0.06	0.20	1	EPA200.7	11/7/2022	
MANGANESE, TOTAL	3.9	ug/l	0.7	2.3	1	EPA200.7	11/7/2022	
<u>NUTRIENTS</u>								
ORTHO PHOSPHORUS	2.52	mg/l	0.01	0.03			10/20/2022	

CERTIFICATIONS

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

 Sample Number:
 52036568

 Sample ID:
 EP-400

 Sample Date:
 10/20/2022

 Date Received:
 10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
FIELD PARAMETER								
FREE CHLORINE	1.45	mg/l	0.01	0.03			10/20/2022	
TEMPERATURE	54	F				EPA170.1	10/20/2022	
TOTAL CHLORINE	1.83	mg/l					10/20/2022	
GENERAL ANALYSIS								
ALKALINITY, TOTAL AS CACO3	200	mg/l	20	67		SM2320B	10/28/2022	
CHLORIDE	12	mg/l	0.20	0.67	2	EPA300.0	10/31/2022	
CONDUCTIVITY-LAB	1240	umho/cm	0.1	0.1		EPA120.1	11/2/2022	
HARDNESS AS CACO3	727	mg/l	0.28	0.93	1	EPA200.7	11/7/2022	
pH-LAB	7.4	S.U.				SM4500HB	10/21/2022	
SILICA	6.3	mg/l				SM4500SiO2C	10/20/2022	
SULFATE	528	mg/l	10	33	20	EPA300.0	11/1/2022	
TURBIDITY-LAB SCREENING	0.10	NTU	0.10	0.10	1	EPA180.1	10/25/2022	
METALS								
ALUMINUM, TOTAL	<14	ug/l	14	47	1	EPA200.7	11/7/2022	
CALCIUM, TOTAL	256	mg/l	0.08	0.27	1	EPA200.7	11/7/2022	H1
IRON, TOTAL	<0.06	mg/l	0.06	0.20	1	EPA200.7	11/7/2022	
MANGANESE, TOTAL	21	ug/l	0.7	2.3	1	EPA200.7	11/7/2022	
<u>NUTRIENTS</u>								
ORTHO PHOSPHORUS	2.53	mg/l	0.01	0.03			10/20/2022	

 Sample Number:
 52036569

 Sample ID:
 777 ISLAND ST

 Sample Date:
 10/20/2022

 Date Received:
 10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
FIELD PARAMETER								
FREE CHLORINE	0.96	mg/l	0.01	0.03			10/20/2022	
TEMPERATURE	58	F				EPA170.1	10/20/2022	
TOTAL CHLORINE	1.26	mg/l					10/20/2022	
GENERAL ANALYSIS								
ALKALINITY, TOTAL AS CACO3	200	mg/l	20	67		SM2320B	10/28/2022	
CHLORIDE	12	mg/l	0.20	0.67	2	EPA300.0	10/31/2022	
CONDUCTIVITY-LAB	1220	umho/cm	0.1	0.1		EPA120.1	11/2/2022	
HARDNESS AS CACO3	719	mg/l	0.28	0.93	1	EPA200.7	11/7/2022	
pH-LAB	7.4	S.U.				SM4500HB	10/21/2022	
SILICA	7.2	mg/l				SM4500SiO2C	10/20/2022	
SULFATE	536	mg/l	10	33	20	EPA300.0	11/1/2022	
TURBIDITY-LAB SCREENING	0.10	NTU	0.10	0.10	1	EPA180.1	10/25/2022	
METALS								
ALUMINUM, TOTAL	<14	ug/l	14	47	1	EPA200.7	11/7/2022	
CALCIUM, TOTAL	253	mg/l	0.08	0.27	1	EPA200.7	11/7/2022	
IRON, TOTAL	0.06	mg/l	0.06	0.20	1	EPA200.7	11/7/2022	
MANGANESE, TOTAL	37	ug/l	0.7	2.3	1	EPA200.7	11/7/2022	
<u>NUTRIENTS</u>								
ORTHO PHOSPHORUS	2.75	mg/l	0.01	0.03			10/20/2022	

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

Sample Number: 52036570

Sample ID: 2700 NORTHRIDGE DR

Sample Date: 10/20/2022 Date Received: 10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
FIELD PARAMETER								
FREE CHLORINE	0.98	mg/l	0.01	0.03			10/20/2022	
TEMPERATURE	61	F				EPA170.1	10/20/2022	
TOTAL CHLORINE	1.25	mg/l					10/20/2022	
GENERAL ANALYSIS								
ALKALINITY, TOTAL AS CACO3	200	mg/l	20	67		SM2320B	10/28/2022	
CHLORIDE	9.1	mg/l	0.20	0.67	2	EPA300.0	10/31/2022	
CONDUCTIVITY-LAB	1100	umho/cm	0.1	0.1		EPA120.1	11/2/2022	
HARDNESS AS CACO3	638	mg/l	0.28	0.93	1	EPA200.7	11/7/2022	
pH-LAB	7.4	S.U.				SM4500HB	10/21/2022	
SILICA	6.6	mg/l				SM4500SiO2C	10/20/2022	
SULFATE	440	mg/l	10	33	20	EPA300.0	11/1/2022	
TURBIDITY-LAB SCREENING	0.10	NTU	0.10	0.10	1	EPA180.1	10/25/2022	
<u>METALS</u>								
ALUMINUM, TOTAL	<14	ug/l	14	47	1	EPA200.7	11/7/2022	
CALCIUM, TOTAL	221	mg/l	0.08	0.27	1	EPA200.7	11/7/2022	
IRON, TOTAL	<0.06	mg/l	0.06	0.20	1	EPA200.7	11/7/2022	
MANGANESE, TOTAL	6.8	ug/l	0.7	2.3	1	EPA200.7	11/7/2022	
<u>NUTRIENTS</u>								
ORTHO PHOSPHORUS	2.75	mg/l	0.01	0.03			10/20/2022	

 Sample Number:
 52036571

 Sample ID:
 406 W 10TH ST

 Sample Date:
 10/20/2022

 Date Received:
 10/21/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
FIELD PARAMETER								
FREE CHLORINE	0.98	mg/l	0.01	0.03			10/20/2022	
TEMPERATURE	58	F				EPA170.1	10/20/2022	
TOTAL CHLORINE	1.30	mg/l					10/20/2022	
GENERAL ANALYSIS								
ALKALINITY, TOTAL AS CACO3	200	mg/l	20	67		SM2320B	10/28/2022	
CHLORIDE	7.8	mg/l	0.20	0.67	2	EPA300.0	10/31/2022	
CONDUCTIVITY-LAB	1120	umho/cm	0.1	0.1		EPA120.1	11/2/2022	
HARDNESS AS CACO3	677	mg/l	0.28	0.93	1	EPA200.7	11/7/2022	
pH-LAB	7.4	S.U.				SM4500HB	10/21/2022	
SILICA	6.2	mg/l				SM4500SiO2C	10/20/2022	
SULFATE	456	mg/l	10	33	20	EPA300.0	11/1/2022	
TURBIDITY-LAB SCREENING	0.10	NTU	0.10	0.10	1	EPA180.1	10/25/2022	
METALS								
ALUMINUM, TOTAL	<14	ug/l	14	47	1	EPA200.7	11/7/2022	
CALCIUM, TOTAL	232	mg/l	0.08	0.27	1	EPA200.7	11/7/2022	
IRON, TOTAL	<0.06	mg/l	0.06	0.20	1	EPA200.7	11/7/2022	
MANGANESE, TOTAL	3.5	ug/l	0.7	2.3	1	EPA200.7	11/7/2022	
<u>NUTRIENTS</u>								
ORTHO PHOSPHORUS	2.60	mg/l	0.01	0.03			10/20/2022	

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

Sample Number: 52036572

 Sample ID:
 1701 CTY HWY CE

 Sample Date:
 10/20/2022

 Date Received:
 10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
FIELD PARAMETER								
FREE CHLORINE	1.05	mg/l	0.01	0.03			10/20/2022	
TEMPERATURE	59	F				EPA170.1	10/20/2022	
TOTAL CHLORINE	1.33	mg/l					10/20/2022	
GENERAL ANALYSIS								
ALKALINITY, TOTAL AS CACO3	200	mg/l	20	67		SM2320B	10/28/2022	
CHLORIDE	11	mg/l	0.20	0.67	2	EPA300.0	10/31/2022	
CONDUCTIVITY-LAB	1000	umho/cm	0.1	0.1		EPA120.1	11/2/2022	
HARDNESS AS CACO3	706	mg/l	0.28	0.93	1	EPA200.7	11/7/2022	
pH-LAB	7.4	S.U.				SM4500HB	10/21/2022	
SILICA	7.2	mg/l				SM4500SiO2C	10/20/2022	
SULFATE	485	mg/l	10	33	20	EPA300.0	11/1/2022	
TURBIDITY-LAB SCREENING	0.10	NTU	0.10	0.10	1	EPA180.1	10/25/2022	
METALS								
ALUMINUM, TOTAL	<14	ug/l	14	47	1	EPA200.7	11/7/2022	
CALCIUM, TOTAL	247	mg/l	0.08	0.27	1	EPA200.7	11/7/2022	
IRON, TOTAL	<0.06	mg/l	0.06	0.20	1	EPA200.7	11/7/2022	
MANGANESE, TOTAL	14	ug/l	0.7	2.3	1	EPA200.7	11/7/2022	
<u>NUTRIENTS</u>								
ORTHO PHOSPHORUS	2.75	mg/l	0.01	0.03			10/20/2022	

Quality Assurance Code(s):

H1. Spiked sample recovery outside the established quality control limits. Recovery was low.

All LOD/LOQs adjusted for dilution and/or solids content. ${\rm LOD=Limit\ of\ Detection} \qquad {\rm LOQ=Limit\ of\ Quantitation}$

BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

Amanda Vordus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130 Project Number: Report Date: Sampled By: 22016126 11/10/2022 CLIENT

Attn: EUGENE KLISTER

PO#:

13489

Samples:

7

 Sample Number:
 52036566

 Sample ID:
 EP-8

 Sample Date:
 10/20/2022

 Date Received:
 10/20/2022

	5 !:				D.1			0 1
Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
FIELD PARAMETER								
FREE CHLORINE	1.37	mg/l	0.01	0.03			10/20/2022	
TEMPERATURE	54	F				EPA170.1	10/20/2022	
TOTAL CHLORINE	1.71	mg/l					10/20/2022	
GENERAL ANALYSIS								
ALKALINITY, TOTAL AS CACO3	200	mg/l	20	67		SM2320B	10/28/2022	
CHLORIDE	9.3	mg/l	0.20	0.67	2	EPA300.0	10/31/2022	
CONDUCTIVITY-LAB	1060	umho/cm	0.1	0.1		EPA120.1	11/2/2022	
HARDNESS AS CACO3	618	mg/l	0.28	0.93	1	EPA200.7	11/7/2022	
pH-LAB	7.4	S.U.				SM4500HB	10/21/2022	
SILICA	6.9	mg/l				SM4500SiO2C	10/20/2022	
SULFATE	430	mg/l	10	33	20	EPA300.0	11/1/2022	
TURBIDITY-LAB SCREENING	0.10	NTU	0.10	0.10	1	EPA180.1	10/25/2022	
METALS								
ALUMINUM, TOTAL	<14	ug/l	14	47	1	EPA200.7	11/7/2022	
CALCIUM, TOTAL	215	mg/l	0.08	0.27	1	EPA200.7	11/7/2022	
IRON, TOTAL	< 0.06	mg/l	0.06	0.20	1	EPA200.7	11/7/2022	
MANGANESE, TOTAL	19	ug/l	0.7	2.3	1	EPA200.7	11/7/2022	
NUTRIENTS		<u>.</u>					• •	
ORTHO PHOSPHORUS	2.48	mg/l	0.01	0.03			10/20/2022	

 Sample Number:
 52036567

 Sample ID:
 EP-9

 Sample Date:
 10/20/2022

 Date Received:
 10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
FIELD PARAMETER								
FREE CHLORINE	1.37	mg/l	0.01	0.03			10/20/2022	
TEMPERATURE	54	F				EPA170.1	10/20/2022	
TOTAL CHLORINE	1.80	mg/l					10/20/2022	
GENERAL ANALYSIS								
ALKALINITY, TOTAL AS CACO3	200	mg/l	20	67		SM2320B	10/28/2022	
CHLORIDE	7.2	mg/l	0.20	0.67	2	EPA300.0	10/31/2022	
CONDUCTIVITY-LAB	1140	umho/cm	0.1	0.1		EPA120.1	11/2/2022	
HARDNESS AS CACO3	670	mg/l	0.28	0.93	1	EPA200.7	11/7/2022	
pH-LAB	7.3	S.U.				SM4500HB	10/21/2022	
SILICA	6.8	mg/l				SM4500SiO2C	10/20/2022	
SULFATE	464	mg/l	10	33	20	EPA300.0	11/1/2022	
TURBIDITY-LAB SCREENING	0.20	NTU	0.10	0.10	1	EPA180.1	10/25/2022	
<u>METALS</u>								
ALUMINUM, TOTAL	<14	ug/l	14	47	1	EPA200.7	11/7/2022	
CALCIUM, TOTAL	229	mg/l	0.08	0.27	1	EPA200.7	11/7/2022	
IRON, TOTAL	< 0.06	mg/l	0.06	0.20	1	EPA200.7	11/7/2022	
MANGANESE, TOTAL	3.9	ug/l	0.7	2.3	1	EPA200.7	11/7/2022	
<u>NUTRIENTS</u>								
ORTHO PHOSPHORUS	2.52	mg/l	0.01	0.03			10/20/2022	

CERTIFICATIONS

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

 Sample Number:
 52036568

 Sample ID:
 EP-400

 Sample Date:
 10/20/2022

 Date Received:
 10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
FIELD PARAMETER								
FREE CHLORINE	1.45	mg/l	0.01	0.03			10/20/2022	
TEMPERATURE	54	F				EPA170.1	10/20/2022	
TOTAL CHLORINE	1.83	mg/l					10/20/2022	
GENERAL ANALYSIS								
ALKALINITY, TOTAL AS CACO3	200	mg/l	20	67		SM2320B	10/28/2022	
CHLORIDE	12	mg/l	0.20	0.67	2	EPA300.0	10/31/2022	
CONDUCTIVITY-LAB	1240	umho/cm	0.1	0.1		EPA120.1	11/2/2022	
HARDNESS AS CACO3	727	mg/l	0.28	0.93	1	EPA200.7	11/7/2022	
pH-LAB	7.4	S.U.				SM4500HB	10/21/2022	
SILICA	6.3	mg/l				SM4500SiO2C	10/20/2022	
SULFATE	528	mg/l	10	33	20	EPA300.0	11/1/2022	
TURBIDITY-LAB SCREENING	0.10	NTU	0.10	0.10	1	EPA180.1	10/25/2022	
<u>METALS</u>								
ALUMINUM, TOTAL	<14	ug/l	14	47	1	EPA200.7	11/7/2022	
CALCIUM, TOTAL	256	mg/l	0.08	0.27	1	EPA200.7	11/7/2022	H1
IRON, TOTAL	<0.06	mg/l	0.06	0.20	1	EPA200.7	11/7/2022	
MANGANESE, TOTAL	21	ug/l	0.7	2.3	1	EPA200.7	11/7/2022	
<u>NUTRIENTS</u>								
ORTHO PHOSPHORUS	2.53	mg/l	0.01	0.03			10/20/2022	

Sample Number: 52036569
Sample ID: 777 ISLAND ST
Sample Date: 10/20/2022
Date Received: 10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
FIELD PARAMETER								
FREE CHLORINE	0.96	mg/l	0.01	0.03			10/20/2022	
TEMPERATURE	58	F				EPA170.1	10/20/2022	
TOTAL CHLORINE	1.26	mg/l					10/20/2022	
GENERAL ANALYSIS								
ALKALINITY, TOTAL AS CACO3	200	mg/l	20	67		SM2320B	10/28/2022	
CHLORIDE	12	mg/l	0.20	0.67	2	EPA300.0	10/31/2022	
CONDUCTIVITY-LAB	1220	umho/cm	0.1	0.1		EPA120.1	11/2/2022	
HARDNESS AS CACO3	719	mg/l	0.28	0.93	1	EPA200.7	11/7/2022	
pH-LAB	7.4	S.U.				SM4500HB	10/21/2022	
SILICA	7.2	mg/l				SM4500SiO2C	10/20/2022	
SULFATE	536	mg/l	10	33	20	EPA300.0	11/1/2022	
TURBIDITY-LAB SCREENING	0.10	NTU	0.10	0.10	1	EPA180.1	10/25/2022	
METALS								
ALUMINUM, TOTAL	<14	ug/l	14	47	1	EPA200.7	11/7/2022	
CALCIUM, TOTAL	253	mg/l	0.08	0.27	1	EPA200.7	11/7/2022	
IRON, TOTAL	0.06	mg/l	0.06	0.20	1	EPA200.7	11/7/2022	
MANGANESE, TOTAL	37	ug/l	0.7	2.3	1	EPA200.7	11/7/2022	
<u>NUTRIENTS</u>								
ORTHO PHOSPHORUS	2.75	mg/l	0.01	0.03			10/20/2022	

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

Sample Number: 52036570

Sample ID: 2700 NORTHRIDGE DR

Sample Date: 10/20/2022 Date Received: 10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
FIELD PARAMETER								
FREE CHLORINE	0.98	mg/l	0.01	0.03			10/20/2022	
TEMPERATURE	61	F				EPA170.1	10/20/2022	
TOTAL CHLORINE	1.25	mg/l					10/20/2022	
GENERAL ANALYSIS								
ALKALINITY, TOTAL AS CACO3	200	mg/l	20	67		SM2320B	10/28/2022	
CHLORIDE	9.1	mg/l	0.20	0.67	2	EPA300.0	10/31/2022	
CONDUCTIVITY-LAB	1100	umho/cm	0.1	0.1		EPA120.1	11/2/2022	
HARDNESS AS CACO3	638	mg/l	0.28	0.93	1	EPA200.7	11/7/2022	
pH-LAB	7.4	S.U.				SM4500HB	10/21/2022	
SILICA	6.6	mg/l				SM4500SiO2C	10/20/2022	
SULFATE	440	mg/l	10	33	20	EPA300.0	11/1/2022	
TURBIDITY-LAB SCREENING	0.10	NTU	0.10	0.10	1	EPA180.1	10/25/2022	
<u>METALS</u>								
ALUMINUM, TOTAL	<14	ug/l	14	47	1	EPA200.7	11/7/2022	
CALCIUM, TOTAL	221	mg/l	0.08	0.27	1	EPA200.7	11/7/2022	
IRON, TOTAL	<0.06	mg/l	0.06	0.20	1	EPA200.7	11/7/2022	
MANGANESE, TOTAL	6.8	ug/l	0.7	2.3	1	EPA200.7	11/7/2022	
<u>NUTRIENTS</u>								
ORTHO PHOSPHORUS	2.75	mg/l	0.01	0.03			10/20/2022	

 Sample Number:
 52036571

 Sample ID:
 406 W 10TH ST

 Sample Date:
 10/20/2022

 Date Received:
 10/21/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
FIELD PARAMETER								
FREE CHLORINE	0.98	mg/l	0.01	0.03			10/20/2022	
TEMPERATURE	58	F				EPA170.1	10/20/2022	
TOTAL CHLORINE	1.30	mg/l					10/20/2022	
GENERAL ANALYSIS								
ALKALINITY, TOTAL AS CACO3	200	mg/l	20	67		SM2320B	10/28/2022	
CHLORIDE	7.8	mg/l	0.20	0.67	2	EPA300.0	10/31/2022	
CONDUCTIVITY-LAB	1120	umho/cm	0.1	0.1		EPA120.1	11/2/2022	
HARDNESS AS CACO3	677	mg/l	0.28	0.93	1	EPA200.7	11/7/2022	
pH-LAB	7.4	S.U.				SM4500HB	10/21/2022	
SILICA	6.2	mg/l				SM4500SiO2C	10/20/2022	
SULFATE	456	mg/l	10	33	20	EPA300.0	11/1/2022	
TURBIDITY-LAB SCREENING	0.10	NTU	0.10	0.10	1	EPA180.1	10/25/2022	
METALS								
ALUMINUM, TOTAL	<14	ug/l	14	47	1	EPA200.7	11/7/2022	
CALCIUM, TOTAL	232	mg/l	0.08	0.27	1	EPA200.7	11/7/2022	
IRON, TOTAL	<0.06	mg/l	0.06	0.20	1	EPA200.7	11/7/2022	
MANGANESE, TOTAL	3.5	ug/l	0.7	2.3	1	EPA200.7	11/7/2022	
<u>NUTRIENTS</u>								
ORTHO PHOSPHORUS	2.60	mg/l	0.01	0.03			10/20/2022	

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

Sample Number: 52036572

 Sample ID:
 1701 CTY HWY CE

 Sample Date:
 10/20/2022

 Date Received:
 10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
FIELD PARAMETER								
FREE CHLORINE	1.05	mg/l	0.01	0.03			10/20/2022	
TEMPERATURE	59	F				EPA170.1	10/20/2022	
TOTAL CHLORINE	1.33	mg/l					10/20/2022	
GENERAL ANALYSIS								
ALKALINITY, TOTAL AS CACO3	200	mg/l	20	67		SM2320B	10/28/2022	
CHLORIDE	11	mg/l	0.20	0.67	2	EPA300.0	10/31/2022	
CONDUCTIVITY-LAB	1000	umho/cm	0.1	0.1		EPA120.1	11/2/2022	
HARDNESS AS CACO3	706	mg/l	0.28	0.93	1	EPA200.7	11/7/2022	
pH-LAB	7.4	S.U.				SM4500HB	10/21/2022	
SILICA	7.2	mg/l				SM4500SiO2C	10/20/2022	
SULFATE	485	mg/l	10	33	20	EPA300.0	11/1/2022	
TURBIDITY-LAB SCREENING	0.10	NTU	0.10	0.10	1	EPA180.1	10/25/2022	
<u>METALS</u>								
ALUMINUM, TOTAL	<14	ug/l	14	47	1	EPA200.7	11/7/2022	
CALCIUM, TOTAL	247	mg/l	0.08	0.27	1	EPA200.7	11/7/2022	
IRON, TOTAL	<0.06	mg/l	0.06	0.20	1	EPA200.7	11/7/2022	
MANGANESE, TOTAL	14	ug/l	0.7	2.3	1	EPA200.7	11/7/2022	
<u>NUTRIENTS</u>								
ORTHO PHOSPHORUS	2.75	mg/l	0.01	0.03			10/20/2022	

Quality Assurance Code(s):

H1. Spiked sample recovery outside the established quality control limits. Recovery was low.

All LOD/LOQs adjusted for dilution and/or solids content.

LOD = Limit of Detection LOQ = Limit of Quantitation

BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

Amanda Vordus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130

Attn: EUGENE KLISTER

Project Number: Report Date:

22016126 6775 11/10/2022

Sampled By:

CLIENT

PO#:

13489

Samples:

1

Sample Number:

52036775

Sample ID:

1 OF 2 125ML 224 BROTHERS 1ST DRAW

Sample Date: Date Received: 10/20/2022 10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
GENERAL ANALYSIS								
TURBIDITY-LAB SCREENING	0.10	NTU	0.10	0.10	1	EPA180.1	10/26/2022	
<u>METALS</u>								
LEAD, TOTAL	0.10	ug/l	0.02	0.07	1	EPA200.8	10/28/2022	

All LOD/LOQs adjusted for dilution and/or solids content. LOD = Limit of Detection LOQ = Limit of Quantitation

BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

Amanda Vordus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130 Project Number: Report Date: Sampled By:

22016126 6776 11/10/2022

CLIENT

Attn: EUGENE KLISTER

PO#:

13489

Samples:

1

Sample Number: 52036776

Sample ID: 1 OF 2 125ML 224 BROTHERS 2ND DRAW

Sample Date: 10/20/2022 Date Received: 10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
GENERAL ANALYSIS								
TURBIDITY-LAB SCREENING	0.10	NTU	0.10	0.10	1	EPA180.1	10/26/2022	
METALS								
LEAD, TOTAL	0.32	ug/l	0.02	0.07	1	EPA200.8	10/28/2022	

All LOD/LOQs adjusted for dilution and/or solids content. LOD = Limit of Detection LOQ = Limit of Quantitation

> BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

Amanda Vordus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130 Project Number: Report Date:

22016126 6777 11/10/2022

Sampled By:

CLIENT

PO#:

13489

Attn: EUGENE KLISTER

Samples:

1

Sample Number:

52036777

Sample ID:

1 LITER 224 BROTHERS 3RD DRAW

Sample Date: Date Received: 10/20/2022 10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
GENERAL ANALYSIS								
TURBIDITY-LAB SCREENING	0.15	NTU	0.10	0.10	1	EPA180.1	10/26/2022	
METALS								
LEAD, TOTAL	0.31	ug/l	0.02	0.07	1	EPA200.8	10/28/2022	

All LOD/LOQs adjusted for dilution and/or solids content. LOD = Limit of Detection LOQ = Limit of Quantitation

BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

Amanda Kondus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130

Attn: EUGENE KLISTER

Project Number: Report Date: Sampled By:

22016126 6778 11/10/2022

CLIENT

PO#: # Samples: 13489

1

Sample Number:

52036778

Sample ID:

1 LITER 224 BROTHERS 4TH DRAW

10/20/2022

Sample Date: Date Received: 10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
GENERAL ANALYSIS								
TURBIDITY-LAB SCREENING	<0.10	NTU	0.10	0.10	1	EPA180.1	10/26/2022	
<u>METALS</u>								
LEAD, TOTAL	0.18	ug/l	0.02	0.07	1	EPA200.8	10/28/2022	

All LOD/LOQs adjusted for dilution and/or solids content. LOD = Limit of Detection LOQ = Limit of Quantitation

BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

Amanda Hordus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130

Attn: EUGENE KLISTER

Project Number: Report Date: Sampled By:

22016126 6779 11/10/2022

CLIENT

PO#: # Samples: 13489

1

Sample Number:

52036779

Sample ID:

1 LITER 224 BROTHERS 5TH DRAW

Sample Date: Date Received: 10/20/2022

10/20/2022

Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
							_
0.10	NTU	0.10	0.10	1	EPA180.1	10/26/2022	
0.16	ug/l	0.02	0.07	1	EPA200.8	10/28/2022	
	0.10	0.10 NTU	0.10 NTU 0.10	0.10 NTU 0.10 0.10	0.10 NTU 0.10 0.10 1	0.10 NTU 0.10 0.10 1 EPA180.1	0.10 NTU 0.10 0.10 1 EPA180.1 10/26/2022

All LOD/LOQs adjusted for dilution and/or solids content. LOD = Limit of Detection LOQ = Limit of Quantitation

BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

Amanda Hordus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130

Attn: EUGENE KLISTER

Project Number: Report Date: Sampled By:

22016126 6780 11/10/2022

EPA200.8

CLIENT

PO#:

13489

10/28/2022

Samples:

1

Sample Number:

52036780

Sample ID:

METALS LEAD, TOTAL 1 LITER 224 BROTHERS 6TH DRAW

0.16

ug/l

Sample Date:

10/20/2022 10/20/2022

Date Received:

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
GENERAL ANALYSIS								
TURBIDITY-LAB SCREENING	<0.10	NTU	0.10	0.10	1	EPA180.1	10/26/2022	
A 45T A 1 C								

0.07

0.02

All LOD/LOQs adjusted for dilution and/or solids content. LOD = Limit of Detection LOQ = Limit of Quantitation

> BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

1

Umanda Vordus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130

Attn: EUGENE KLISTER

Project Number: Report Date: Sampled By:

22016126 6781 11/10/2022

CLIENT

PO#: # Samples: 13489 1

Sample Number:

52036781

Sample ID:

1 LITER 224 BROTHERS 7TH DRAW

Sample Date:

10/20/2022

Date Received: 10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
GENERAL ANALYSIS								
TURBIDITY-LAB SCREENING	0.10	NTU	0.10	0.10	1	EPA180.1	10/26/2022	
<u>METALS</u>								
LEAD, TOTAL	0.15	ug/l	0.02	0.07	1	EPA200.8	10/28/2022	

All LOD/LOQs adjusted for dilution and/or solids content. LOQ = Limit of Quantitation LOD = Limit of Detection

BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

Amanda Hordus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130

Attn: EUGENE KLISTER

Project Number: Report Date:

22016126 6782 11/10/2022

Sampled By:

CLIENT

PO#: # Samples: 13489

1

Sample Number:

52036782

Sample ID:

1 LITER 224 BROTHERS 8TH DRAW

Sample Date:

10/20/2022

Date Received: 10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
GENERAL ANALYSIS								_
TURBIDITY-LAB SCREENING	0.10	NTU	0.10	0.10	1	EPA180.1	10/26/2022	
METALS								
LEAD, TOTAL	0.13	ug/l	0.02	0.07	1	EPA200.8	10/28/2022	

All LOD/LOQs adjusted for dilution and/or solids content. LOQ = Limit of Quantitation LOD = Limit of Detection

BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

Amanda Hordus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130

Project Number: Report Date: Sampled By:

22016126 6783 11/10/2022

CLIENT

Attn: EUGENE KLISTER

PO#: # Samples: 13489 1

Sample Number:

52036783

Sample ID:

1 LITER 224 BROTHERS 9TH DRAW

Sample Date:

10/20/2022

Date Received:

10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
GENERAL ANALYSIS								
TURBIDITY-LAB SCREENING	0.15	NTU	0.10	0.10	1	EPA180.1	10/26/2022	
<u>METALS</u>								
LEAD, TOTAL	0.11	ug/l	0.02	0.07	1	EPA200.8	10/28/2022	

All LOD/LOQs adjusted for dilution and/or solids content. LOD = Limit of Detection LOQ = Limit of Quantitation

BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

Amanda Hordus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130

Attn: EUGENE KLISTER

Project Number: Report Date:

22016126 6784 11/10/2022

Sampled By:

CLIENT

13489

1

PO#: # Samples:

Sample Number:

52036784

Sample ID:

1 LITER 224 BROTHERS 10TH DRAW

Sample Date:

10/20/2022

Date Received: 10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
GENERAL ANALYSIS								
TURBIDITY-LAB SCREENING	0.10	NTU	0.10	0.10	1	EPA180.1	10/26/2022	
<u>METALS</u>								
LEAD, TOTAL	0.11	ug/l	0.02	0.07	1	EPA200.8	10/28/2022	

All LOD/LOQs adjusted for dilution and/or solids content. LOD = Limit of Detection LOQ = Limit of Quantitation

BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

Amanda Hordus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130 Project Number: Report Date: Sampled By: 22016126 6785 11/10/2022

Attn: EUGENE KLISTER

, ,

CLIENT

PO#: # Samples: 13489 1

Sample Number: 52036785

Sample ID: 1 LITER 224 BROTHERS 11TH DRAW

Sample Date: 10/20/2022 Date Received: 10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
GENERAL ANALYSIS								
TURBIDITY-LAB SCREENING	0.15	NTU	0.10	0.10	1	EPA180.1	10/26/2022	
METALS	0.44	41	0.00	0.07	_	50.1000.0	10/20/2022	
LEAD, TOTAL	0.11	ug/l	0.02	0.07	1	EPA200.8	10/28/2022	

All LOD/LOQs adjusted for dilution and/or solids content. ${\rm LOD} = {\rm Limit~of~Detection} \qquad \qquad {\rm LOQ} = {\rm Limit~of~Quantitation}$

BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

amanda Vordus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130

Attn: EUGENE KLISTER

Project Number: Report Date:

22016126 6786 11/10/2022

Sampled By:

PO#:

CLIENT

Samples:

13489 1

Sample Number:

52036786

Sample ID:

1 LITER 224 BROTHERS 12TH DRAW

Sample Date: Date Received: 10/20/2022

10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
GENERAL ANALYSIS								
TURBIDITY-LAB SCREENING	0.10	NTU	0.10	0.10	1	EPA180.1	10/26/2022	
<u>METALS</u>								
LEAD, TOTAL	0.11	ug/l	0.02	0.07	1	EPA200.8	10/28/2022	

All LOD/LOQs adjusted for dilution and/or solids content. LOD = Limit of Detection LOQ = Limit of Quantitation

BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

Amanda Hordus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130 Project Number: Report Date: Sampled By: 22016126 6787 11/10/2022 CLIENT

EUGENE KLISTER

Sampled By:

Samples:

PO#:

13489 1

Sample Number:

52036787

Sample ID:

Attn:

1 LITER 224 BROTHERS 13TH DRAW

Sample Date: Date Received: 10/20/2022 10/20/2022

Parameter Results Units LOD LOQ Dil. Method Analyzed Codes **GENERAL ANALYSIS** TURBIDITY-LAB SCREENING 0.10 NTU 0.10 0.10 1 EPA180.1 10/26/2022 **METALS** LEAD, TOTAL EPA200.8 10/28/2022 0.11 ug/l 0.02 0.07 1

All LOD/LOQs adjusted for dilution and/or solids content.

LOD = Limit of Detection LOQ = Limit of Quantitation

BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

amanda Kondus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130 Project Number: Report Date: Sampled By: 22016126 6788 11/10/2022 CLIENT

Attn: EUGENE KLISTER

PO#:

13489

Samples:

1

Sample Number: 52036788

Sample ID: 1 LITER 224 BROTHERS 14TH DRAW

Sample Date: 10/20/2022 Date Received: 10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
GENERAL ANALYSIS								
TURBIDITY-LAB SCREENING	0.10	NTU	0.10	0.10	1	EPA180.1	10/26/2022	
<u>METALS</u>								
LEAD, TOTAL	0.12	ug/l	0.02	0.07	1	EPA200.8	10/28/2022	

All LOD/LOQs adjusted for dilution and/or solids content.

LOD = Limit of Detection LOQ = Limit of Quantitation

BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

amanda bordus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130

Attn: EUGENE KLISTER

Project Number: Report Date: Sampled By:

22016126 6789 11/10/2022

CLIENT

PO#: 13489 # Samples: 1

Sample Number: 52036789

Sample ID: 1 OF 2 125ml 321 W 12TH ST 1ST DRAW

Sample Date: 10/20/2022 Date Received: 10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
GENERAL ANALYSIS								
TURBIDITY-LAB SCREENING	0.15	NTU	0.10	0.10	1	EPA180.1	10/26/2022	
<u>METALS</u>								
LEAD, TOTAL	0.70	ug/l	0.02	0.07	1	EPA200.8	10/28/2022	

All LOD/LOQs adjusted for dilution and/or solids content. LOD = Limit of Detection LOQ = Limit of Quantitation

> BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

Amanda Vordus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130

Project Number: Report Date: Sampled By:

22016126 6790 11/10/2022

CLIENT

Attn: EUGENE KLISTER

PO#: # Samples: 13489 1

Sample Number: 52036790

Sample ID: 1 OF 2 125ml 321 W 12TH ST 2ND DRAW

Sample Date: 10/20/2022 Date Received: 10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
GENERAL ANALYSIS								_
TURBIDITY-LAB SCREENING	0.10	NTU	0.10	0.10	1	EPA180.1	10/26/2022	
<u>METALS</u>								
LEAD, TOTAL	0.68	ug/l	0.02	0.07	1	EPA200.8	10/28/2022	

All LOD/LOQs adjusted for dilution and/or solids content. LOQ = Limit of Quantitation LOD = Limit of Detection

BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

Amanda Hordus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130 Project Number: Report Date:

22016126 6791 11/10/2022

Sampled By:

CLIENT

Attn: EUGENE KLISTER

PO#: # Samples:

13489 1

Sample Number:

52036791

Sample ID: 1 LITER 321 W 12TH ST 3RD DRAW

Sample Date: Date Received: 10/20/2022

10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
GENERAL ANALYSIS								
TURBIDITY-LAB SCREENING	0.10	NTU	0.10	0.10	1	EPA180.1	10/26/2022	
METALS								
LEAD, TOTAL	1.4	ug/l	0.02	0.07	1	EPA200.8	10/28/2022	

All LOD/LOQs adjusted for dilution and/or solids content. LOD = Limit of Detection LOQ = Limit of Quantitation

> BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

Amanda Vordus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130

Project Number: Report Date: Sampled By:

22016126 6792 11/10/2022

Attn: EUGENE KLISTER

CLIENT

PO#: # Samples: 13489

1

Sample Number:

52036792

Sample ID:

1 LITER 321 W 12TH ST 4TH DRAW

Sample Date:

10/20/2022

Date Received:

10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
GENERAL ANALYSIS								
TURBIDITY-LAB SCREENING	0.10	NTU	0.10	0.10	1	EPA180.1	10/26/2022	
<u>METALS</u>								
LEAD, TOTAL	2.1	ug/l	0.02	0.07	1	EPA200.8	10/28/2022	

All LOD/LOQs adjusted for dilution and/or solids content. LOD = Limit of Detection LOQ = Limit of Quantitation

BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

(Imanda Hordus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130 Project Number: Report Date: Sampled By: 22016126 6793 11/10/2022

Attn: EUGENE KLISTER

CLIENT

PO#: # Samples: 13489 1

Sample Number: 5

52036793

Sample ID: 1 LITER 321 W 12TH ST 5TH DRAW

Sample Date: 10/20/2022 Date Received: 10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
GENERAL ANALYSIS								
TURBIDITY-LAB SCREENING	0.10	NTU	0.10	0.10	1	EPA180.1	10/26/2022	
<u>METALS</u>								
LEAD, TOTAL	1.8	ug/l	0.02	0.07	1	EPA200.8	10/28/2022	

All LOD/LOQs adjusted for dilution and/or solids content.

LOD = Limit of Detection LOQ = Limit of Quantitation

BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

Amanda Kordus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130

Project Number: Report Date: Sampled By:

22016126 6794 11/10/2022

CLIENT

PO#: # Samples: 13489

1

Attn: EUGENE KLISTER

Sample Number: 52036794

Sample ID: 1 LITER 321 W 12TH ST 6TH DRAW

Sample Date: 10/20/2022 Date Received: 10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
GENERAL ANALYSIS								
TURBIDITY-LAB SCREENING	0.10	NTU	0.10	0.10	1	EPA180.1	10/26/2022	
<u>METALS</u>								
LEAD, TOTAL	1.5	ug/l	0.02	0.07	1	EPA200.8	10/28/2022	

All LOD/LOQs adjusted for dilution and/or solids content. LOQ = Limit of Quantitation LOD = Limit of Detection

BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

Amanda Hordus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130

Attn: EUGENE KLISTER

Project Number: Report Date:

22016126 6795 11/10/2022

Sampled By:

CLIENT

PO#: # Samples: 13489

1

52036795

Sample ID:

1 LITER 321 W 12TH ST 7TH DRAW

Sample Date: Date Received:

Sample Number:

10/20/2022 10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
GENERAL ANALYSIS								
TURBIDITY-LAB SCREENING	0.10	NTU	0.10	0.10	1	EPA180.1	10/26/2022	
<u>METALS</u>								
LEAD, TOTAL	1.4	ug/l	0.02	0.07	1	EPA200.8	10/28/2022	

All LOD/LOQs adjusted for dilution and/or solids content. LOD = Limit of Detection LOQ = Limit of Quantitation

> BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

Amanda Vordus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130 Project Number: Report Date: Sampled By: 22016126 6796 11/10/2022

Attn: EUGENE KLISTER

PO#:

CLIENT

Samples:

13489 1

Sample Number: 52036796

Sample ID: 1 LITER 321 W 12TH ST 8TH DRAW

Sample Date: 10/20/2022 Date Received: 10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
GENERAL ANALYSIS								
TURBIDITY-LAB SCREENING	0.10	NTU	0.10	0.10	1	EPA180.1	10/26/2022	
<u>METALS</u>								
LEAD, TOTAL	1.4	ug/l	0.02	0.07	1	EPA200.8	10/28/2022	

All LOD/LOQs adjusted for dilution and/or solids content.

LOD = Limit of Detection LOQ = Limit of Quantitation

BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

amanda Kordus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130 Project Number: Report Date: Sampled By: 22016126 6796 11/10/2022

Attn: EUGENE KLISTER

Sampled by.

CLIENT

Samples:

PO#:

13489 1

Sample Number: 52036796

Sample ID: 1 LITER 321 W 12TH ST 8TH DRAW

Sample Date: 10/20/2022 Date Received: 10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
GENERAL ANALYSIS								
TURBIDITY-LAB SCREENING	0.10	NTU	0.10	0.10	1	EPA180.1	10/26/2022	
<u>METALS</u>								
LEAD, TOTAL	1.4	ug/l	0.02	0.07	1	EPA200.8	10/28/2022	

All LOD/LOQs adjusted for dilution and/or solids content.

LOD = Limit of Detection LOQ = Limit of Quantitation

BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

Amanda Kordus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130 Project Number: Report Date:

22016126 6797 11/10/2022

Sampled By:

CLIENT

Attn: EUGENE KLISTER

PO#: 13489 # Samples: 1

Sample Number: 52036797

Sample ID: 1 LITER 321 W 12TH ST 9TH DRAW

Sample Date: 10/20/2022 Date Received: 10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
GENERAL ANALYSIS								
TURBIDITY-LAB SCREENING	0.10	NTU	0.10	0.10	1	EPA180.1	10/26/2022	
<u>METALS</u>								
LEAD, TOTAL	1.1	ug/l	0.02	0.07	1	EPA200.8	10/28/2022	

All LOD/LOQs adjusted for dilution and/or solids content. LOQ = Limit of Quantitation LOD = Limit of Detection

BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

Amanda Hordus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130

Project Number: Report Date: Sampled By:

22016126 6798 11/10/2022 CLIENT

Attn: EUGENE KLISTER

PO#:

Samples:

13489 1

Sample Number:

52036798

Sample ID:

1 LITER 321 W 12TH ST 10TH DRAW

Sample Date:

10/20/2022

Date Received: 10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
GENERAL ANALYSIS								
TURBIDITY-LAB SCREENING	0.15	NTU	0.10	0.10	1	EPA180.1	10/26/2022	
<u>METALS</u>								
LEAD, TOTAL	1.1	ug/l	0.02	0.07	1	EPA200.8	10/28/2022	

All LOD/LOQs adjusted for dilution and/or solids content. LOD = Limit of Detection LOQ = Limit of Quantitation

BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

Amanda Hordus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130

Project Number: Report Date: Sampled By:

22016126 6799 11/10/2022

CLIENT

Attn: EUGENE KLISTER

PO#: # Samples: 13489 1

Sample Number:

52036799

Sample ID:

1 LITER 321 W 12TH ST 11TH DRAW

Sample Date: Date Received: 10/20/2022 10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
GENERAL ANALYSIS								
TURBIDITY-LAB SCREENING	0.10	NTU	0.10	0.10	1	EPA180.1	10/26/2022	
<u>METALS</u>								
LEAD, TOTAL	0.91	ug/l	0.02	0.07	1	EPA200.8	10/28/2022	

All LOD/LOQs adjusted for dilution and/or solids content. LOD = Limit of Detection LOQ = Limit of Quantitation

> BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

Amanda Hordus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130

Attn: EUGENE KLISTER

Project Number: Report Date: Sampled By:

22016126 6800 11/10/2022

CLIENT

PO#:

13489

Samples:

1

Sample Number:

52036800

Sample ID:

1 LITER 321 W 12TH ST 12TH DRAW

Sample Date:

10/20/2022

Date Received: 10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
GENERAL ANALYSIS TURBIDITY-LAB SCREENING	<0.10	NTU	0.10	0.10	1	EPA180.1	10/26/2022	
METALS	<0.10	NTO	0.10	0.10	1	EPA180.1	10/26/2022	
LEAD, TOTAL	0.67	ug/l	0.02	0.07	1	EPA200.8	10/28/2022	

All LOD/LOQs adjusted for dilution and/or solids content. LOD = Limit of Detection LOQ = Limit of Quantitation

> BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

(Imanda Hordus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130 Project Number: Report Date:

22016126 6801 11/10/2022

Sampled By:

CLIENT

PO#: # Samples: 13489

1

Attn: EUGENE KLISTER

52036801

Sample ID:

1 LITER 321 W 12TH ST 13TH DRAW

Sample Date: Date Received:

Sample Number:

10/20/2022 10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
GENERAL ANALYSIS								
TURBIDITY-LAB SCREENING	0.10	NTU	0.10	0.10	1	EPA180.1	10/26/2022	
METALS								
LEAD, TOTAL	0.58	ug/l	0.02	0.07	1	EPA200.8	10/28/2022	

All LOD/LOQs adjusted for dilution and/or solids content. LOD = Limit of Detection LOQ = Limit of Quantitation

> BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

(Imanda Hordus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130 Project Number: Report Date:

22016126 6802 11/10/2022

Sampled By:

CLIENT

13489

1

Attn: EUGENE KLISTER

PO#: # Samples:

Sample Number: 52036802

Sample ID: 1 LITER 321 W 12TH ST 14TH DRAW

Sample Date: 10/20/2022 Date Received: 10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
GENERAL ANALYSIS								
TURBIDITY-LAB SCREENING	0.10	NTU	0.10	0.10	1	EPA180.1	10/26/2022	
<u>METALS</u>								
LEAD, TOTAL	0.66	ug/l	0.02	0.07	1	EPA200.8	10/28/2022	

All LOD/LOQs adjusted for dilution and/or solids content. LOD = Limit of Detection LOQ = Limit of Quantitation

BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

Amanda Hordus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130 Project Number: Report Date:

22016126 6803 11/10/2022

Sampled By:

CLIENT

Attn: EUGENE KLISTER

PO#: # Samples: 13489 1

Sample Number:

52036803

Sample ID:

1 OF 2 125 ml 224 DIEDRICHST 1ST DRAW

Sample Date: Date Received: 10/20/2022 10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
GENERAL ANALYSIS								
TURBIDITY-LAB SCREENING	0.15	NTU	0.10	0.10	1	EPA180.1	10/26/2022	
METALS								
LEAD, TOTAL	0.91	ug/l	0.02	0.07	1	EPA200.8	10/28/2022	

All LOD/LOQs adjusted for dilution and/or solids content. LOD = Limit of Detection LOQ = Limit of Quantitation

BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

Amanda Hordus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130 Project Number: Report Date: Sampled By: 22016126 6804 11/10/2022 CLIENT

Attn: EUGENE KLISTER

PO#:

Samples:

13489 1

Sample Number:

52036804

Sample ID:

1 OF 2 125 ml 224 DIEDRICHST 2ND DRAW

Sample Date: Date Received: 10/20/2022 10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
GENERAL ANALYSIS								
TURBIDITY-LAB SCREENING	0.10	NTU	0.10	0.10	1	EPA180.1	10/26/2022	
<u>METALS</u>								
LEAD, TOTAL	1.1	ug/l	0.02	0.07	1	EPA200.8	10/28/2022	

All LOD/LOQs adjusted for dilution and/or solids content.

LOD = Limit of Detection LOQ = Limit of Quantitation

BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

amanda bordus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130 Project Number: Report Date:

22016126 6805 11/10/2022

Sampled By:

CLIENT

Attn: EUGENE KLISTER

PO#: # Samples: 13489 1

Sample Number: 52036805

Sample ID: 1 LITER 224 DIEDRICHST 3RD DRAW

Sample Date: 10/20/2022 Date Received: 10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
GENERAL ANALYSIS								
TURBIDITY-LAB SCREENING	0.10	NTU	0.10	0.10	1	EPA180.1	10/26/2022	
<u>METALS</u>								
LEAD, TOTAL	1.9	ug/l	0.02	0.07	1	EPA200.8	11/2/2022	

All LOD/LOQs adjusted for dilution and/or solids content. LOD = Limit of Detection LOQ = Limit of Quantitation

> BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

(Imanda Hordus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130 Project Number: Report Date:

22016126 6806 11/10/2022

Sampled By:

CLIENT

Attn: EUGENE KLISTER

PO#: # Samples: 13489 1

Sample Number:

52036806

Sample ID:

1 LITER 224 DIEDRICHST 4TH DRAW

Sample Date: Date Received: 10/20/2022

10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
GENERAL ANALYSIS								
TURBIDITY-LAB SCREENING	0.10	NTU	0.10	0.10	1	EPA180.1	10/26/2022	
METALS								
LEAD, TOTAL	1.6	ug/l	0.02	0.07	1	EPA200.8	11/2/2022	

All LOD/LOQs adjusted for dilution and/or solids content. LOD = Limit of Detection LOQ = Limit of Quantitation

BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

Amanda Hordus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130 Project Number: Report Date:

22016126 6807 11/10/2022

Sampled By:

CLIENT

Attn: EUGENE KLISTER PO#: # Samples:

13489 1

Sample Number:

52036807

Sample ID:

1 LITER 224 DIEDRICHST 5TH DRAW

Sample Date: Date Received: 10/20/2022 10/20/2022

Parameter Results Units LOD LOQ Dil. Method Analyzed Codes **GENERAL ANALYSIS** TURBIDITY-LAB SCREENING NTU EPA180.1 0.10 0.10 0.10 10/26/2022 1 **METALS** LEAD, TOTAL 1.2 ug/l 0.02 0.07 1 EPA200.8 11/2/2022

All LOD/LOQs adjusted for dilution and/or solids content. LOD = Limit of Detection LOQ = Limit of Quantitation

> BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

(Émanda Hordus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130

Attn: EUGENE KLISTER

Project Number: Report Date: Sampled By:

22016126 6808 11/10/2022

CLIENT

PO#: # Samples: 13489

1

Sample Number:

52036808

Sample ID:

1 LITER 224 DIEDRICHST 6TH DRAW

Sample Date: Date Received: 10/20/2022 10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
GENERAL ANALYSIS								
TURBIDITY-LAB SCREENING	0.10	NTU	0.10	0.10	1	EPA180.1	10/26/2022	
<u>METALS</u>								
LEAD. TOTAL	1.1	ug/l	0.02	0.07	1	EPA200.8	11/2/2022	

All LOD/LOQs adjusted for dilution and/or solids content. LOD = Limit of Detection LOQ = Limit of Quantitation

> BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

(Imanda Hordus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130 Project Number: Report Date:

22016126 6809 11/10/2022

Sampled By:

CLIENT

Attn: EUGENE KLISTER

PO#: # Samples: 13489 1

Sample Number:

52036809

Sample ID: 1 LITER 224 DIEDRICHST 7TH DRAW

Sample Date: 10/20/2022 Date Received: 10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed Co	odes
GENERAL ANALYSIS								
TURBIDITY-LAB SCREENING	0.10	NTU	0.10	0.10	1	EPA180.1	10/26/2022	
<u>METALS</u>								
LEAD, TOTAL	1.1	ug/l	0.02	0.07	1	EPA200.8	11/2/2022	

All LOD/LOQs adjusted for dilution and/or solids content. LOD = Limit of Detection LOQ = Limit of Quantitation

> BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

Amanda Kordus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130 Project Number: Report Date:

22016126 6810 11/10/2022

Sampled By:

CLIENT

Attn: EUGENE KLISTER

PO#: 13489 # Samples: 1

Sample Number: 52036810

Sample ID: 1 LITER 224 DIEDRICHST 8TH DRAW

Sample Date: 10/20/2022 Date Received: 10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
GENERAL ANALYSIS								
TURBIDITY-LAB SCREENING	0.10	NTU	0.10	0.10	1	EPA180.1	10/26/2022	
<u>METALS</u>								
LEAD, TOTAL	1.0	ug/l	0.02	0.07	1	EPA200.8	11/2/2022	

All LOD/LOQs adjusted for dilution and/or solids content. LOD = Limit of Detection LOQ = Limit of Quantitation

BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

Amanda Hordus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130 Project Number: Report Date: Sampled By:

22016126 6811 11/10/2022

CLIENT

PO#: # Samples: 13489

1

Attn: EUGENE KLISTER

Sample Number: 52036811

Sample ID: 1 LITER 224 DIEDRICHST 9TH DRAW

Sample Date: 10/20/2022 Date Received: 10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
GENERAL ANALYSIS								
TURBIDITY-LAB SCREENING	0.10	NTU	0.10	0.10	1	EPA180.1	10/26/2022	
<u>METALS</u>								
LEAD, TOTAL	0.81	ug/l	0.02	0.07	1	EPA200.8	11/8/2022	

All LOD/LOQs adjusted for dilution and/or solids content. LOD = Limit of Detection LOQ = Limit of Quantitation

BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

(Imanda Hordus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130

Attn: EUGENE KLISTER

Project Number: Report Date:

22016126 6812 11/10/2022

Sampled By:

CLIENT

PO#:

13489 # Samples: 1

Sample Number: 52036812

Sample ID: 1 LITER 224 DIEDRICHST 10TH DRAW

Sample Date: 10/20/2022 Date Received: 10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
GENERAL ANALYSIS							/ /	
TURBIDITY-LAB SCREENING METALS	0.10	NTU	0.10	0.10	1	EPA180.1	10/26/2022	
LEAD, TOTAL	0.78	ug/l	0.02	0.07	1	EPA200.8	11/8/2022	

All LOD/LOQs adjusted for dilution and/or solids content. LOQ = Limit of Quantitation LOD = Limit of Detection

BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

Amanda Hordus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130 Project Number: Report Date:

22016126 6813 11/10/2022

Sampled By:

CLIENT

PO#:

13489

Attn: EUGENE KLISTER

Samples:

1

Sample Number:

52036813

Sample ID:

1 LITER 224 DIEDRICHST 11TH DRAW

Sample Date: Date Received: 10/20/2022 10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
GENERAL ANALYSIS								
TURBIDITY-LAB SCREENING	0.10	NTU	0.10	0.10	1	EPA180.1	10/26/2022	
METALS		,,					/ . /	
LEAD, TOTAL	0.82	uø/l	0.02	0.07	1	FPA200.8	11/8/2022	

All LOD/LOQs adjusted for dilution and/or solids content. LOD = Limit of Detection LOQ = Limit of Quantitation

BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

(Imanda Hordus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130 Project Number: Report Date: Sampled By: 22016126 6814 11/10/2022

Attn: EUGENE KLISTER

, ,

CLIENT

PO#: # Samples: 13489 1

Sample Number: 52036814

Sample ID: 1 LITER 224 DIEDRICHST 12TH DRAW

Sample Date: 10/20/2022 Date Received: 10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
GENERAL ANALYSIS								
TURBIDITY-LAB SCREENING	0.10	NTU	0.10	0.10	1	EPA180.1	10/26/2022	
<u>METALS</u>								
LEAD, TOTAL	0.81	ug/l	0.02	0.07	1	EPA200.8	11/8/2022	

All LOD/LOQs adjusted for dilution and/or solids content.

LOD = Limit of Detection LOQ = Limit of Quantitation

BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

Amanda Hordus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130 Project Number: Report Date: Sampled By:

22016126 6815 11/10/2022

CLIENT

Attn: EUGENE KLISTER

PO#: # Samples:

13489 1

Sample Number:

52036815

Sample ID:

1 LITER 224 DIEDRICHST 13TH DRAW

Sample Date: Date Received:

10/20/2022 10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
GENERAL ANALYSIS								
TURBIDITY-LAB SCREENING	0.20	NTU	0.10	0.10	1	EPA180.1	10/26/2022	
<u>METALS</u>								
LEAD, TOTAL	0.82	ug/l	0.02	0.07	1	EPA200.8	11/8/2022	

All LOD/LOQs adjusted for dilution and/or solids content. LOD = Limit of Detection LOQ = Limit of Quantitation

BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

(Imanda Hordus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130

Attn: EUGENE KLISTER

Project Number: Report Date:

22016126 6816 11/10/2022

Sampled By:

CLIENT

PO#: # Samples: 13489 1

Sample Number:

52036816

Sample ID:

1 LITER 224 DIEDRICHST 14TH DRAW

Sample Date: 10/20/2022 Date Received: 10/20/2022

Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
							_
0.10	NTU	0.10	0.10	1	EPA180.1	10/26/2022	
0.82	ug/l	0.02	0.07	1	EPA200.8	11/8/2022	
	0.10	0.10 NTU	0.10 NTU 0.10	0.10 NTU 0.10 0.10	0.10 NTU 0.10 0.10 1	0.10 NTU 0.10 0.10 1 EPA180.1	0.10 NTU 0.10 0.10 1 EPA180.1 10/26/2022

All LOD/LOQs adjusted for dilution and/or solids content. LOD = Limit of Detection LOQ = Limit of Quantitation

> BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

(Imanda Hordus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130 Project Number: Report Date:

22016126 6817 11/10/2022

Sampled By:

CLIENT

PO#: # Samples: 13489

1

Attn: EUGENE KLISTER

Sample Number: 52036817

Sample ID: 1 OF 2 125 ML 152 GARFIELD 1ST DRAW

Sample Date: 10/20/2022 Date Received: 10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
GENERAL ANALYSIS								_
TURBIDITY-LAB SCREENING	0.20	NTU	0.10	0.10	1	EPA180.1	10/26/2022	
<u>METALS</u>								
LEAD, TOTAL	0.16	ug/l	0.02	0.07	1	EPA200.8	11/8/2022	

All LOD/LOQs adjusted for dilution and/or solids content. LOD = Limit of Detection LOQ = Limit of Quantitation

BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

Amanda Hordus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130 Project Number: Report Date:

22016126 6818 11/10/2022

Sampled By:

CLIENT

Attn: EUGENE KLISTER

PO#: # Samples: 13489 1

Sample Number: 52036818

Sample ID: 1 OF 2 125 ML 152 GARFIELD 2ND DRAW

Sample Date: 10/20/2022 Date Received: 10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
GENERAL ANALYSIS								
TURBIDITY-LAB SCREENING	0.10	NTU	0.10	0.10	1	EPA180.1	10/26/2022	
<u>METALS</u>								
LEAD, TOTAL	0.15	ug/l	0.02	0.07	1	EPA200.8	11/8/2022	

All LOD/LOQs adjusted for dilution and/or solids content. LOD = Limit of Detection LOQ = Limit of Quantitation

> BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

Amanda Hordus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130

Attn: EUGENE KLISTER

Project Number: Report Date:

22016126 6819 11/10/2022

Sampled By:

CLIENT

PO#: # Samples: 13489

1

Sample Number:

52036819

Sample ID:

1 LITER 152 GARFIELD 3RD DRAW

Sample Date: Date Received:

10/20/2022 10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
GENERAL ANALYSIS								
TURBIDITY-LAB SCREENING	0.15	NTU	0.10	0.10	1	EPA180.1	10/26/2022	
METALS								
LEAD, TOTAL	0.38	ug/l	0.02	0.07	1	EPA200.8	11/8/2022	

All LOD/LOQs adjusted for dilution and/or solids content. LOD = Limit of Detection LOQ = Limit of Quantitation

BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

Amanda Hordus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130

Attn: EUGENE KLISTER

Project Number: Report Date: Sampled By:

22016126 6820 11/10/2022

CLIENT

PO#: # Samples: 13489

1

Sample Number:

52036820

Sample ID:

1 LITER 152 GARFIELD 4TH DRAW

Sample Date:

10/20/2022

Date Received: 10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
GENERAL ANALYSIS							/ /	
TURBIDITY-LAB SCREENING METALS	0.10	NTU	0.10	0.10	1	EPA180.1	10/26/2022	
LEAD, TOTAL	0.29	ug/l	0.02	0.07	1	EPA200.8	11/8/2022	

All LOD/LOQs adjusted for dilution and/or solids content. LOQ = Limit of Quantitation LOD = Limit of Detection

BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

Amanda Hordus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130 Project Number: Report Date:

22016126 6821 11/10/2022

Sampled By:

CLIENT

Attn: EUGENE KLISTER

PO#: # Samples: 13489 1

Sample Number:

52036821

Sample ID:

1 LITER 152 GARFIELD 5TH DRAW

Sample Date: Date Received: 10/20/2022 10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed Co	odes
GENERAL ANALYSIS								
TURBIDITY-LAB SCREENING	0.10	NTU	0.10	0.10	1	EPA180.1	10/26/2022	
<u>METALS</u>								
LEAD, TOTAL	0.24	ug/l	0.02	0.07	1	EPA200.8	11/8/2022	

All LOD/LOQs adjusted for dilution and/or solids content. LOD = Limit of Detection LOQ = Limit of Quantitation

BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

Amanda Hordus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130 Project Number: Report Date:

22016126 6822 11/10/2022

Sampled By:

CLIENT

Attn: EUGENE KLISTER

PO#: # Samples: 13489 1

Sample Number:

52036822

Sample ID:

1 LITER 152 GARFIELD 6TH DRAW

Sample Date: Date Received: 10/20/2022 10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
GENERAL ANALYSIS								
TURBIDITY-LAB SCREENING	0.10	NTU	0.10	0.10	1	EPA180.1	10/26/2022	
METALS								
LEAD. TOTAL	0.22	ug/l	0.02	0.07	1	EPA200.8	11/8/2022	

All LOD/LOQs adjusted for dilution and/or solids content. LOD = Limit of Detection LOQ = Limit of Quantitation

> BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

(Imanda Hordus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130

Project Number: Report Date: Sampled By:

22016126 6823 11/10/2022

CLIENT

Attn: EUGENE KLISTER

PO#: # Samples: 13489 1

Sample Number: 52036823

Sample ID: 1 LITER 152 GARFIELD 7TH DRAW

Sample Date: 10/20/2022 Date Received: 10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed C	Codes
GENERAL ANALYSIS								
TURBIDITY-LAB SCREENING	0.10	NTU	0.10	0.10	1	EPA180.1	10/26/2022	
<u>METALS</u>								
LEAD, TOTAL	0.21	ug/l	0.02	0.07	1	EPA200.8	11/8/2022	

All LOD/LOQs adjusted for dilution and/or solids content. LOD = Limit of Detection LOQ = Limit of Quantitation

> BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

(Imanda Hordus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130

Attn: EUGENE KLISTER

Project Number: Report Date:

22016126 6824 11/10/2022

Sampled By:

CLIENT

PO#: # Samples: 13489

1

Sample Number:

52036824

Sample ID:

1 LITER 152 GARFIELD 8TH DRAW

Sample Date:

10/20/2022

Date Received:

10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
GENERAL ANALYSIS								
TURBIDITY-LAB SCREENING	0.10	NTU	0.10	0.10	1	EPA180.1	10/26/2022	
<u>METALS</u>								
LEAD, TOTAL	0.21	ug/l	0.02	0.07	1	EPA200.8	11/8/2022	

All LOD/LOQs adjusted for dilution and/or solids content. LOD = Limit of Detection LOQ = Limit of Quantitation

> BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

Amanda Hordus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130

Attn: EUGENE KLISTER

Project Number: Report Date:

22016126 6825 11/10/2022

Sampled By:

CLIENT

PO#: # Samples: 13489

1

Sample Number:

52036825

Sample ID:

1 LITER 152 GARFIELD 9TH DRAW

Sample Date:

10/20/2022

Date Received: 10/20/2022

Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
							_
0.10	NTU	0.10	0.10	1	EPA180.1	10/26/2022	
0.20	ug/l	0.02	0.07	1	EPA200.8	11/8/2022	
_	0.10	0.10 NTU	0.10 NTU 0.10	0.10 NTU 0.10 0.10	0.10 NTU 0.10 0.10 1	0.10 NTU 0.10 0.10 1 EPA180.1	0.10 NTU 0.10 0.10 1 EPA180.1 10/26/2022

All LOD/LOQs adjusted for dilution and/or solids content. LOD = Limit of Detection LOQ = Limit of Quantitation

BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

(Imanda Hordus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130 Project Number: Report Date:

22016126 6826 11/10/2022

Sampled By:

CLIENT

Attn: EUGENE KLISTER

PO#: # Samples: 13489 1

Sample Number:

52036826

Sample ID: 1 LITER 152 GARFIELD 10TH DRAW

Sample Date: 10/20/2022 Date Received: 10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
GENERAL ANALYSIS					_		/ /	
TURBIDITY-LAB SCREENING METALS	0.10	NTU	0.10	0.10	1	EPA180.1	10/26/2022	
LEAD, TOTAL	0.20	ug/l	0.02	0.07	1	EPA200.8	11/8/2022	

All LOD/LOQs adjusted for dilution and/or solids content. LOD = Limit of Detection LOQ = Limit of Quantitation

> BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

(Imanda Hordus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130 Project Number: Report Date:

22016126 6827 11/10/2022

Sampled By:

CLIENT

Attn: **EUGENE KLISTER** PO#: # Samples: 13489

1

Sample Number:

52036827

Sample ID:

Parameter

1 LITER 152 GARFIELD 11TH DRAW

Sample Date:

10/20/2022

Date Received:

10/20/2022

Units LOD LOQ Dil. Method

0.07

Analyzed

Codes

GENERAL ANALYSIS TURBIDITY-LAB SCREENING **METALS**

LEAD, TOTAL

0.10

0.20

Results

NTU ug/l 0.10

0.10

0.02

1 1

10/26/2022

EPA200.8

EPA180.1

11/8/2022

All LOD/LOQs adjusted for dilution and/or solids content. LOD = Limit of Detection LOQ = Limit of Quantitation

> BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

(Émanda Hordus

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130 Project Number: Report Date:

22016126 6828 11/10/2022

Sampled By:

CLIENT

Attn: EUGENE KLISTER

PO#: # Samples: 13489 1

Sample Number: 52036828

Sample ID: 1 LITER 152 GARFIELD 12TH DRAW

Sample Date: 10/20/2022 Date Received: 10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed C	Codes
GENERAL ANALYSIS								
TURBIDITY-LAB SCREENING	0.10	NTU	0.10	0.10	1	EPA180.1	10/26/2022	
<u>METALS</u>								
LEAD, TOTAL	0.19	ug/l	0.02	0.07	1	EPA200.8	11/8/2022	

All LOD/LOQs adjusted for dilution and/or solids content. LOD = Limit of Detection LOQ = Limit of Quantitation

> BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

(Imanda Hordus

11/10/2022 RESULTS - TREATED WATER

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130 Project Number: Report Date: Sampled By:

EPA200.8

22016126 6829 11/10/2022

CLIENT

Attn: **EUGENE KLISTER** PO#: # Samples:

13489 1

11/8/2022

Sample Number:

52036829

Sample ID:

1 LITER 152 GARFIELD 13TH DRAW

Sample Date: Date Received:

LEAD, TOTAL

10/20/2022 10/20/2022

0.18

Units LOD LOQ Dil. Method Parameter Results Analyzed Codes GENERAL ANALYSIS TURBIDITY-LAB SCREENING 0.10 NTU 0.10 0.10 1 EPA180.1 10/26/2022 **METALS**

0.02

0.07

ug/l

All LOD/LOQs adjusted for dilution and/or solids content. LOD = Limit of Detection LOQ = Limit of Quantitation

> BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

1

(Imanda Hordus

BL:gr

11/10/2022 RESULTS - TREATED WATER

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P: 920.729.1100 | T: 1.800.776.7196 F: 920.729.4945

KAUKAUNA UTILITIES 777 ISLAND STREET KAUKAUNA, WI 54130

Project Number: Report Date: Sampled By:

22016126 6830 11/10/2022

CLIENT

PO#: # Samples: 13489

1

Attn: EUGENE KLISTER

Sample Number:

52036830

Sample ID: 1 LITER 152 GARFIELD 14TH DRAW

Sample Date: 10/20/2022 Date Received: 10/20/2022

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed C	Codes
GENERAL ANALYSIS								
TURBIDITY-LAB SCREENING	0.10	NTU	0.10	0.10	1	EPA180.1	10/26/2022	
<u>METALS</u>								
LEAD, TOTAL	0.17	ug/l	0.02	0.07	1	EPA200.8	11/8/2022	

All LOD/LOQs adjusted for dilution and/or solids content. LOD = Limit of Detection LOQ = Limit of Quantitation

BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

Amanda Hordus

BL:gr

															-				
				CERTIFICATIONS	NEENAH C o m \$ 1 m	#105-205	405222620 rt #105-450	SP-WDNR Cert Lab #750124210 SP-DATCP Cert #105-525		DATE	-4								
				TEICA	8 - ¥ - to	ATCP CE	ert Lab# ATCP Cer	Cert Lab		ONEX	pH OK								
	/. Y	ANALYTICAL LABORATORY & ENVIRONMENTAL SERVICES	EST. 1900 W154303	Stevens Point: 3426 E. Maria Drive Stevens Point, WI 54481 ANALYTICAL REQUESTS CERT	NEENAH W 1 S C O W 1 S C O W 1 S C O W 1 S C O W 2 W 1 S C O W 2 W 1 S C O W 2 W 1 S C O W 2 W 2 W 2 W 2 W 2 W 2 W 2 W 2 W 2 W	НО-Б	GB-WDNR Cert. Lab #405222620 GB-DATCP Cert. #105-450	SP-WDNR SP-I		LABUSE ONLY DATE	FROJECT#	100C	en door en						
	J	IMENT.	reen Bay	Point, W	<u> </u>			_			1								
	·	VIRON	4956 e 106 G	ojnt: 3426 E. Maria Drive Stevens P. ANALYTICAL REQUESTS		Ì	_	_		<u> </u>									
	ㅗ l		Neenah: 501 W. Bell St. Neenan, WI 54956 Green Bay: 2150 Memorial Drive Suite 106	REQ.		I	+	· \		7.									
)RATO	it. Neen norial D	E. Mari	_	<u> </u>	0	_	_										
) ¥	W. Bell 9	t: 3426 [ALY]			<u> </u>	_	_	÷		,							
	1	YTICA	ah: 501 Bay: 21	AN	_	ST	VT		_	. wyg y s	-	en es	का संकृत	ALCE!			. ""		ve ·
		ANA ANA	Neen Greer	Steve	_				_	<u> </u>	+	7	7			<u> </u>			
Á	Z	9				155			$\overline{}$	<u>.</u> #	+	^	<u> </u>						
2						FFR SAWIP	CHECK ONE)	<u></u>		COMPOSITE		9	9	1	, a	surs, with a state of some			A DECEMBER OF THE PARTY.
,						GROTINDWATER SAMPLES	CHECK ONE) Field Filtered	Lab filtered	-	MATRIX		<u>س</u> ۵	DD			نع بدر د		- Sa - Sa - Sa	
	TIME				WATER	TER	E E			TOWN	E CONTRACT								·
_	TURN AROUND TIME	D 10 DAY:	(200% UPCHARGE)	NEEDED:	MATRIX	WW = WASTEWATER GW = GROUNDWATER	D/SUDG			ATIVE.			<u> </u>						
	AN I	STANDAR	ACUSH (200	DATE NE	30	NW = O	S= SOL P=PAP	F= FUEL OTHER:		RESERV		- <u>1.77 C</u> 'n			er indire	en (en repres	<u></u>	· ••••••	()
T C		()								TO PRESERVA	1	٤	4					Δ0	^
		73+								FION S	T.	8	10-20930 AM		.37	16	7.00	8 r. c	0 V
נ ק		ニニュ		かり	ABER:	50	1			COLLECTIO		6	0		1		7	اخبينا	V
		3		j	PO NUMBER:	ر د ا	مات			AMPLE	DALE	B	γ. Ο			ð		نبره	0
		ð		र्द त	to	7-1	\ ₹\\			CARDETO WELL TATT TAND IN LOCK MANDE OF MANDE	*	36564 1000 9:30 AM	~		3	٠ •		4	ζ.
2		3		2 - 5	Si	スに	3.5			B-USE-ONI	IMPLEE	8 5C			ر د د	0	4	S	+
107	ESS	3	AAIL	H	ス	0)	-61	.03		LAB	ã	38			GLIONING	いて	ď	λok	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
E INE	/ ADDR	47	RESS/ EN	<u></u>	3	Ste	7	ME/SITTE		E ID		8	∞		6	otal Chlorine	Silidate	ナトゥ	
AMPLE REQUEST & CHAIN OF COSTODI FORM	JENT NAME / ADDRESS	Kaukeuna Ctilities struggen	ILLING ADDRESS/ EMAIL	777 Island St	Fuscine Klister	OKISTEROKU-US.OR	356-914-0c9	ROJECT NAME/ SITE.		SAMPLEID		E 6-8	EP-8		Free	101	S	Orthophosphate	dv +00000 x
4	9	•	13		图山	NAME ()	¥ U_	2			- 1		Ш		 	1			

が一般のできた。 大学の大学を大学の一般のできた。 1911年 19	CHAIN OR CUSTOD KREGORD
FILE END TV BY CLIENT	BILLED IN BY BADGER LABS ADDITIONAL COMMENTS:
SAMMED BY:	RECEIVED/SAMPLED BY:
DATECTIME DAMPLED:	DATECTIAND RECEIVED: OCT 2 0 2022 2100 A
RELINQUISHED BY:	LOCORD IN: (N.)
DELIVERY METHODY CICAL	ICE?: (X) N

		ANALYTICAL LABORATORY & ENVIRONMENTAL S	#h establish Neenah: 501 W. Bell St. Neenah, Wi 54956 est. 1966 Green Bay: 2150 Memorial Drive Suite 106 Green Bay Wi 54303	Stevens Point: 3426 E. Maria Drive Stevens Point, WI 54481 ANALYTICAL, REQUESTS CERTIFICATIONS		WATER HO-DATCP Cert #105-205 WATER CREEN BAY	Shekong Cababi	STEVENS POINT Lab filtered SP-WDNR Cert Lab #750124210
SAMPLE REQUEST & CHAIN OF CUSTODY FORM	SLIENT NAME (ADDRESS TURN AROUND TIME	Kaukeuna atilities strugges soons	BILLING ADDRESS/ EMAIL	77) Island St WITHERED	REPORT TO: MATRIX ENLING HER. MATRIX EVEC KISTC	\$00	FHONE SESOURING WATER SESOURING WATER SESOURING WATER OF A CO. A C.	

3	(w €		1	ļ	<u>T</u>	1	T	T.	1	<u> </u>	7 - i :
CALL CALL CALL	DATE		<u> </u>	<u> </u>	ļ	ļ	<u> </u>	<u> </u>	<u></u>	ļ.,.	ļ
OME	AO Hq								İ		
DITTOL	# 1			21 17 17 17	a secondary		10.				
V-L	PROJECT #	797	<u> </u>								
		$ $ $^{\sim}$	-			<u> </u>					
٠						ļ	_				
,											
							2		Total T. S. A. Street S. and	Mary 1 - A - Print E - Colon	-
						-					
	য়েশ্বিক	arije siki	n, any	। 						. 1, 100	: p
<u> </u>	· ~	X	X	<u> </u>						, , , , ;	
T	Sinte		7								
	CEMPOSITE	9	0		A						
	MATRIX	3	D0 6								
25	NAOH S	Q	7	- 				-64 6- 6-6			
The state of	•			· · · · · · · · · · · · · · · · · · ·						·	
RVATUVE	لنصنا										
PRES	H2504 HINDS	2	ξ				इंटर	H - * * * *	, 	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
1000	d Z	SAP	OA		ر	0	Ω	Q	0		
TABUSE ONEY. SAMPLE COLLECTION	TIME	3(4767+0000 10:00AM	10:20 10:00 Am		1.37	8.	6.3	S-5	0 7 0		
COLLE	II.	20	2) Q				7	(0)	- 57		-
SAMIPLE	DATE	C Q);Q/		\	e		ate	<u>a</u>)		
ALC: A	#	الم ه			3	ر: ٦		Ad	Y		
OESO	SAMPLE #	er (20	0	4	05	7		
IAB	Ŝ				Free akloring	Total Chlorine	Silicate	Orthophosphate	temperature		
	A	6	6		0	7	10	ナっ	dv		
	SAMPLE ID	E0-9	EP-9		6	+0	1:5	+60	(ני		
	S	Ш	Ш		は	1	VI	U	+		

	HILLED IN BY BADGER LABS RECEIVED BY: CAP DATE/TIME RECEIVED: ()() 2 () () / 2 () () / 2 () () / 2 () () / 2 () () / 2 () () / 2 () () / 2 (
となった		

| W 1 S C O N S 1 N | W 1 S C O N S 1 N | HQ-WDNR Cert Lab #445023150 | HQ-DATCP Cert #105-205 STEVENS POINT

W. I. S. C. O. W. S. I. M. S. S. C. O. W. S. I. M. S. C. O. W. S. I. M. S. S. W. DATCP Cert. #105-525 CREEN BAY

W 1 S C O N S 1 N

GB-WDNR Cert. Lab #405222620

GB-DATCP Cert. #105-450 CERTIFICATIONS BADGER LABS

ANALYTICAL LABORATORY & ENVIRONMENTAL SERVICES

EST. 1966 esr. 19 Green Bay: 2150 Memorial Drive Suite 106 Green Bay, WI 54303 Stevens Point: 3426 E. Maria: Drive Stevens Point, WI 54481 ANALYTICAL REOUESTS ROUNDWATER SAMPLES Field Filtered (CHECK ONE) Lab filtered DW = DRINKING WATER
WW = WASTEWATER
WW = GROUNDWATER
CW = CDOUNG WATER
\$= \$00 UNS WATER
\$ = \$0 UNS SUDGE TURN AROUND TIME RUSH (2006 UPCHARGE); MATRIX STANDARD 10 DAY: DATE NEEDED: SAMPLE REQUEST & CHAIN OF CUSTODY FORM F= FUEL Ctil ties . ठाख to broland or PO NUMBER: eklister Oka-w. あるる。 Fugene Klister Kaukeure PHONE: 930-4(9-PROJECT NAME/SITE: BILLING ADDRESS/ EMAIL CLIENT NAME / ADDRESS REPORT TO:

1	ु⊀्र			Y	T	T	·	1	1	T	T	ı	7
	1. 1	DATE											
	ONLY	pH OK											
٠	LABUSEONLY	PROJECT #	1612										T
_	<u></u>					-							
-	<u></u>												
_											and the state of t		
_	<u> </u>	. 1,											
													
•	9 11.		2.15	18, Z 19		C P							
_			X	X		ļ	ļ						
	GRAB or	COMPOSITI	૭	9									
	MATRIX	GYORA ARQYR	اص۵	ل س۵	100								
100		NAOH					on the second						
Various visits	WALLEY DOSE :	Ä								·			
		H2504 MN03	- <u>2/2</u> 6-1	4	- 1-10-10	or ratio		le a a		(i n 1, 11, 7		, 2. 4. 10 - 7	
1000		NP H2S	A	OP)		\			• •				
100	CHON	TIME	035	MAOS 01 20-01		345	1.83	6.6	5.53	0 hS			
	100	DATE	DC-	200-				2	ke (7,			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 S	Ã	Q X	Q		9	; he		hert	_ 0			
	MANAGEMENT STATES CONTROLLED TO STATES STATE	SAMPLE #	306 6			10 r.n	hlor	rte	hosp	Emperature			
			8	0		7	j	1	900	Dec.		:	
	CALCULE ID	T TANKE	EP-400 367 68 10-30 10-30 Am	EP-40D		Free Chlorine	Total Chlorine	Silidate	Orthophosphate 2.53	Tem	-		

ADDITIONAL COMMENTS:			
HELED IN BY BADGER LABS RECRYPEDSAMPLED BY:	DATESTEME RECEIVED OCT 2 0 2022 ZIO DA	NI GRODIOT	$\log_n(Y)$ N
SAME ED BY:		RELINQUISHED BY:	DELIVERY METHOD: $C)$ $0.04+$

STEVENS POINT
W 1 5 C 0 H 5 I H
SP-WDNR Cert Lab #750124210
SP-DATCP Cert #105-525 W 1 S C O N S 1 N W 1 S C O N S 1 N HQ-WDNR Cert Lab #445033150 HQ-DATCP Cert #105-205 GB-WDNR Cert Lab #405222620 GB-DATCP Cert, #105-450 CERTIFICATIONS GREEN BAY BADGER LABS
ANALYTICAL LABORATORY & ENVIRONMENTAL SERVICES est. 1966 esr. 17 Green Bay: 2150 Memorial Drive Suite 106 Green Bay, WI 54303 Stevens Point: 3426 E. Maria Drive Stevens Point, WI 54481 ANALYTICAL REOUESTS SROUNDWATER SAMPLES (CHECKONE) Field Filtered Lab filtered WW = WASTEWATER GW = GROUNDWATER CW = COUNG WATER S = SOUD/STUDGE P = PAPER. TURN AROUND TIME DW = DRINKING WATER RUSH (BODE UPCHARGE); MATRIX STANDARD 10 DAY: DATE NEEDED: SAMPLE REQUEST & CHAIN OF CUSTODY FORM の大による ENNIE CELLISTER OKLO-WILLOW 177 HSland St PO NUMBER: 900-418-3565 Kaukauna Fugene Klister BILLING ADDRESS/ EMAIL CLIENT NAME / ADDRESS ROJECT NAME/ SITE

								<u> </u>		•	
	DATE										
SEABUSE ONLY	pH OK		<u> </u>		<u> </u>						
SEO	and 4	_	*******			+++-11-1	10.70.7				
I WB	PROJECT#	24									
100 mm	PROJ	19									
					 						
<u> </u>	-					<u> </u>					
										, e , , , , , , , , , , , , , , , , , ,	
*			 				98 1 2 2 2 2 2 2 3 3 5 7 5 7 5 7 5 8 5 7 5 8 5 7 5 7 5 7 5 7	na i i i i i i i i i i i i i i i i i i i	HIS T T STREET, SAT	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A TOWN
· · · · · ·											
											
		r en	জ্ঞান •								
		X	X								
CEABor		(0	ď								
		0	0			W 000 1110 100 11					and the second second
MATRIX	CSEE ABOVE	3	3								
	MAOH			***	(4			250 250 244	·	.=	
1950	Ę										
SERVAT	ENOS				, .						
PRE	NP H2504 HN03	ξ	ξ	2010	, , , , , , , , , , , , , , , , , , , ,						
4	ž	0	DD		-	٠	_	Ŋ			
ECTION	TIME	0.1	(1:0		.96	9	4	0	280		
	_	777 Islands+ 10-2011:00AM	777 Island S+10-20 11:00 Am				``	Orthophosphate 2.75	*		
SAMPI	DATE	ġ	Q		۲_	9		7	<u>a</u>		
NIEK	#	t5	5+	8	ころの	:	ارم	Ad	7		
USE	SAMPLE #	3	Z.	36569	0	0	4	0	The state of the s		
IVB	ķī	Sla	امر	3(17	いて	d	40	3		
A	, [H	Is		Free Chlorine	Total Chlorine	Silicate	ント	cmperature		
SAMPLEID		2	77.		6	+0		ナしつ	ָע,		
S		6	1		L	1	VI	U	7		

SAMPLED BY:		HILLED IN BY BADGER LABS RECEIVED/SAMPLED BY:	AL COMMENTS:
DATE/INDESCRIPTION TO SO	1. Star	DATE/IDAGE RECEIVED: OCT 2 0 202 Z 10 DM	
RELINQUISHED BY:		LOCORD IN:	
DELIVERY METHOD:	Client	ICE?; (X) N	

GREEN BAY
W 1 \$ C O N \$ 1 N
GB-WDNR Cert. Lab #405222620
GB-DATCP Cert. #105-450 STEVENS POINT SP-WDNR Cert Lab #750124210 SP-DATCP Cert #105-525 CERTIFICATIONS ANALYTICAL LABORATORY & ENVIRONMENTAL SERVICES esr. 17 Green Bay: 2150 Memorial Drive Suite 106 Green Bay, WI 54303 Stevens Point: 3426 E. Maria Drive Stevens Point, WI 54481 ANALYTICAL REQUESTS BADGER I SROUNDWATER SAMPLES (CHECK ONE) Field Filtered Lab filtered . DW = DRINKING WATER WW = WASTEWATER GW = GROUNDWATER CW = COOLING WATER TURN AROUND TIME S=SOUD/SUDGE P=PAPER F=EUEL RUSH (poor uppointed); MATRIX STANDARD 10 DAY: DATE NEEDED: SAMPLE REQUEST & CHAIN OF CUSTODY FORM CATILITIES exlisteroku-w..org to baland occ PO NUMBER: 3565 Fugene Klister Kaukauna -61h-0cb BILLING ADDRESS/ EMAIL CLIENT NAME / ADDRESS ROJECT NAME/ SITE:

[7	Ť., 6	1	T	7	7	1	1	Ť	1	ſ	T-i
A STATE OF A	DATE				<u> </u>	<u> </u>	ļ	ļ	ļ	<i></i> ,	
VINO	pH OK								·		
N INCHARLANT AND	T#	2	TO A BOLL OF	2							
200	PROJECT#	707									
				<u> </u>		ļ					
						<u> </u>					
											
										···	
					-						
			1, 2 °								
Τ		X	X								
	COMPOSITIO	હ	ق								
, and an a	MALKIA SEE ABOYE	ω۵	00								
100	NAOH	•	 	*****				- 10 m			
IIIVE SEE	HCL										
ESERVA	E MINOS	·	5			. 2/ 2 + 1 1 1 2 - 1	·	· · · · · · · · · · · · · · · · · · ·	,	·	-1.444
PR	NP H2504 HNOS	A.	۶ م		pas		,				
N N	2	3	35		∞	<i>y</i>	(1)	2	0		
LAB-USE ONING SAMPLE COLLECTION	TIME	2700 Derthirdsettions 11:30 AM	200 Varthridge Dr 10-26 11: 80 AM		86-	C:-	3	Orthophosphate 2.75	0-0		
WIPLE CC	DATE	5	5-3			a)		fe			
Yes SA	#	40) JC	0	9	- <u>₹</u>		7	7		
SEON	SAMPLE #	جي) ري	Pope /	Rosh	۲۶۰۷	0	9)	55F	7		
LABIU	SAA	4+0	かった	K.	MIC	147	ď	ohe	ζ		
Γ		رح م	b		Free Chlorine	Total Chlorine	Silicate	20	cmperature	•	
	SAMPLED	8	2		6	346		+6	(N)		
	PA	b	3		は	۲	U)	0	+		

一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	ADDITIONAL COMMENTS:			
A CHAIN OR CUSTODEREGORD TO ALL LAST	PRECEIVED IN BY BADGER LABS PRECEIVED SAMPLED BY:	DATECTIME RECEIVED: CO 2 0 Z 10 PM	LOGGED IN:	ICE?; (y) M
THE RESERVE OF THE PROPERTY OF	SAMPLED BY: SAMPLED BY: SAMPLE	DATETIME SAMPLED:	RELINQUISHED BY:	DELIVERY METHOD:

STEVENS POINT

w i s c o m s i m

sp-wdnr Cert Lab #750124210
SP-DATCP Cert #105-525 GB-WDNR Cert Lab #405222620 GB-DATCP Cert, #105-450 CERTIFICATIONS GREEN BAY BADGER LABS ANALYTICAL LABORATORY & ENVIRONMENTAL SERVICES EST. 1966 esr. 17 Green Bay: 2150 Memorial Drive Suite 106 Green Bay, WI 54303 Stevens Point: 3426 F. Maria:Drive Stevens Point, WI 54481 ANALYTICAL REQUESTS GROUNDWATER SAMPLES (CHECKONE) Field Filtered Lab filtered A WW = ORINKING-WATER

10 W = WASTEWATER

5W = SROUNDWATER

5W = SOUNS WATER

5 = SOUNS WATER

6 = EUEL TURN AROUND TIME RUSH (2006; UPCHARGE); MATRIX STANDARD 10 DAY: DATE NEEDED: SAMPLE REQUEST & CHAIN OF CUSTODY FORM OTHER: Ctil ties eKlister@Ku-Wi.org 100 HSland St PO NUMBER: 900-414-35CB Eugene Klister Kaukauna BILLING ADDRESS/ EMAIL CLIENT NAME / ADDRESS PROJECT NAME/ SITE. REPORT TO:

[7]		······	1	T	1	i	1	7		T	,
	DATE REC'D		ļ	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	
ONEX	pH OK										
SEABUSE ONEX	,T#	e									
	PROJECT #	407									
		7				ļ	<u> </u>				
						-					
						<u> </u>					
		- 1000									
.	7.7	x - 1/2 - 1/2 ()	अंड क	20,14					e ·		,
			7								
Τ.,		X,	入								
CRABor	COMPOSIT	Q	9	1							
MATRIX	C ABOYED	3	DW G			1 1000 2000 1100 1 2 2	TO-MERCEL 1 - 100 T			11.000 1.000	To the second second second
7	NAOH (SE		Q		- 17 - 11 - 11 - 1			- P. J.			
1880	HC.		<u> </u>				7-1-0				
FRVATT											
PRES	NP H2504 HNOS	Wa	Ow		. 1 Tal 1 " ."						
100	ž	8	35		-00	Q	~	Q	0	·	
LECTION	TIME	Ü	12:		.98	- 30 - 30	00	0,0	\$ \$ \$		
TE COL	DATE	ह	Ŕ					ø)			
A SAM	Ã	Q +	Q 1		9	5		3	_ģ		
PONEY	CE#	K S	15	7	727	Ç	Q)	30	3		
TARBUSE ON BY SAMPLE COLLECTION WHEN PRESERVA	SAMPLE #	406 W 10+45+ 10-30 12:80PM	406 C1 05-01 +5 + 01 CD 90H	16871	Free Chlorine	Sotal Chlorine	Silicate	Orthophosphate 2.60	cmperature		
	+	7	2		40	U -	7	0	9		
SAMPLED		و	ر ان		6	4	-	7-	٤		
	s f	()	€)		ĬĬ	0	EA	~	٦٧		

ADDITIONAL COMMENTS:			
FILTED IN BY BADGER LABS RECEIVED BY: CP	DATE/ILIMB RECEIVED: $(1.5 \% 2.0)$	LOGGED IN:	ICES: (X) N
minimum communities which were the same of		RELINQUISHED BY:	DELIVERY METHOD: C \ C Q4+

BADGER LABS ANALYTICAL LABORATORY & ENVIRONMENTAL SERVICES Neenah: 501 W. Bell St. Neenah, WI 54956 TURN AROUND TIME STANDARD 10 DAY: SAMPLE REQUEST & CHAIN OF CUSTODY FORM CUENT NAME ADDRESS Kaukauna Ctilities

ineen Bay, WI 54303 F Point, WI 54481 CERTIFICATIONS	NEENAH W 1 5 C 0 H 5 L H W 1 5 C C H 5 L H W 1 5 C C H 5 L H W 1 5 C C H 5 L H W 1 C C C L H 1 C C H HQ-DATCP C C L H 105-205	CB-WDNR Cert. Lab #405722620 GB-DATCP Cert. #105-450 STEVENS POINT W. 1. C. O. M. S. I. M. SP-WDNR Cert. Lab #750124210	SP-DATCP Cert #105-525	PROJECT# 10 ON DATE									
Green Bay: 2150 Memorial Drive Suite 106 Green Bay, WI 54303 Stevens Point; 3426 E. Maria Drive Stevens Point, WI 54481 ANALYTICAL REQUESTS		15hee+			X	×							
DATE NEGRED:		CW.F.COOLING WATER GROUNDWATER SAMPLES \$\times \text{SOUD}\text{SOUD}\text{SULDGE} \$\times \text{PAPER} \text{Field-Filtered} \$\text{Field-Filtered} \$\text{COTHER} \text{COTHER}		SECRETARIAN SECRETARIA CELABOR INDICATOR COMPOSERS	DW 6	D. O. O.	i						
77) HSland St	FUNCENE KISTC PONUMBER:	7		SAMPLE ID SAMPLE # DATE TIME Nº H2504 mind	1701 C4, Hy CE 10-30 1:00 PM	noich 47 CE 1020 100pm	36m	Free Chloring 1.05	Sotal Chlorine 1.33	Silidate 69	Orthophosphate 2.75	Temperature 59°	

RELINGUISHED BY: RELINGUISHED BY: DELIVERY METHOD: C. C	されているとうというというときないというということでは、これでは、これでは、これでは、これでは、これでは、これでは、これでは、これ	THE TANK OF CUSTODEREGORD STATES AND STATES OF THE STATES	· 19 10 10 10 10 10 10 10 10 10 10 10 10 10
LOGGED IN: PS 2 0	SAMPLED BY: SAMPLED BY: ALAGE OF K): SAC	RECEDERAMPLED BY:	
Chient Ice x N	DATE/TIME-BAMPIED:	MERRICEIVED: OCT 2 G CO.	
Chi ent	RELINQUISHED BY:	Zi.	
		ICE? Y N	

CERTIFICATIONS NEENAH W 1 & C 0 N 4 1 N HQ-WDNR Cert Lab #445023150 HQ-DATCP Cert #105-203 GREEN BAY

w i s c o m s i m

GB-WDNR Cert Lab #405222620

GB-DATCP Cert #105-450 SP-WDNR Cert Lab #750124210 SP-DATCP Cert #105-525 STEVENS POINT DATE REC'D LABUSE ONLY pH OK BADGER LABS
ANALYTICAL LABORATORY & ENVIRONMENTAL SERVICES
ANALYTICAL LABORATORY & ENVIRONMENTAL SERVICES
EST. 1966
EST. 1966 JC 12/2 PROJECT # esr. 1 Green Bay: 2150 Memorial Drive Suite 106 Green Bay. WI 54303 Stevens Point: 3426 E. Maria Drive Stevens Point, WI 54481 B AMPLED BY:

1) : C+
RECEIVED/SAMPLED BY:

AMPLED BY:

AMPLED BY:

ADDITIONAL COMMENTS: ANALYTICAL REQUESTS GROUNDWATER SAMPLES (CHECK ONE) GRAB or 9 Field Filtered Lab filtered <u>0</u> MATRIX 2 PRESERVATIVE ALL NAOH DW = DRINKING WATER
WW = WASTEWATER
GW = GROUNDWATER
GW = GROUND WATER TURN AROUND TIME DATE/TIME RECEIVED: RUSH (200% UPCHARGE); Ę S= SOUD/SUDGE MATRIX STANDARD 10 DAY: ICE?: (Y)/NDATE NEEDED: SAMPLE REQUEST & CHAIN OF CUSTODY FORM P = PAPER H2SO4 HN03 3 6 7 LOCCED IN: Ctil ties ż 5000 LAB USE ONLY SAMPLE COLLECTION TIME eklisteroka-wi. ora J. COAM UDD HSland St PO NUMBER: DATE * Ster 430-419-3565 Kaukeuna Eugene Klister Small Bottle な 井 な SAMPLE# イナの イナニ DATE/TIMES AMPLED: SAMPLED BY: CLIENT NAME / ADDRESS BILLING ADDRESS/ EMAIL DELIVERY METHOD: RELINQUISHED BY: Brothers PROJECT NAME/ SITE: SAMPLE ID

| NEENAH | W. | S. C. O. | S. I. | | HQ-WDNR Cert. Lab #445023150 | HQ-DATCP Cert. #105-205 GREEN BAY W 1 \$ C O N \$ 1 N GB-WDNR Cert. Lab #405222620 GB-DATCP Cert. #105-450 STEVENS POINT W | S C 0 H S | H SP-WDNR Cert Lab #750124210 SP-DATCP Cert #105-525 CERTIFICATIONS ANALYTICAL LABORATORY & ENVIRONMENTAL SERVICES BADGER LABS Peenah: 501 W. Bell St. Neenah, WI 54956 Green Bay: 2150 Memorial Drive Suite 106 Green Bay, WI 54303 Stevens Point: 3426 E. Maria Drive Stevens Point, WI 54481 ANALYTICAL REQUESTS 800 GROUNDWATER SAMPLES (CHECK ONE) Field Filtered Lab filtered GW=GROUNDWATER CW=COOLING WATER S=SOUD/SUDGE P=PAPER TURN AROUND TIME DW = DRINKING WATER WW = WASTEWATER RUSH (200% UPCHARGE); MATRIX STANDARD 10 DAY: SAMPLE REQUEST & CHAIN OF CUSTODY FORM F= FUEL Ctili ties eklisteroku-wi.on US HSland St PO NUMBER: 1900-419-356 P Kaukauna Fugene Klister BILLING ADDRESS/ EMAIL CLIENT NAME / ADDRESS ROJECT NAME/ SITE:

SE	FROJECT# pH OK BECD)												
WATEVE SECTION MATERIX GRABOT	17 DES G X		57		3		833	5		1 1 9	SECULIOR CUSTODIRECCORDISE	RECEIVEDSAMPLED BY:	DATE/TIME RECEIVED: 2 C 2 10 PU	N /
SAMPLE # DATE TIME Nº H2564 H033	4 1St Draw 10-200-22 5/677	2nd 1	3rd	01+K	るナト	6+12)+V	8+Y	0+4	J 7+01			32 7:00 Am	OD: C\'EAA+ ICER Y
SAMPLE ID	Brothers St									-)	IN DED IN BY CHENN	SAMPLED BY:	DATE/TIMES MPL. 10-20 RELINQUISHED BY:	DELLYERY METHOD:

NEENAH W I & C O H S I I HQ-WDNR Cert Lab #445023150 HQ-DATCP Cert. #105-203 GREEN BAY

W 1 S C O N S 1 N

GB-WDNR Cert. Lab #405222620

GB-DATCP Cert. #105-450 STEVENS POINT
W 1 S C 0 H S 1 H
SP-WDNR Cert Lab #750124210
SP-DATCP Cert #105-525 CERTIFICATIONS DATE REC'D LAB USE ONLY pH OK BADGER LABS ANALYTICAL LABORATORY & ENVIRONMENTAL SERVICES est. 1966 PROJECT# esr. 1908 Will St. Neenah, WI 54956 Green Bay: 2150 Memorial Drive Suite 106 Green Bay, WI 54303 Stevens Point: 3426 E. Maria Drive Stevens Point, WI 54481 ANALYTICAL REQUESTS **59** SROUNDWATER SAMPLES (CHECKONE) GRAB or Q Field Filtered Lab filtered MATRIX 30 NAOH GW = GROUNDWATER CW = COOLING WATER S = SOUD/STUDGE TURN AROUND TIME ** * * * PRESERVATIVE ... DW = DRINKING WATER WW = WASTEWATER DATE/TIME RECEIVED: IUSH (200% UPCHANGE); Ę MATRIX STANDARD 10 DAY: × / × MATE NEEDED. さると SAMPLE REQUEST & CHAIN OF CUSTODY FORM P = PAPER H2S04 HN03 Slaro LOGGED IN: 9 とり ICE: Kaukauna Otilities ž C 10-40-07 LAB USE ONING SAMPLE COLLECTION 4 TIME . ०८६ UDD Haland St PO NUMBER: 6:30 AM CONT DATE eklister eku-w. ななにと 920-419-3565 PROJECT NAMIE! SITE. Fugene Klister Sma 4 ムナー イナの SAMPLE # a # Eugene DATE/TIME SAMPLED: BILLING ADDRESS/ EMAIL CLIENT NAME / ADDRESS DELIVERY METHOD: RELINQUISHED BY: コナトらナ 3 SAMPLEID 321

CERTIFICATIONS NEENAH W | \$ C 0 H \$ I IN HQ-WDNR Cert Lab #445023150 HQ-DATCP Cert #105-205 GREEN BAY w 1 s c o n s 1 n GB-WDNR Cert. Lab #405222620 GB-DATCP Cert. #105-450 STEVENS POINT W I S C O H S I H SP-WDNR Cert Lab #750124210 SP-DATCP Cert #105-525 BADGER LABS ANALYTICAL LABORATORY & ENVIRONMENTAL SERVICES est. 1966 est. 19 Green Bay: 2150 Memorial Drive Suite 106 Green Bay, WI 54303 Stevens Point: 3426 E. Maria Drive Stevens Point, WI 54481 ANALYTICAL REQUESTS GROUNDWATER SAMPLES (CHECK ONE) Field Filtered Lab filtered DOW = DRINKING WATER WWW = WASTEWATER WWW = KROUNDWATER CW = COQUING WATER S = SOULD/SUDGE P = PAPER TURN AROUND TIME RUSH (2006 (PICHARSE); STANDARD 10 DAY: MATRIX DATE NEEDED: SAMPLE REQUEST & CHAIN OF CUSTODY FORM F= FUEL CATILITIES eklisteroku-w..om 100 Hsland St PO NUMBER: 900-419-3565 Kaukeuna Fugene Klister BILLING ADDRESS/ EMAIL CLIENT NAME / ADDRESS ROJECT NAME/ SITE: REPORT TO.

SE -	FRUJECT# pH OK RECTO										
<u> </u>				-			-	-		-	
				+	+	+-		+	+		
<u> </u>							1	†			
	1.0	ļ.,				1 1 1 1 1 1 1		100	-		
<u> </u>	X	1_			-	-	_	+	+	$ \mathbf{H} $	
GRAB or	Q	_									
MATRIX	OO C									-1	
TVE.	15/198	3	43	2,6	52	30	67	3	22	36260	
LECTION CONT.	16.			100.0							
AMPLE COLL DATE	80									1	
Yes SAM	3										
SAMPLE # DATE TIME NP H2504 H103	15+ Draw 10-20-03	Ind	3rd	C)+Y	2+5	トトト	フナト	X+8	スナグ	10tV	
	321 W									-	

SAME DO BY. SAME DO BY. BATETIMES MPLED: CO - OO - OO RELINQUISHED BY: DELIVERY METHOD:	C. L. C. L. C.	ENGLISH ADDITIONAL COMMENTS: RECEIVED/SAMPLED BY: CA ADDITIONAL COMMENTS:	10-26-30 6:30 AM BATETIME RECEIVED: 21/2 DM	LOCGED IN:	CL'EAT ICE?: (Y) N
--	--	--	---	------------	--------------------

CERTIFICATIONS NEENAH W | \$ C 0 H \$ I N HQ-WDNR Cert Lab #445023150 HQ-DATCP Cert #105-203 GB-WDNR Cert. Lab #405222620 GB-DATCP Cert. #105-450 STEVENS POINT
W 1 S C 0 W 5 I W
SP-WDNR Cert Lab #750124210
SP-DATCP Cert #105-525 GREEN BAY LABUSEONLY LEED IN BY CLIENT

MET TO BY

ADDITIONAL COMMENTS:

RECENYED/SANTIED BY:

ADDITIONAL COMMENTS: PH OK BADGER LABS PROJECT# 4()を Peenah: 501 W. Bell St. Neenah, WI 54956 Green Bay: 2150 Memorial Drive Suite 106 Green Bay. WI 54303 Stevens Point: 3426 E. Maria Drive Stevens Point, WI 54481 ANALYTICAL REQUESTS 6 GROUNDWATER SAMPLES COMPOSITE 0 Field Filtered (CHECK ONE) Lab filtered M 30 MATRIX \$ 14AB USE ONISK SAMPLE COLLECTION | PRESERVATIVE NAOH GW=GROUNDWATER CW=COOLING WATER S=SOUD/SLUDGE TURN AROUND TIME OW = ORINKING WATER WW = WASTEWATER DATE/TIME RECEIVED: RUSH (2006; UPCHARGE); HCL MATRIX STANDARD 10 DAY: DATE NECDED. il Box X / X SAMPLE REQUEST & CHAIN OF CUSTODY FORM P = PAPER H2SO4 HINDS LOCCED IN: 20802 ICE: Kaukeuna atilities मन्द्र न Ì Ce-de-01 TIME OKISTEROKU-W.OR 12) Haland St PO NUMBER: SOBAM Chert M DATE 900-419-356 Eugene Klister Small Bottle #1 Manuel Home Ocher イナニ SAMPLE # イナなっ d # DATE/TIME SAMPLED: CLIENT NAME / ADDRESS BILLING ADDRESS/ EMAIL Diedrichst DELIVERY METHOD: PROJECT NAME/ SITE RELINQUISHED BY: SAMPLEID 000

CERTIFICATIONS GREEN BAY GB-WDNR Cert_Lab #405222620 GB-DATCP Cert_#105-450 STEVENS POINT SP-WDNR Cert Lab #750124210 SP-DATCP Cert #105-525 PROTECT# pH OK RECD AMPLED IN BY CLIENT

WEIGHT DE NY CLIENT

WEIGHT OF BY:

AMPLED BY BADGER LABS
ANALYTICAL LABORATORY & ENVIRONMENTAL SERVICES
EST. 1966 Neenah: 501 W. Bell St. Neenah, WI 54956 Green Bay: 2150 Memorial Drive Suite 106 Green Bay, WI 54303 Stevens Point: 3426 E. Maria Drive Stevens Point, WI 54481. ANALYTICAL REQUESTS メ ROUNDWATER SAMPLES (CHECKONE) COMPOSITE 9 Field Filtered S ab filtered 30 MATRIX S NAOH . QW = DRINKING WATER INV = WASTEWATER GW = GROUNDWATER CW = CODLING WATER S = SOUD/SKUDGE TURN AROUND TIME DATE/TIME RECEIVED: IUSH (2005; UPGIANCE); Ę MATRIX 4 STANDARD 10 DAY: 3 5 7 DATE NECOED. X / X SAMPLE REQUEST & CHAIN OF CUSTODY FORM P = PAPER F= FUEL H2SO4 HN03 OCCED IN ICE: これによる ż क्ट व्य SI SO AM TIME . ठिख UDD Haland St PO NUMBER: Ò DATE eklister Oku-w. 920-419-3565 Eugene Klister Kaukauna 15+ Day Hemeconer batemagramples: 10-26-32 Sellinguished By: のナト 2ナ0/ J Z イナグ SAMPLE # イナリ とナア 35 ムナつ ムナひ BILLING ADDRESS/ EMAIL CLIENT NAME / ADDRESS DELIVERY METHOD: SAMPLED IN BY CLIENT PROJECT NAME/ SITE: Diedrich SAMPLE ID

CERTIFICATIONS NEENAH W 1 & C 0 H \$ 1 H HQ-WDNR Cert Lab #445023150 HQ-DATCP Cert #1025-203 GREEN BAY

W 1 * C O N * 1 N

GB-WDNR Cert. Lab #405222620

GB-DATCP Cert. #105-450 STEVENS POINT

W | S C O W S | W

SP-WDNR Cert Lab #750124210

SP-DATCP Cert #105-525 DATE REC'D LAB USE ONLY PH OK BADGER LABS 5(19 PROJECT# Neenah: 501 W. Bell St. Neenah, WI 54956 Green Bay: 2150 Memorial Drive Suite 106 Green Bay, WI 54303 Stevens Point: 3426 E. Maria Drive Stevens Point, WI 54481 ANALYTICAL REQUESTS メ GROUNDWATER SAMPLES (CHECK ONE) COMPOSITE Q Field Filtered Lab filtered <u>م</u> MATRIX NAOH LABUSE ONLY SAMPLE COLLECTION SECTION PRESERVATIVE TURN AROUND TIME DW = DRINKING WATER WW = WASTEWATER GW = GROUNDWATER CW = COOLING WATER S=SOUD/SUDGE P=PAPER F=FUEL NUSH (200% UPCHARGE); HCL MATRIX STANDARD 10 DAY: DATE NEEDED: 34130 SAMPLE REQUEST & CHAIN OF CUSTODY FORM H2S04 HN03 の大による 12 x 2 x Ì 3000 0-04-01 TIME eklisteroku-wi.on 100 Hsland St PO NUMBER: DATE 920-419-3565 Kaukauna Eugene Klister Smart Bat 18#1 ムナロー イャ(SAMPLE# ロサ CLIENT NAME / ADDRESS BILLING ADDRESS/ EMAIL Gartield PROJECT NAME/ SITE: SAMPLEID 52

AND DEPTH DV CHITCHE	- SA CHAIN OR CUSTODY RECORD
	RECEIVEDISAMPI EN RADGER LABS
Fugere Klistor	2/6)
DATECTIVE SANIFED: O. 30 AM	DATE/TIME RECEIVED:
RELINQUISHED BY:	LOCCED DE:
Polity generators a dentitive of the	
DELL'ARTHOD:	ICER Y / N

| NEENAH | W | S C 0 | S | N | HQ-WDNR Cert Lab #445023150 | HQ-DATCP Cert #105-205 GREEN BAY

W I S C O N S I N

GB-WDNR Cert. Lab #405222620

GB-DATCP Cert. #105-450 SP-WDNR Cert Lab #750124210 SP-DATCP Cert #105-525 CERTIFICATIONS STEVENS POINT DATE LAB USE ONLY pH OK BADGER LABSANGES ANALYTICAL LABORATORY & ENVIRONMENTAL SERVICES EST. 1966 Sept. PROJECT# esr. 17 Green Bay: 2150 Memorial Drive Suite 106 Green Bay. WI 54303 Stevens Point: 3426 E. Maria Drive Stevens Point, WI 54481 AMPLED BY:

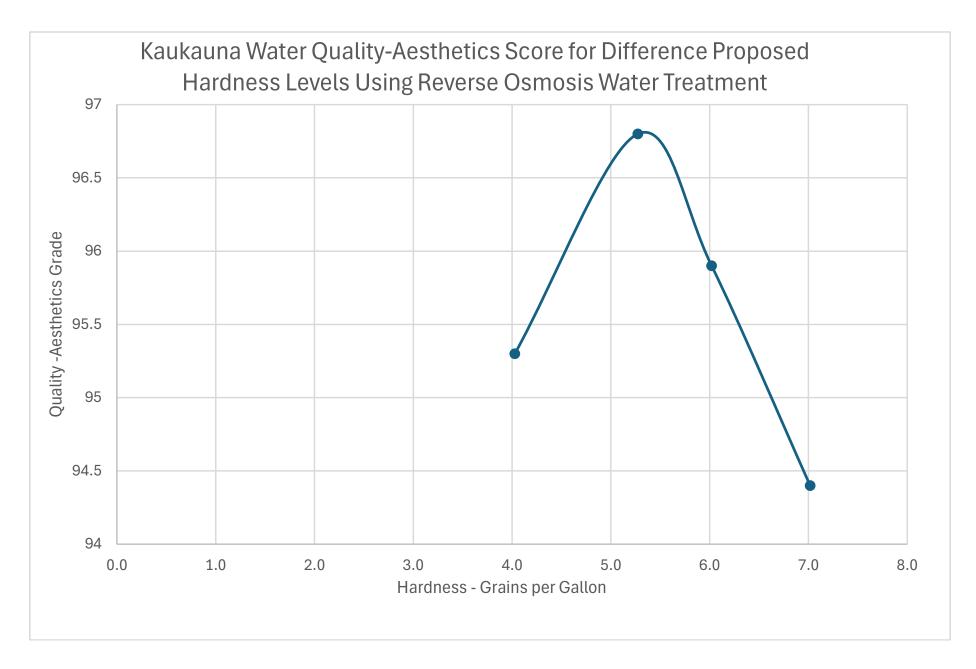
\[
\begin{align*}
\begin{align*}
\text{ADDITIONAL COMMENTS:} \\
\text{ADDITIONAL ANALYTICAL REQUESTS X GROUNDWATER SAMPLES (CHECK ONE) COMPOSITE 9 Field Filtered Lab filtered OF G MATRIX NAOH LOW = DRINKING WATER
WW = WASTEWATER
GW = GROUNDWATER
GW = SAOULING WATER
S= SOUD/SUDGE
P = PABPER TURN AROUND TIME ** * * ** PRESERVÁTAVE DATE/TIME RECEIVED: IUSH (2005; UPCHARGE); H2SO4 HINO3 HCL MATRIX STANDARD 10 DAY: DATE NEEDED: R. SAMPLE REQUEST & CHAIN OF CUSTODY FORM 3 \$ Lobert 4 2 こ 3 2 £ 0 LOGGED IN: Ctilities Ž 15t Drato 10,20-22 LAB USE ONEY SAMPLE COLLECTION こべられ 7,3000 TIME 500. 17) Haland St PO NUMBER: DATECTIVES APPLED: 10-30-30 7:30 E DATE EMAIL: COKCION COKCION. 356 SK Kaukeuna Eugene Klister イナク イナダ 37.0 ン
な
く SAMPLE# レナト 分かり イナり W. E. イナロ 920-419-CLIENT NAME / ADDRESS BILLING ADDRESS/ EMAIL DELIVERY METHOD: FILLED IN BY CLIENT SAMPLED BY: RELINQUISHED BY: Gacfield SAMPLE ID 150

Y / N

ICE;

APPENDIX F

Water Hardness Supplemental Information


G.1 UW MADISON WATER QUALITY BETA PROGRAM

Kaukauna Utility Water Aestics Score 2/5/2024

			Existing				
	Secondary MCL	Weight	Water	1	Individual	Weighted	
Item	mg/L			Percent MCL	Score	Score	
Iron	0.3	25.0%	0	0%	100	25	
Hardness	NA	25.0%	710		0	0	
manganese	0.05	25.0%	0.031	62%	85	21.25	
Alkalinity	NA	6.0%	150		85	5.1	
Chloride	250	6.0%	16	6%	99	5.94	
Sulfate	250	6.0%	531	212%	0	0	
Aluminum	0.2	3.5%	0	0%	100	3.5	
Fluoride	2	3.5%	1.7	85%	80	2.8	
		100.0%			Total Score	63.6	Kaukana

Score calculated based on formulas from

UW Madison - Water System Excellence Project Beta Report v1.0 dated September 14, 2023

Water System Excellence Project

Wisconsin Water Utility Report Cards for 2020

Beta Report v1.0

14 September 2023

Manuel P. Teodoro Robert Abrahamian

Executive Summary

The Water System Excellence Project (WSEP) publishes report cards for drinking water utilities in Wisconsin. These report cards provide clear, accessible information to the public about water quality, infrastructure integrity, operational efficiency, financial strength, and communications. Through clear and intuitive public reporting, the WSEP seeks to make the performance and conditions of these critical but often invisible systems more visible to the people of Wisconsin.

The challenge. Although drinking water is essential, most citizens know little about the systems that provide it. A central challenge for the elected officials who govern and professionals who manage drinking water is that water utilities' prices are much more visible than their quality. In economic terms, drinking water quality is a case of *information asymmetry*: utility managers understand the chemical, environmental, capital, and financial properties of water utilities, but the general public does not. By contrast, the price of water service is immediately and perfectly observable: when bills arrive, utility customers learn exactly what that water service costs. Since citizens only vaguely observe their water utilities' quality, they cannot properly evaluate the tradeoff between water's quality and its price.

These information asymmetries create parallel challenges for utility managers and policymakers. Operating natural monopolies and facing political pressure to keep prices low, managers and policymakers have little means of demonstrating the value and performance of their water systems. There are few ways to distinguish a great water utility from one that merely avoids disasters and meets minimum regulatory requirements.

A solution: report cards. This initial WSEP study offers a set report cards for all 506 water utilities regulated by the Wisconsin Public Service Commission for the year 2020, using a mix of publicly available and original data. By communicating performance comprehensively, but also clearly and simply, these report cards are meant to recognize strong performance, facilitate accountability, and provide feedback to policymakers and the public. Just as in a school, report cards include grades for multiple subjects—Water Quality-Health, Water Quality-Aesthetics, Finance, Infrastructure & Operations, and Communications—with each grade based on multiple performance indicators. The initial set of grades in this report is the first of its kind and serves as proof of concept and as a baseline for future development. This Beta 1.0 version of the report is aimed at Wisconsin's drinking water sector leaders to familiarize themselves with WSEP's goals and methodology.

Empirical evidence of excellence is the central principle behind WSEP grading. Grades are based on observable, measurable outcomes, not on formal policies or procedures. WSEP grading standards also recognize potentially wide variation in performance. In so doing, WSEP grades distinguish failing systems from mediocre systems, and good systems from truly great systems. In crafting these report cards, the WSEP consulted with experts in each graded area. Expert panelists include retired utility managers, consultants, research scientists, and university professors. Their disciplinary backgrounds include engineering, chemistry, economics, finance, communications, and public management.

First results. The initial 2020 grades that emerge from this study are at once reassuring and concerning. Figure E1 summarizes WSEP grades across all five subjects. Excellent overall performance on *Quality-Health* demonstrates that the vast majority of Wisconsin's water utilities fulfill their fundamental mission of providing safe, healthy drinking water. More than 91 percent of the state's water utilities earned A grades according to WSEP's demanding rubric. Collectively, Wisconsin's water utilities perform far better than what is required of them by law.

On the other hand, statewide results for *Finance* and *Infrastructure & Operations* raise concerns for sustainability. Most utilities earned solid grades for *Finance* though a significant minority of utilities produced poor marks. Overall *Infrastructure & Operations* grades were troubling: more than 40% of the state's utilities earned strong grades on the subject, but a majority received mediocre or poor marks. Weak financial, capital, and/or operational performance are likely to erode water quality and public confidence in the long run. *Communications* grades were mostly poor: nearly half of Wisconsin's utilities failed, and barely five percent earned A grades. Overall aesthetic quality is difficult to gauge, owing to the large number utilities with incomplete data.

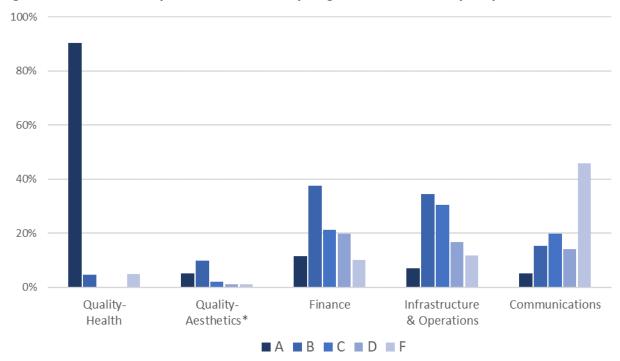


Figure E1. 2020 Water System Excellence Project grade distribution by subject

*Excludes 81% of utilities that received "Incomplete" for Quality-Aesthetics.

As any student knows, earning good grades in a demanding discipline is not easy. Taken together, these results indicate that our state's water utility leaders maintain sound water quality, often under difficult financial, capital, and operating conditions. Improvements in these aspects of water systems will ensure that Wisconsinites enjoy excellent tap water service well into the future. Sustainable excellence is possible for every Wisconsin water system; we hope that this initial WSEP report moves us forward toward that goal.

Contents

Executive Summary	i
Introduction	1
The challenge	1
A solution: report cards	2
Drinking water report cards in other states	4
The promise	9
QUALITY – HEALTH	10
Grading Quality-Health	11
QUALITY – AESTHETICS	16
Numerical contaminant scores	17
Quality-Aesthetics grades across Wisconsin	26
FINANCE	27
Elements of Finance grade	28
Finance grades across Wisconsin	37
INFRASTRUCTURE & OPERATIONS	38
Infrastructure	39
Operations	44
Infrastructure & Operations grades across Wisconsin	51
COMMUNICATIONS	52
Elements of Communications grade	53
Data collection	54
Transparency	54
Interactivity	58
Communications grades across Wisconsin	61
CONCLUSION	62
How good are Wisconsin's water utilities?	63
Next steps forward	64
References	66
Appendix A Return on Equity (ROE) formula	A1
Appendix B Main flow weights	
Appendix C Utility report cards	C1
Appendix D Illustrative report card calculation	D1

Water System Excellence Project Beta 1.0 | 2020 Report Cards

This page intentionally left blank

Introduction

The Water System Excellence Project (WSEP) publishes report cards for drinking water utilities in Wisconsin. These report cards will provide clear and accessible information to the public about water quality, infrastructure integrity, operational efficiency, financial strength, and communications. Through clear and intuitive public reporting, the WSEP seeks to make the performance and conditions of these critical but often invisible systems more visible to the people of Wisconsin.

The challenge

Safe and reliable drinking water service is essential for health and prosperity. As in most of the United States, drinking water utility service in Wisconsin is also principally a local government function. More than 4 million Wisconsin residents receive their drinking water from a utility, and nearly 98% are owned and operated by local government.

Although drinking water is ubiquitous and essential, most citizens know little about these critical systems. Drinking water systems are buried – literally and figuratively. A central challenge, then, for the elected officials who govern and professionals who manage and regulate water is that water utilities' prices are much more visible than their quality.

In economic terms, drinking water quality is a case of information asymmetry: utility managers understand the chemical, environmental, capital, operational, and financial properties of water utilities that determine their safety and sustainability, but the general public does not. Water mains that are strong and well-maintained or crumbling and leaky look the same to customers. Water that barely meets regulatory requirements is in many ways indistinguishable from pristine tap water from the customer's perspective. Unless water systems fail egregiously, ordinary citizens have little way to know how well or poorly their utilities perform.

To reduce the gap between public and professional knowledge, the Safe Drinking Water Act (SDWA) requires water systems to notify the public of water quality violations and to publish annual Consumer Confidence Reports (CCRs). These CCRs indicate levels of various federally regulated contaminants in tap water – but not dozens of other compounds that also affect a ratepayers' experience with the water, especially taste and odor. Unfortunately, CCRs are often poorly designed and difficult to comprehend; empirical studies demonstrate that they do not communicate effectively or improve consumer confidence. Moreover, CCRs do not provide customers with information about utility performance beyond water quality, such as infrastructure integrity, financial strength, aesthetics, operations, or communications. In short, water utility quality is very difficult for most people to observe with any accuracy.

By contrast, the price of water service is immediately and perfectly observable: when bills arrive, utility customers—who are also voters—learn exactly what that water service costs them. And naturally, customers prefer lower prices, which means managers and local elected

Page | 1

¹ Johnson (2003); Nicholas and Vedachalam (2021); Roy et al. (2015).

officials who set service rates face consistent pressure to keep prices low with relatively little attendant attention to quality or sustainability.²

Combined, the opacity of water utilities' performance and clarity of their prices carry pernicious consequences for water systems. Since citizens only vaguely observe their water utilities' quality, they cannot properly evaluate the tradeoff between water's quality and its price. Consequently, citizens cannot adequately reward elected officials who improve water utilities, but they can (and sometimes do) punish politicians at the ballot box for rate increases. Local governments tend to underinvest in their water systems until regulatory violations or catastrophic failures occur.

Similarly, since it is hard for water system managers to demonstrate the value of their work in terms of anything but monthly bills and regulatory compliance, they have little professional incentive to innovate or improve their systems. There are few ways to distinguish a great water utility from one that is merely meeting the minimum regulatory requirements. Rather than pursuing greater quality, resilience, or sustainability, utility managers tend to manage to regulatory standards because they are politically defensible. Operating natural monopolies and facing political pressure to keep prices low, utility managers have few ways to demonstrate the value of the services they provide. The leaders who govern water systems are thus stuck between a rate increase rock and a regulatory hard place. The result is a water utility management paradigm that is fundamentally negative: oriented toward loss avoidance instead of gains.

In sum, the public does not understand the quality of their water systems, which erodes utility accountability to citizens, causes policymakers to underinvest in utilities, and disincentivizes excellence for utility managers.

A solution: report cards

The WSEP offers a set of report cards that communicate water utilities' performance comprehensively, but also clearly and simply. Organizational report cards facilitate accountability, reward performance for managers, and provide feedback to an organization's governing body. Report cards distill and transform vast and complicated performance information into a form that lay persons can easily understand.

With report cards in hand, utility leaders can set clear improvement targets and show how their efforts improved the system's performance. Mayors, councilmembers, legislators, and regulators can identify and redress poor performance, or trumpet improvements and strong performance. For both managers and politicians, report cards can help to demonstrate the reasons for the unpleasant rate increases that infrastructure investments require. At the same time, report cards will make it easier for voters and activists to reward elected officials for

² Hansen and Mullin (2022).

³ Teodoro (2011).

⁴ Gormley and Weimer (1999).

water system excellence and hold them accountable for failures.

To these ends, the WSEP developed report cards for all 506 water utilities currently regulated by the Wisconsin Public Services Commission. Just as in a school or college, these report cards include grades for multiple "subjects:" 1) Quality-health; 2) Quality-Aesthetics; 3) Finance; 4) Infrastructure & Operations; and 5) Communications. Just as a course grade in school is based on performance on multiple assignments and exams, we assigned grades for each of these subjects based on multiple utility performance indicators, with greater or lesser weights assigned to each indicator.

Crafting report cards

Beginning in 2021, the WSEP convened and consulted with experts in each area of water utility performance. Our expert panelists include retired utility managers, consultants who work with utilities, research scientists, and university professors. Their disciplinary backgrounds include engineering, chemistry, economics, finance, communications, and public management. In order to avoid conflicts of interest, we sought experts who are from outside of Wisconsin and who do not currently own or manage water utilities. We also promised confidentiality to our expert advisors in order to facilitate candid advice. The standards advanced here are wholly the responsibility of WSEP.

We provided our experts on each of the five subjects a list of variables and descriptive statistics for utility data from the Wisconsin Department of Natural Resources (DNR), Public Service Commission of Wisconsin (PSC), and U.S. Environmental Protection Agency's Safe Drinking Water Information System (SDWIS). With these data as a starting point, we discussed with our experts the meaning and significance of various indicators for evaluating utility quality and performance. This process was iterative, typically involving 3-5 meetings. After settling on a rubric for each subject, we applied the rubrics to data to Wisconsin's utilities.

Empirical evidence of excellence is the guiding principle that drives our rubric development. A focus on empirical evidence means that WSEP grades are based on observable, measurable outcomes (e.g., contaminant levels, water loss, financial reserve levels, information accessibility), not on formal policies or procedures (e.g., asset management plans, rate studies, succession plans, cybersecurity policies). In colloquial terms, WSEP grades on achievement, not effort. WSEP grading does not award "extra credit" or "bonus" points to utilities for anything other than measurable performance.

Our focus on *excellence* means that WSEP grades are meant to distinguish failing systems from mediocre systems, and good systems from truly great systems. Thus, our grading scheme involves accumulation of credit for accomplishments, not deduction of credit for failures. In other words, utilities do not start with a perfect score from which we deduct points for deficiencies or failures. Rather, each utility starts with a score of zero, and then earns excellent (A), good (B), fair (C), passing (D), or failing (F) grades by demonstrating performance across a host of indicators. That is, our grading scheme seeks not only to identify failing systems, but

also to recognize a potentially wide variation in performance. From this perspective, meeting regulatory requirements is a *minimum* standard, not a standard of excellence. Utilities that merely meet regulatory requirements will receive passing WSEP marks, but not great marks.

Finally, WSEP assigns separate grades for each of the five subjects rather than blending them into a single overall grade. Keeping subjects separate helps the public, policymakers, and utility leaders understand their areas of relative strength and weakness.

Why Wisconsin?

Wisconsin is an ideal place to craft comprehensive water system report cards. The Badger State is sufficiently large and diverse to demonstrate how report cards can work across urban, suburban, and rural communities. At the same time, Wisconsin is sufficiently homogenous to allow valid comparison of most aspects of utility quality and performance within the state. Crucially, Wisconsin's unique regulatory institutions collect data on water quality, utility finances, and water system integrity in ways that other states do not. Utility regulation was born in Wisconsin with the founding of the PSC in 1907, built in large part on models developed by University of Wisconsin researchers; more than 30 states followed suit over the next decade, ushering in an era of modern utility governance. A century later, WSEP seeks to transform utility governance once again from the shores of Lake Mendota.

Proof of concept

This initial set of utility grades serves as a pilot or "beta test" for the WSEP as a proof of concept and baseline for future development. The present study offers an annual grade based mainly on data from calendar year 2020. We expect to issue similar report cards biennially going forward, with rubrics that evolve over time to reflect changing realities.

Drinking water report cards in other states

Similar recent efforts at public reporting of drinking water system performance in three other states—New Jersey, California, and Louisiana—merit brief discussion. Each of these states' policies involve public reporting of utility performance in an effort to improve performance and accountability.

New Jersey

In 2017, the state of New Jersey enacted the Water Quality Accountability Act (WQAA), which required the state's water utilities to submit a variety of data on safety, reliability, finances, and management to the state's Department of Environmental Protection (DEP). The state amended the WQAA in 2021 to require (among other things) the DEP to publish "a report card for each water purveyor in the State" on its website. In fulfillment of this mandate, DEP publishes the WQAA reporting data on a publicly available online dashboard, where residents may look up

their own utilities and find a variety of information about them.⁵ However, DEP does not assign letter grades or provide evaluative guidelines for these data.

California

In 2019, California's Senate Bill 200 authorized the California Water Board to craft an annual needs assessment for the Golden State's water utilities as a way to help inform state allocations resources to failing or at-risk small community water systems. The Board published its first *Drinking Water Needs Assessment* in 2021; two subsequent assessments were published in 2022 and 2023. The California *Needs Assessment* is in principle a risk assessment of small systems. As such, California's methodology looks only at small systems and evaluates their risks of "failing to sustainably provide a sufficient amount of safe and affordable drinking water." The California Water Board's assessment of resources, capital conditions, operating costs, and affordability yields a four-category classification, with small systems classified as either "not atrisk," "potentially at risk," "at-risk," or "HR2W." The final designation applies to systems that consistently fail to meet primary drinking water standards under the SDWA. Since the California effort is intended to guide allocation of state funding to small systems based on the severity of their needs, the California assessments evaluate only small systems (i.e., systems that serve populations of 3,300 or fewer) and focus on the risk of failure, not performance.

Louisiana

In 2021, the Louisiana Legislature authorized its state Department of Health (LDH) to develop letter grades for community water system accountability and performance. After a two year process, the LDH issued letter grades for each of the state's drinking water systems based on compliance with federal water quality rules, state water quality rules, financial sustainability, operation and maintenance, infrastructure, customer satisfaction, and secondary contaminants. LDH combines data on all of these topics to calculate a numerical grade on a 100-point scale, which then converts to a single letter grade (A, B, C, D, or F) for each utility.

Louisiana's grading system follows a penalty or demerit principle: utilities are presumed to start with a perfect 100 score, from which LDH deducts points for various failures. For example, violation of a state or federal SDWA Maximum Contaminant Limit (MCL), a boil water notice, or a failure to submit a rate study each result in a five-point deduction. The Louisiana rubric also limits the deductions that a utility can receive on any single subject. For example, federal SDWA violation deductions are capped at 30. Louisiana's rubric also allows a utility to earn up to ten "extra points" for various plans and programs, such as an asset management plan or

⁵ https://www.state.nj.us/dep/watersupply/dwc systems.html

⁶ Abhold et al. (2021), 13.

⁷ HR2W is an abbreviation for "Human Right to Water," which refers to a 2016 California law that declared a "human right to water" in the state.

⁸ https://ldh.la.gov/assets/oph/Center-EH/engineering/Grade Rule/CWS Accountability Rule LR.pdf

management training program.9

Like California's, Louisiana's assessment also proceeds under a compliance paradigm: LDH's rubric evaluates performance strictly in terms of failures and deficiencies. Although Louisiana's letter grades imply recognition of strong performance, the definition of performance is rooted in regulatory compliance, not achievement of excellence.

Why WSEP is different

Efforts to evaluate and publicly report on water system quality in New Jersey, California, and Louisiana are encouraging, and together reflect a growing movement toward greater transparency and accountability for American water utilities. However, their origins, purposes, and forms are markedly different from WSEP's in at least three important ways.

First, the WSEP offers an independent assessment of drinking water utility performance, unaligned with any state regulatory agency or interest group. The New Jersey, California, and Louisiana reporting programs are products of state government agencies that emerged from state legislation. As such, institutional and political constraints shape these states' assessments and reporting processes to some extent. By contrast, the WSEP is a project of the La Follette School of Public Affairs at the University of Wisconsin-Madison, which affords the present effort a remarkable degree of independence. That independence allows WSEP to set rigorous performance standards free from political or commercial considerations.

Second, the WSEP's grading rubric is based entirely on empirically observable outcomes, not plans or procedures. This exclusive focus on measurable results sets WSEP apart from New Jersey's and Louisiana, which include some aspects of planning and programming.

Third and most critically, WSEP's focus on *excellence* puts utility performance at the heart of its assessment, with letter grades as a means of distilling and communicating utility performance. California's and Louisiana's assessment regimes each focus on failures and deficiencies (albeit in different ways); their goals are to identify failing systems in hopes of remediating them. New Jersey's report cards provide the public with ample information, but do not distill that information in a way that communicates performance to lay persons. WSEP's principal goal is to communicate utility performance in a way that not only identifies failures, but also distinguishes the good from the merely adequate, and the truly great from the merely good. *WSEP's aim is not only to point out failure, but also to highlight achievement.*

Page | 6

 $^{^9}$ In capping deductions and offering "extra points," Louisiana's rubric potentially allows utilities to perform quite poorly and yet retain an apparently solid or even strong grade. For example, a utility that violated MCLs dozens of times would be penalized only 30 points, since the rubric limits MCL deductions to 30. The same utility could then earn back ten "extra points" for participating in a management program and filing a well assessment program with the state. The utility's final score would be 80 (100 – 30 points for MCL violations + 5 for management program participation + 5 for well assessment program), resulting in an overall letter grade of B for a utility that sent contaminated water to its customers for most of the year.

Five subjects

As noted above, WSEP report cards include grades for five "subjects:"

- Water Quality-Health
- Water Quality-Aesthetics
- Infrastructure & Operations
- Finance
- Communications

Here we offer brief introductions to each subject; the report provides detailed rubrics and results for each.

Water Quality-Health

Delivering safe, healthy drinking water is the primary objective of any water utility. WSEP grades for *Quality-Health* are based on regulated contaminant levels, with separate assessments of acute contaminants (which pose an immediate risk to human health) and chronic contaminants (which can cause negative health effects after continuous exposure over a long period of time). The SDWA regulates both types of contaminants through primary MCLs; water utilities violate the SDWA when they exceed an MCL.

As with every WSEP grade, distinguishing between adequate, good, and excellent performance is a guiding principle of our approach to evaluating water quality. To that end, our grading scheme views compliance with MCLs as defined in state and federal rules as a minimum expectation, and our grading scale calculates grades as a function of observed contaminant levels relative to their MCLs. Exceedances of MCLs that result in formal violations reflect failures of a utility's health mission, and so a utility that formally violates an MCL automatically fails the Quality-Health subject.

Water Quality-Aesthetics

Secondary contaminants, or "aesthetics" of water quality, are important because the taste, odor, color, and other aesthetic conditions are usually the most noticeable and unpleasant for consumers. If the water has a poor taste or is discolored, consumers may be less trusting of the water system and be more likely to purchase bottled water, even if the water is perfectly safe in terms of human health. ¹⁰

Quality-Aesthetics grades are based on the EPA's National Secondary Drinking Water Regulations (NSDWRs). The secondary drinking water regulations set non-mandatory water quality standards for 15 contaminants, which are not enforced by EPA and state regulators, except for fluoride. The "secondary maximum contaminant levels" (SMCLs) are established as guidelines to assist public water systems in managing their water supply for aesthetics – such as

¹⁰ See for example: Doria, Pidgeon, and Hunter (2009); Teodoro, Zuhlke, and Switzer (2022).

taste, color, and odor. We included contaminants such as iron, manganese, hardness, and alkalinity, with data from the Wisconsin Department of Natural Resources.

Unfortunately, relatively few Wisconsin utilities report data on all of these secondary contaminants that we use in grading. Due to data availability constraints, we have *Quality-Aesthetics* grades for only 97 utilities; those with missing data are marked as "incomplete."

Finance

Finance is a critical component of overall water utility performance: financial strength is crucial for a utility's sustainability, affordability is critical for a utility's public health mission, and progressive pricing is important for equity. Balancing rising costs and the need to invest in infrastructure with affordability and equity is challenging.

Our assessment of water utility financial strength involves capital financing capacity, liquidity, affordability, and proportionality in pricing. Utilities received strong marks for showing ample financing capacity and financial liquidity to handle unexpected contingencies, and for low taxes on water utility revenue. Utilities also earned credit for low residential service prices at modest volumes and for progressive water rate structures (i.e., increasing prices at higher volumes).

Infrastructure & Operations

Physical integrity and operational effectiveness are both essential to water system excellence and sustainability. Since a utility's capital and operations are intrinsically linked, we combine both into a single "subject": Infrastructure accounts for half of the *Infrastructure & Operations* grade, and Operations accounts for the other half. Water utilities' infrastructure needs vary widely, depending on factors such as source water and customer demand.

The infrastructure grade focuses on transmission and distribution system integrity using data on water loss, replacement rate, and especially main breaks. The Operations grade includes energy consumption and several measurements of operating expenses.

Communications

Transparency and access to key utility information are vital for public trust, accountability, good governance, and confidence in leadership. By quantifying and assessing utilities *Communications*, WSEP seeks to encourage water utility leaders to consider public communication a strategic imperative and a core element of their utilities' overall performance. In the 21st century, effective communications depend principally on "e-governance": access to information via the Internet, mobile devices, and social media. These media present new challenges, but also opened up new opportunities for communicating with the public.

WSEP *Communications* grades reflect two constructs: transparency and interactivity. *Transparency* relates to the type of information and accessibility of that information, while

interactivity relates to how much a utility interacts with and provides opportunities for the public to interact with their water utility.

Utilities earned credit for *transparency* with the presence of a website, the use of social media, and by providing various information online in multiple languages. WSEP awarded *interactivity* credit to utilities that provided information on how the public could contact them via telephone, email, social media, and/or public meetings.

The promise

The WSEP aims to depict water utility performance in clear, intuitive report cards as a step toward transforming water utility governance in Wisconsin and beyond. Similar concepts have been developed and introduced in other states, demonstrating the salience of this issue and the appetite among the public and policymakers to make water system performance more transparent. Report cards can incentivize and reward strong performance by highlighting excellence; they also can identify weaknesses within utilities, across utilities, and statewide. Report cards can improve accountability and help elected officials make sound decisions for these most critical systems.

The balance of this report includes separate detailed descriptions and discussions of each subject, followed by an overall summary and discussion of WSEP grades across Wisconsin. An appendix to the report offers a subject-by-subject summary of grades for each utility.

QUALITY — HEALTH

Providing safe drinking water is the primary objective of any water utility, and water quality is essential to a successful water system and to maintaining the public's trust. Water quality challenges involve public health. Given the high-profile crises in places such as Flint, Michigan; Jackson, Mississippi; and East Palestine, Ohio; it is difficult to overstate the importance of safe, healthy drinking water. Water *Quality-Health* is thus the first and arguably the most important subject on the WSEP report card.

Although providing safe and reliable drinking water is an essential service and primary objective for any municipal government or water utility, the public has little understanding of their water's quality from a health perspective. Conventionally, the SDWA-mandated CCR (also known as an annual drinking water quality report, sent to all customers by July 1 of each year) is the primary means of communicating tap water health and safety to the general public. However, past research indicates that CCRs are difficult for water customers to interpret and often fail to communicate drinking water quality accurately and effectively. A central aim of WSEP, then, is to convey drinking water quality to the public in a more intuitively meaningful way.

We graded water *Quality – Health* based on utilities' regulated contaminant levels as reported in sampling data from the Wisconsin DNR. Following recommendations from experts, we categorized contaminants as either *acute* or *chronic* according to classifications from the EPA¹³ and Minnesota Department of Health.¹⁴ We then assigned scores separately for each type of contaminant. Acute contaminants are substances that can adversely affect human health seriously in a short period of time (hours to days). Chronic contaminants can cause increased risk of negative health effects after continuous exposure over a long period of time.¹⁵

For example, coliform bacteria is an acute contaminant, and can cause symptoms within a matter of hours or days. Chronic contaminants such as PFAS, arsenic, and nitrates, can increase the risk of cancers and other health conditions after extended exposure at high or relatively low levels. In Wisconsin, particularly in the central sands region, water often contains elevated levels of nitrates due to the heavy agricultural land use, irrigation, and sandy soils. High nitrate levels thus drive concern for both private wells and municipal water systems. Elevated levels of nitrates can lead to conditions such as infant methemoglobinemia, or "blue baby syndrome." ¹⁶

Data for calculating *Quality-Health* grades were drawn from the Wisconsin DNR for 2019-2020 and the EPA's SDWIS for violations in 2020.

¹¹ https://www.epa.gov/ccr/consumer-confidence-report-rule-and-rule-history-water-systems

¹²Evans and Carpenter (2019); Johnson (2003).

¹³ https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations

¹⁴ https://www.health.state.mn.us/communities/environment/risk/guidance/gw/table.html

¹⁶ https://www.dhs.wisconsin.gov/water/blue-baby-syndrome.htm

Grading *Quality-Health*

Each utility earned a numerical score on a 0-100 scale for each SDWA-regulated contaminant. The *Quality-Health* grade is an aggregation of scores for all of the individual contaminants, with *acute* contaminants accounting for 75 percent and *chronic* contaminants 25 percent of the total grade. The overall *Quality-Health* grade, then, is a weighted average score of all contaminants.

Numerical contaminant scores

Distinguishing between adequate, good, and excellent performance is a guiding principle of WSEP's approach to evaluating water quality. To that end, our grading scheme views compliance with MCLs as defined in state and federal rules as a minimum expectation. Put another way, MCL compliance alone will earn a utility merely passing marks. Achieving excellence in water quality means providing water with contaminants well below MCLs.

Table 1. Quality-Health grading rubric based on SDWA Maximum Contaminant Limits

Grade Range	MCL Range
A	<50%
В	50-80%
С	80-100%
D	> MCL one reading
F	MCL violation

Note: Numerical scores based on linear interpolation within grade ranges.

To that end, we created a scale that calculated grades as a function of the maximum contaminant level observed each year relative to each contaminant's MCL. Utilities received "A" grades for contaminant readings ranging from 0% - 50% of MCL, "B" grades ranging from 50-80% of MCL, "C" grades ranging from 80-100% of MCL, and "D" grades for one reading exceeding the MCL. Utilities received an "F" or failing grade if they received a SDWA violation in 2020 based on the SDWIS data from the EPA. Table 1 summarizes this rubric.

A corresponding 0-100 numerical grading scale applies to each contaminant using linear interpolation. For example, a sampled contaminant value of zero is scored as 100, while a sample at 50% of the MCL for that contaminant scores 90; a sample at 51% of the MCL would score 89, while a sample at 80% of the MCL would score 80, and so on. Table 2 offers an illustration of this scoring system for Nitrate, one of the acute contaminants, with five hypothetical contaminant levels and their respective numerical scores.

In the event that there were no data for a specific contaminant for a particular utility, we counted this as a non-detection and therefore a 100% grade. Grades for each individual contaminant were averaged to produce overall *acute* and *chronic* scores for each utility.

Table 2. Illustrative example of contaminant level grading—Nitrate

MCL = 10 mg/L

01			
Maximum Sample	Percent MCL	Score	-
(mg/L)	(%)	(0-100)	
0.00	0	100	
1.10	11.0	98	
6.50	65.0	85	
9.10	91.0	75	
11.7	117.0	54	

Note: Numerical scores based on linear interpolation within grade ranges in Table 1.

The nature of Total Coliform measurement and management required a different approach to scoring. The MCL for coliform requires that "no more than 5.0% samples are total coliform-positive (TC-positive) in a month." If a utility had zero percent (0%) positive in 2020, the utility earned an "A" grade; if the percentage was under 1%, it earned a "B" grade. If the percentage was 1-2%, it earned a "C" grade, and if the percentage was 2-5%, it earned a "D" grade. We assigned percentages greater than 5% an "F" grade, which was reported as 0% for the acute contaminant weighting system described above. Table 3 summarizes the Total Coliform grading scale.

Table 3. Quality-Health grading rubric for Total Coliform

Grade Range	Percent Positive Samples (% TC-positive)
A	0
В	<1.0
С	1.0-2.0
D	2.0-2.5
F	>5.0

Note: Numerical scores based on linear interpolation within grade ranges.

Table 4. Average and median scores for acute contaminants, 2020

Contaminant	Average	Median
Cadmium	100.0	100.0
Coliform	84.2	100.0
Copper	89.2	95.2
Dalapon	100.0	100.0
o-Dichlorobenzene	100.0	100.0
p-Dichlorobenzene	100.0	100.0
Di(2-ethylhexyl) adipate	100.0	100.0
Nitrate (NO3-N)	87.0	97.7
Nitrite (NO2-N)	100.0	100.0
Oxamyl (Vydate)	100.0	100.0

Tables 4 and 5 list the statewide average scores for acute and chronic contaminants, respectively.

Table 5. Average and median scores for *chronic* contaminants, 2020

Contaminant	Average	Median	Contaminant	Average	Median
Arsenic	90.9	99.2	Ethylene Dibromide (EDB)	100.0	100.0
Alachlor (Lasso)	99.6	100.0	Glyphosate	100.0	100.0
Antimony Total	99.8	100.0	Heptachlor	100.0	100.0
Atrazine	100	100.0	Heptachlor Epoxide	100.0	100.0
Barium	92.7	99.6	Hexachlorobenzene (HCB)	100.0	100.0
Benzene	93.8	100.0	Hexachlorocyclopentadiene	100.0	100.0
Beryllium Total	99.8	100.0	Lead	73.7	93.4
Carbofuran	100.0	100.0	Mercury	100.0	100.0
Carbon Tetrachloride	100.0	100.0	Methoxychlor	100.0	100.0
Chloramine	99.5	100.0	PCB, Total	100.0	100.0
Chlordane	100.0	100.0	Pentachlorophenol	100.0	100.0
Chromium	100.0	100.0	Picloram	100.0	100.0
Copper	89.2	95.2	Radium (226 + 228)	86.5	95.0
Cyanide	100.0	100.0	Selenium	99.9	100.0
2,4-D	100.0	100.0	2,4,5-TP (Silvex)	100.0	100.0
1,2-Dibromo-3- Chloropro (DBCP)	100.0	100.0	Simazine	100.0	100.0
1,2-Dichloroethane	100.0	100.0	Styrene	100.0	100.0
1,1-Dichloroethylene	99.8	100.0	Tetrachloroethylene	99.8	100.0
cis-1,2- dichloroethylene	100.0	100.0	Thallium total	99.6	100.0
trans-1,2- dichloroethylene	100.0	100.0	Toluene	100.0	100.0
Dichloromethane	99.9	100.0	Toxaphene	100.0	100.0
1,2-Dichloropropane	100.0	100.0	1,2,4-Trichlorobenzene	100.0	100.0
Di(2-ethylhexyl) phthalate	100.0	100.0	1,1,1-Trichloroethane	100.0	100.0
Dinoseb	100.0	100.0	1,1,2-Trichloroethane	100.0	100.0
Diquat	100.0	100.0	Trichloroethylene	99.6	100.0
Endothall	100.0	100.0	TTHM	95.9	98.2
Endrin	100.0	100.0	Combined Uranium	99.4	99.8
Ethylbenzene	100.0	100.0	Vinyl Chloride	100.0	100.0
			Xylenes	100.0	100.0

Quality-Health grades across Wisconsin

Detected contaminant levels were very low across the state, resulting in the very high scores seen in Table 4 (weighted at 75%) and Table 5 (weighted at 25%). These scores translated into excellent overall *Quality – Health* grades in 2020: the score grade was in the B-range or better and the median score was in the A-range for every regulated contaminant. Table 6 and Figure 1 show how these strong scores translate into grades. These results are very impressive and

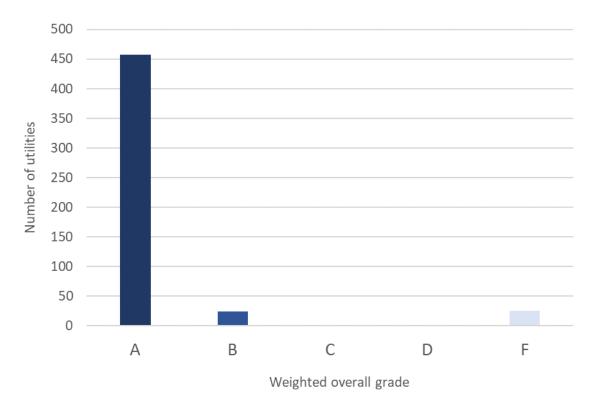

validating for Wisconsin's water sector, likely reflecting management and policies that make regulatory compliance a principal goal.

Table 6. Summary of Quality-Health scores, 2020

	Acute	Chronic	Weighted Total*
Average	96.2	98.7	92.0
Median	98.6	99.4	98.7
Maximum	100.0	100.0	100.0
Minimum	78.6	90.7	0.0
Standard Deviation	4.7	1.7	21.3

^{*}Includes automatic F grades (scored at zero) for MCL violations.

Figure 1. Distribution of Quality-Health grades, 2020

Grades for *Quality – Health* in 2020 were, with few exceptions, excellent. It is worth emphasizing that attaining consistently high scores under the WSEP rubrics requires more than mere compliance with SDWA regulations; to earn an A grade, a utility must maintain contaminant levels far below what is required by law. Nonetheless, more than 90 percent of Wisconsin utilities earned A grades for water quality, indicating that a vast majority of the state's water systems do not simply comply with SDWA regulations; rather, they deliver water with contaminant levels far below regulatory standards. No utilities received "C" or "D" grades.

The handful of utilities that failed their *Quality-Health* grade received their "F" grades due to specific MCL violations.

QUALITY – AESTHETICS

Secondary contaminants, or "aesthetics" of water quality, are important because the taste, odor, color, and other aesthetic conditions are usually the most noticeable for consumers. If tap water has a poor taste, unpleasant odor, or is discolored, consumers may be less trusting of the water system and be more likely to purchase bottled water, even if the water is perfectly safe in terms of human health.¹⁷

The Environmental Protection Agency has established National Secondary Drinking Water Regulations (NSDWRs) in addition to National Primary Drinking Water Regulations. The secondary drinking water regulations set non-mandatory water quality standards for 15 contaminants. These standards are not subject to enforcement by EPA and state regulators, except for fluoride. Rather, these "secondary maximum contaminant levels" (SMCLs) are guidelines to assist public water systems in managing their water supply for aesthetic quality.¹⁸

Although SMCLs are not subject to federal enforcement, EPA requires a special notice for exceedance of the fluoride SMCL of 2.0 mg/L. Community water systems that exceed the fluoride SMCL of 2 mg/L, but do not exceed the MCL of 4.0 mg/L for fluoride, must provide public notice to persons served no later than 12 months from the day the water system learns of the exceedance.

Unfortunately, relatively few Wisconsin utilities collect data on the full set of secondary contaminants because these contaminants are not strictly regulated under the SDWA. Aesthetics are so central to customer perceptions that a grade for secondary contaminants is an important part of any overall utility evaluation scheme, but the significant amount of missing data presents us with a unique challenge. Therefore, the grades that follow are only for the 97 utilities that had sufficient secondary contaminant data available for evaluation; utilities with missing aesthetic data we marked as "Incomplete."

WSEP water *Quality-Aesthetics* grades are based on iron, manganese, hardness, chloride, sulfate, alkalinity, aluminum, and fluoride, as these have the greatest effect on drinking water's color, taste, and/or odor.¹⁹ The rubric weights these indicators variously based on their aesthetic impacts. All data for the "Aesthetics" portion of this report were collected from the Wisconsin Department of Natural Resources public water utility database, for years 2019-2020.

¹⁷ Doria, Pidgeon, and Hunter (2009); Teodoro, Zuhlke, and Switzer (2022).

¹⁸https://www.epa.gov/sdwa/secondary-drinking-water-standards-guidance-nuisance-chemicals

¹⁹ DNR maintains data on zinc, conductivity, pH, and others for a small number of utilities. We considered, but ultimately did not include, zinc as a secondary contaminant because there were fewer than 25 utilities that reported data for zinc. Omitting zinc brought us from 35 utilities with data for the secondary contaminants to 97 utilities. However, we suggest including zinc in future iterations of the report cards as data become more available.

Numerical contaminant scores

Scoring for secondary contaminants followed a methodology similar to our scoring for *Quality-Health*: utilities earn grades by maintaining secondary contaminant levels relative to SMCLs. Our scores for *Quality-Aesthetics* are based on average sampled contaminant levels, rather than the maximum samples that we used to score *Quality-Health*. We used the rubric in Table 7 to score iron, manganese, chloride, sulfate, aluminum, and fluoride. We applied a separate rubric to alkalinity and hardness (discussed further, below).

Table 7. Quality-Aesthetics scoring based on SDWA Secondary Maximum Contaminant Limits

Grade Range	SMCL Range
А	<50%
В	50-75%
С	75-125%
D	125-150%
F	>150%

Note: Numerical scores based on linear interpolation within grade ranges.

Scores reach zero at 200% of the SMCL.

Once again, a corresponding 0-100 numerical grading scale applies to each secondary contaminant using linear interpolation. For example, a sampled contaminant value of zero is scored as 100, while a sample at 50% of the SMCL for that contaminant scores 90; a sample at 51% of the MCL would score 89, while a sample at 75% of the MCL would score 80, and so on. Scores "zero out" at 200% of the SMCL. Table 8 offers an illustration of this scoring system for

Table 8. Illustrative example of secondary contaminant level grading—Iron

SMCL = 0.3 mg/L

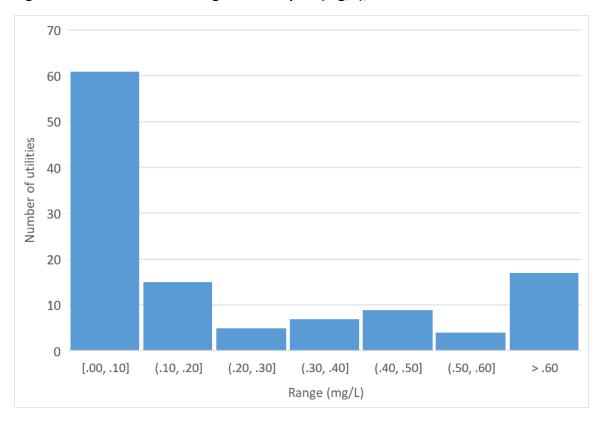
J J J		
Average Sample	Percent MCL	Score
(mg/L)	(%)	(0-100)
0.00	0	100
0.05	17.3	97
0.26	85.8	78
0.40	133.3	67
0.70	233.3	0

Note: Numerical scores based on linear interpolation within grade ranges in Table 2.

Iron, with five hypothetical contaminant levels and their respective numerical scores.

WSEP *Quality-Aesthetics* grades weigh secondary contaminants more or less heavily depending on their relative impact on aesthetics. Iron, manganese, and hardness are most heavily weighted, contributing 25.0% each to the total grade. Alkalinity, Chloride, and Sulfate scores

account for 6.0% each, with Aluminum and Fluoride each weighed at 3.5%. Table 9 summarizes these weights.


Table 9. Secondary contaminant weighting for Quality-Aesthetics grades

Contaminant	Secondary MCL	Weight
Containinant	(mg/L)	(%)
Iron	0.30	25.0
Hardness	N/A	25.0
Manganese	0.05	25.0
Alkalinity	N/A	6.0
Chloride	250.00	6.0
Sulfate	250.00	6.0
Aluminum	0.20	3.5
Fluoride	2.00	3.5

Note: Numerical scores based on linear interpolation within grade ranges in Table 2.

Each of the secondary contaminants that contributes to *Quality-Aesthetics* scores is discussed briefly here.

Figure 2. Distribution of average iron samples (mg/L), 2020

Iron

Many areas in Wisconsin and throughout the United States have high levels of iron in the soils. Iron in water does not typically present a health risk, but water with high levels of iron is usually very noticeable and can cause customers to question their tap water's safety. Iron can give water a metallic taste and affect how beverages and food taste. Iron can also cause red, brown, or yellowish stains on dishes, plumbing fixtures, and laundry. Heavy iron concentrations can cause clogs in wells, pumps, dishwashers, and other fixtures and appliances. Iron accounts for 25% of the *Quality-Aesthetics* grade due to its significant potential impact on the color and taste of water.

Figure 2 shows the distribution of average iron readings for each sampled utility in 2020. The utilities for which DNR had iron data in 2020 scored an average of 75.3 out of 100 for iron.

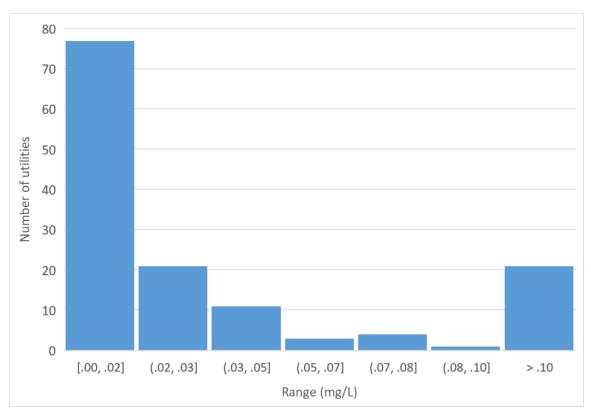


Figure 3. Distribution of average manganese samples (mg/L), 2020

Manganese

Manganese is common in minerals and soils and is often present with iron. Like iron, manganese can turn the water brown or rust color, and cause staining of laundry and plumbing fixtures, and give the water an off taste or odor. Manganese is part of a healthy diet at low levels; very high levels may adversely affect the nervous system, kidneys, and reproduction.

According to the Wisconsin Department of Health Services, public water systems in Wisconsin are supposed to test for manganese every nine years. Similar to iron, our *Quality-Aesthetics* grade weights manganese at 25% owing to its impacts on color and taste.

Figure 3 shows the distribution of average manganese samples in 2020. The utilities for which DNR had manganese data in 2020 scored an average of 77.6 out of 100 for manganese.

Chloride

Drinking water containing chloride is generally not harmful to health, but high amounts of chloride can cause drinking water to have a salty taste and can corrode pipes and plumbing fixtures. Nationally, high amounts of chloride are associated with contamination from saltwater intrusion, septic tanks, and road salting. Road salting in Wisconsin and other cold regions has significant impacts on both groundwater and surface water, and so presents a serious challenge for drinking water utilities. EPA has set the secondary drinking water standard at 250 mg/L.²⁰

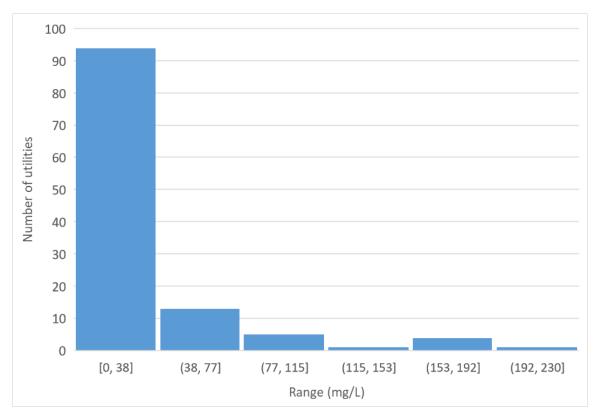


Figure 4. Distribution of average chloride samples (mg/L), 2020

Figure 4 shows the distribution of average chloride samples in 2020. We weighted chloride at 6% of the total *Quality-Aesthetics* grade because the effects are generally less pronounced than

Page | 20

²⁰ https://www.maine.gov/dhhs/mecdc/public-health-systems/health-and-environmental-testing/chloride.htm

iron, manganese, and hardness. The utilities for which DNR had chloride data in 2020 scored an average of 97.5 out of 100 for chloride.

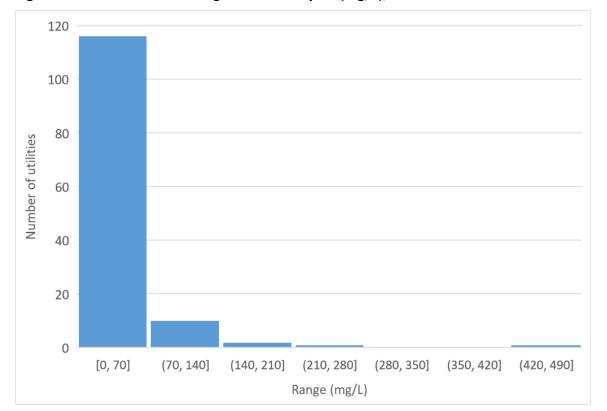


Figure 5. Distribution of average sulfate samples (mg/L), 2020

Sulfate

Sulfate occurs naturally in most groundwater in Wisconsin and in many regions. At higher levels (more than 250 mg/L), sulfate can give water a bitter or medicinal taste and can have laxative effects. We weighted sulfate at 6% of the total *Quality-Aesthetics* grade. Public health officials recommend only using water with sulfate levels lower than 500 mg/L for infant formula, as infants are more sensitive to sulfate than adults.²¹

Figure 5 shows the distribution of average sulfate samples in 2020. The utilities for which DNR had sulfate data scored an average of 97.0 out of 100 for sulfate.

²¹https://www.health.state.mn.us/communities/environment/water/wells/waterquality/sulfate.html

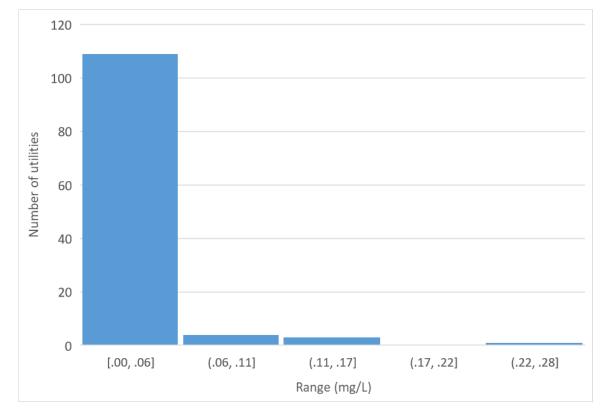


Figure 6. Distribution of average aluminum samples (mg/L), 2020

Aluminum

Drinking water can contain aluminum if it comes from groundwater aquifers with aluminum metals. The main concern with aluminum is its effect on the color of water; most people do not experience health effects from exposure to aluminum.²² The SMCL for Aluminum is 0.20 mg/L, and the score for this contaminant contributes 3.5% to the total *Quality-Aesthetics* grade. Figure 6 shows the distribution of average aluminum samples in 2020. The utilities for which DNR had chloride data in 2020 scored an average of 98.6 out of 100 for chloride.

Fluoride

Fluoride is a naturally occurring mineral, at low levels. Communities add fluoride to protect teeth and oral health. As stated previously, EPA requires a special notice for exceedance of the fluoride SMCL of 2.0 mg/L. If community water systems exceed the SCML of 2.0 mg/L but not the MCL of 4.0 mg/L, the system must provide public notice no later than 12 months from the day the water system learns of the exceedance.²³

According to the Wisconsin Department of Health Services:

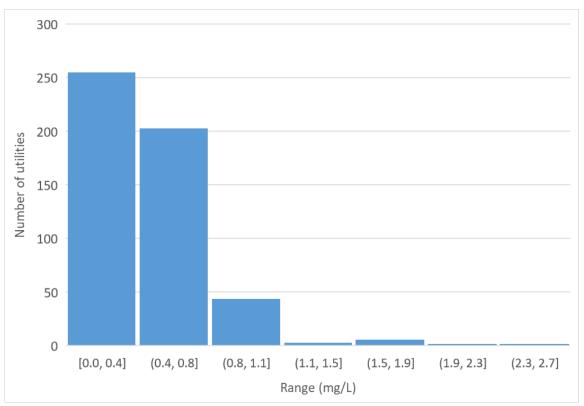
Fluoride levels less than 0.7 mg/L are too low for oral health protection.

²² https://dhs.wisconsin.gov/chemical/aluminum.htm

²³ https://dhs.wisconsin.gov/water/hazards.htm

- Fluoride levels between 0.7 and 2.0 mg/L support good oral health.
- Fluoride levels between 2.0 and 4.0 mg/L are too high for young children.
- Fluoride levels greater than 4.0 mg/L are too high for everyone.

WSEP scoring for fluoride follows these levels, as summarized in Table 9. The fluoride score contributes 3.5% to the total *Quality-Aesthetics* grade. Unlike the other secondary contaminants, DNR has fluoride data for nearly all of the state's water utilities.


Table 9. Quality-Aesthetics scoring for fluoride

Grade Range	Fluoride level (mg/L)
A	1.1-1.5
В	0.7-1.1; 1.5-1.7
С	0.0-0.7; 1.7-2.0
D	2.0-4.0
F	>4.0

Note: Numerical scores based on linear interpolation within grade ranges. Scores reach zero at 5.0 mg/L.

Figure 7 shows the distribution of average fluoride samples in 2020.

Figure 7. Distribution of average fluoride samples (mg/L), 2020



Figure 8. Distribution of average alkalinity samples (mg/L), 2020

Alkalinity

Alkalinity primarily results from dissolving limestone or dolomite in groundwater, and alkalinity and total hardness are generally nearly equal in concentration because they form from the same minerals. Water with low levels of alkalinity (<150 mg/L) is more likely to be corrosive; high alkalinity (>150 mg/L) may contribute to scaling.²⁴ Since ideal alkalinity levels are nonlinear, we applied a different rubric when scoring alkalinity see Table 10. Scores again applied linear interpolation within grading ranges, with grades zeroing out at 500.

Table 10. Quality-Aesthetics grading rubric for alkalinity

Grade Range	Contaminant range (mg/L)
A	75-100
В	30-75; 100-200
С	<30; 200-300
D	300-400
F	>400

Note: Numerical scores based on linear interpolation within grade ranges. Scores reach zero at 500 mg/L.

²⁴ https://www3.uwsp.edu/cnr-ap/weal/Documents/HOPinterp.pdf

Figure 8 shows the distribution of average alkalinity samples in 2020. The utilities for which DNR had alkalinity data in 2020 scored an average of 77.7 out of 100 for alkalinity, which comprises 6% of the total *Quality-Aesthetics* grade.

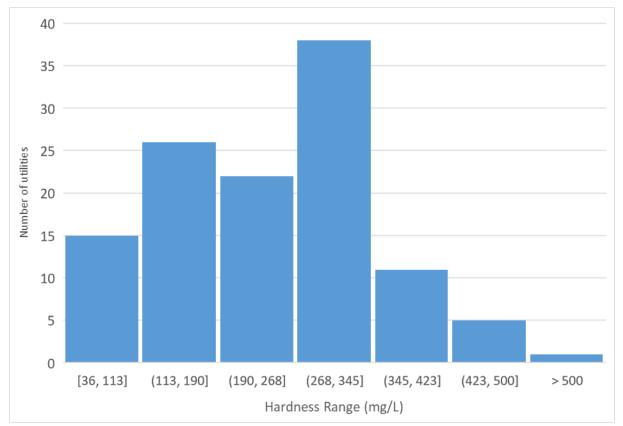


Figure 9. Distribution of average hardness (mg/L), 2020

Hardness

Water hardness refers to the amount of dissolved calcium and magnesium in the water. Hard water leads to the formation of soap scum and causes residue on dishes and other appliances. When hard water is heated, solid deposits of calcium carbonate can form, causing scale that can reduce the life of equipment, increase heating costs, and lower the efficiency of appliances. Hardness of 0 to 60 mg/L (milligrams per liter) as calcium carbonate is classified as soft; water at 61 to 120 mg/L is moderately hard; 121 to 180 mg/L is hard; and more than 180 mg/L is very hard. To account for the nonlinear aesthetic properties of hardness, we applied the rubric in Table 11 to score hardness. Figure 9 shows the distribution of hardness across Wisconsin utilities in 2020.

Hardness is immediately observable to many people, and so we weighted hardness at 25% of the total *Quality-Aesthetics* grade due to the inconvenience and costs that hard water has on

²⁵ https://dhs.wisconsin.gov/publications/p4/p45013b.pdf

²⁶ https://extension.psu.edu/water-softening

residential consumers' appliances and experiences with the water. The utilities for which DNR had hardness data in 2020 scored an average of 68.3 out of 100 for hardness.

Table 11. Quality-Aesthetics grading rubric for hardness

Grade Range	Contaminant range (mg/L)
A	60-120
В	17-60; 120-150
С	<17; 150-180
D	180-360
F	>360

Note: Numerical scores based on linear interpolation within grade ranges. Scores reach zero at 500 mg/L.

Quality-Aesthetics grades across Wisconsin

Although data are limited for *Quality-Aesthetics*, the overall grades for utilities that reported data to DNR are relatively high, with an average of 83.9% and median of 87.1% (see Table 12). Figure 10 depicts the statewide distribution of *Quality-Aesthetics* grades. In light of aesthetics' significance for customer perceptions and trust, we hope that more utilities will collect and report these secondary contaminants in the future.

Table 12. Summary of *Quality-Aesthetics* scores, 2020*

All scores 0-100	Iron	Hardness	Manganese	Alkalinity	Chloride	Sulfate	Aluminum
Average	75.3	68.3	77.6	77.7	97.5	97.0	98.6
Median	94.1	65.7	94.1	76.4	98.8	98.8	100.0
Maximum	100.0	100.0	100.0	98.4	100.0	100.0	100.0
Minimum	0.0	0.0	0.0	0.0	76.6	4.8	64.0
Standard Dev.	35.2	17.5	35.1	11.1	4.2	8.7	4.6

^{*}Excludes 410 utilities with Incomplete data.

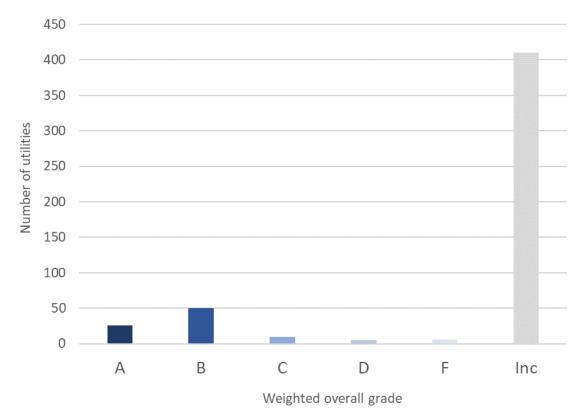


Figure 10. Distribution of *Quality-Aesthetics* grades, 2020

FINANCE

Pioneering environmental engineer Abel Wolman once observed that: "Just as there is no escape from a hydrologic cycle, there is no escape from the dollar." Financial strength is crucial for a utility's sustainability, and affordability is critical for a utility's public health mission. Proper maintenance and operation of a utility's water infrastructure is expensive; a utility must be financially sound in order to be sustainable and affordable in the long term.

Financial performance is an ongoing challenge for water utilities. The water infrastructure that serves much of Wisconsin is old, and many of the state's communities are stagnant or shrinking in population. ²⁸ Rising costs and emerging contaminants such as PFAS present challenges for community water systems that must sustain quality services. Balancing these needs with affordability is difficult.

²⁷ Wolman (1958).

²⁸ Bash et al. (2020).

Elements of Finance grade

Our assessment of water utility financial strength involves measures of capital financing capacity and resiliency, as well as measures of affordability and proportionality in pricing. This section outlines the rubric for the Finance section of the report cards, and provides some data, including the grades for Wisconsin's municipal water systems. WSEP *Finance* grades rely on publicly available PSC data for 2020.

Table 13. Components of the Finance grade

Metrics	Weight (%)
Financial strength	
Capital capacity: Debt-to-Asset Ratio	20
Financial performance: Return on Equity	20
Liquidity: Operating reserves	20
Rates and revenue	
Tax burden: PILOT ratio	10
Affordability: Hours at Minimum Wage	20
Proportionality: Poehler Index	10

Table 13 summarizes the measures that comprise the *Finance* grade and the weight applied to each. Each of these elements is reported in detail, below.

Capital financing capacity: Debt-to-Equity Ratio

Debt-to-Equity ratio (D/A ratio) is a conventional, time-honored measure of a utility's overall debt obligations relative to its assets, and so reflects the degree to which the utility relies on debt to finance its infrastructure and operations. Crucially for sustainability purposes, the D/A ratio measures a utility's capacity to finance significant capital needs and control its own financial fate. In general, a low D/A ratio indicates financial strength, flexibility, and a capacity to take on significant new costs should they become necessary. A high D/A ratio indicates a financially constrained utility that may be forced to raise rates dramatically in order to pay for needed investments.

Table 14. Finance scoring rubric for debt-to-asset ratio

Grade Range	Debt-to-Asset Ratio (%)	Score Range
А	0-20	90-100
В	20-30	80-90
С	30-45	70-80
D	45-60	60-70
F	>60	0-60

Note: Numerical scores based on linear interpolation within grade ranges. Scores reach zero at 75% D/A ratio.

We calculated D/A ratio by dividing the "outstanding debt" by "total assets" from the publicly available data from the Public Service Commission of Wisconsin. Table 14 shows the scoring rubric we applied to Wisconsin utilities.

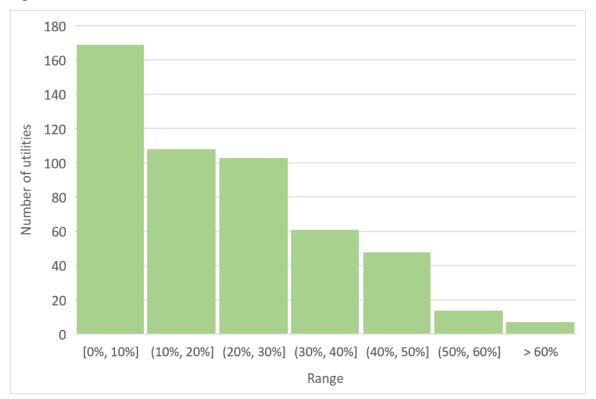


Figure 11. Distribution of debt-to-asset ratio, 2020

As Figure 11 indicates, a substantial majority of Wisconsin's water utilities enjoyed strong D/A ratios in 2020. These ratios translated into strong WSEP performance, with an average score of 89.4 and median of 96.0; nearly 75% of Wisconsin utilities earned A or B grades for D/A ratio.

Table 15. Finance scoring rubric for Return on Equity

Grade Range	Return on Equity (%)	Score Range
A	>4.0	90-100
В	3.0-4.0	80-90
С	2.0-3.0	70-80
D	0.0-2.0	60-70
F	-2.0-0.0	0-60

Note: Numerical scores based on linear interpolation within grade ranges. Scores reach zero at - 2.0% ROE.

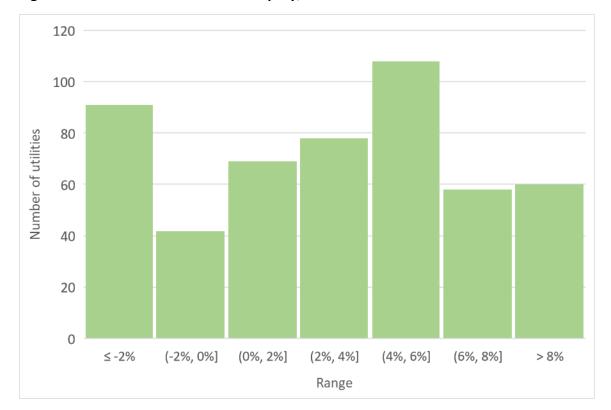


Figure 12. Distribution of return on equity, 2020

Financial performance: Return on Equity

Return on Equity (ROE) is a utility's net income divided by its financial equity. ROE is a measurement of a utility's profitability and how efficiently it generates those "profits." ²⁹ A lower ROE can minimize rate increases, but also can lead to decreased cash flow that can stunt future capital investment in the long term. A higher ROE indicates stronger financial conditions and ability to provide returns for debt management and future investment, while a lower ROE indicates a utility in more precarious financial condition. Calculating ROE followed the PSC's methodology; Appendix A reports the ROE methodology in detail.

Utilities earned ROE scores according to the ranges specified in Table 15. Wisconsin water utilities' average ROE scores in 2020 was 67.3, but as Figure 12 shows, ROE was irregularly distributed: more than half scored in the A range, but another 40% were in the D-F range, while just 9% received grades in the C range.

Liquidity: Days of Operating Reserve

Water utility systems have no margin for failure, as they are expected to provide uninterrupted service 24 hours a day, 7 days a week, 365 days a year. Maintaining adequate operating reserves enhances a water system's ability to manage potential risks and meet capital needs and other unanticipated events that might hinder short-term cash flow. The level of operating

²⁹ The PSC provides data on "Return on Rate Base" but not return on equity. Return on rate base is the value of the utility's assets minus accumulated depreciation, and return on equity, ideally, should result in a net operating income that provides for the cost of debt and a fair return on equity for investors.

reserves maintained by a water system is important for both short- and long-term financial management.

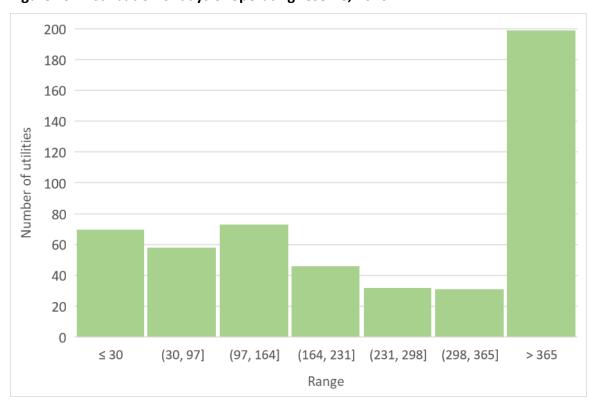

WSEP evaluates financial liquidity in terms of *days of operating reserve*, which is calculated by taking the total cash balance at the end of the year and dividing it by the total operating expenses per day. This calculation gives us the total days of operating reserve. For days of operating reserve, the higher the number of days, the more capacity the utility has to manage risk, and therefore the higher the grade earned by the utility. Utilities with fewer days of operating reserve have less capacity to manage short-term financial risk, and so earn lower marks. Table 16 reports our scoring rubric for days of operating reserve.

Table 16. Finance scoring rubric for days of operating reserve

Grade Range	Days of Operating Reserve	Score Range
Δ.		
А	270-210	90-100
В	210-150	80-90
С	150-120	70-80
D	120-90	60-70
F	<90	0-60

Note: Numerical scores based on linear interpolation within grade ranges. Scores reach zero at 30 days.

Figure 13. Distribution of days of operating reserve, 2020

Like ROE, Wisconsin water utilities' liquidity as measured in days of operating reserve was bimodally distributed in 2020. As Figure 13 shows, well over half had ample operating reserves and scored in the A range. At the same time, another 31% were in the D-F range, while just 14% received grades in the B-C range. Taken together these results show a stark divide between a majority of financially resilient utilities and a sizeable minority of financially precarious utilities.

PILOT Ratio

Tax-exempt properties do not contribute to the operation of municipal governments to the same extent that non-exempt properties do. Wisconsin law defines properties that are eligible for tax exemption; entities that meet the legal criteria for exemption are not required to pay local property taxes. Common tax-exempt entities include nonprofit organizations, churches, hospitals, state agencies, federal agencies, and universities. Municipal utilities also are tax exempt in Wisconsin. However, municipal utilities may transfer utility revenue to their general government owners as "Payments in lieu of taxes" or "PILOT."

Unlike PILOT arrangements for tax-exempt entities such as non-profits, hospitals, and universities, water PILOTs are effectively taxes that municipalities charge to their own utilities and, ultimately, their ratepayers. Although water utility PILOT is in effect another form of taxation, it is regressive because residential water prices are relatively insensitive to income (unlike, for example, property taxes). Municipalities that use their utilities to extract tax revenue through PILOT effectively hide and shift their local tax burden to ratepayers rather than property owners.³⁰ Municipal utilities should minimize PILOTs by their own water systems as a matter of efficiency, transparency, and fairness.

Table 17. Finance scoring rubric for PILOT ratio

Grade Range	PILOT to Property Tax Equivalent Ratio	Score Range
A	0.00-0.50	90-100
В	0.50-0.95	80-90
С	0.95-1.05	70-80
D	1.05-1.15	60-70
F	>1.15	0-60

Note: Numerical scores based on linear interpolation within grade ranges. Scores reach zero at 2.0 PILOT ratio.

For grading purposes, the "PILOT Ratio" is the ratio of annual PILOT payments by the utility to the municipality to the property tax equivalent, which is the assessed property value and associated tax that a utility *would* have paid if it were a privately owned business. A lower value for this metric indicates that there is little to no PILOT, and higher value indicates that a utility pays significantly more in PILOT than the property tax equivalent value. Those utilities and municipalities with a value of 1.0 indicates that the PILOT and property tax equivalent value are

_

³⁰ Teodoro (2021).

identical. A PILOT Ratio of 0.0 earns a perfect 100 score, a ratio of 1.0 earns 75, and ratios greater than 1.15 fall into failing range. Table 17 shows this rubric.

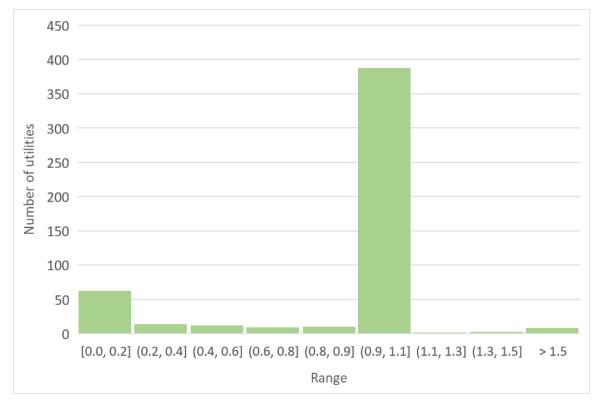


Figure 14. Distribution of days of PILOT ratio, 2020

Wisconsin water utilities' PILOT ratio score averaged 78.1. As Figure 14 shows, a large majority of utilities made PILOT payments at or near their property tax equivalents, and so earned marks in the C range. However, 17% of utilities made little or no PILOT payments and so earned scores at or near 100. Meanwhile, a small minority of utilities—about 3.1%—paid significantly more in PILOT than their property tax equivalents and so earned marks in the D-F range.

Affordability: Hours at Minimum Wage

So long as water utilities operate on a fee-for-service basis and rely on rate revenue, the affordability of basic service will be critical to their fundamental missions. At a time when many utilities are facing infrastructure challenges, financial constraints, shifts in demographics, and water quality and quantity concerns, we should all be concerned about utilities taking on large amounts of debt or passing these costs on to ratepayers by increasing rates.

We calculate affordability as hours of labor at minimum wage (HM) required to pay for residential water service at 6,000 gallons per month (typical indoor use for a family of four).³¹ HM helps illustrate affordability in an intuitively meaningful way. It simply asks, "how many hours at the minimum wage would one need to work each month to afford their water bills?"

_

³¹ Teodoro (2018).

This metric is gaining traction in several communities across the country and has been adopted formally as a utility affordability metric by the California Public Utilities Commission.³² Table 18 shows the scoring rubric we applied to residential prices in order to calculate affordability marks for utilities.

HM carries some important limitations as a metric of affordability. First, HM is not sensitive to the costs of other essential goods and services, such as housing, health care, food, home energy, or taxes. Second, minimum wage is a problematic standard of purchasing power, especially in places such as Wisconsin, where the minimum wage remains at the federal minimum wage of \$7.25. This minimum wage has not been changed since 2009, and thus is so low that it is functionally meaningless in much of the state and country. Further, in the aftermath of the COVID-19 pandemic, supply chain and labor challenges, wages (and inflation) have increased at a much faster pace than minimum wage laws.

Table 18. Finance scoring rubric for Hours at Minimum Wage to pay for a month of residential water service at 6,000 gallons

Grade Range	Hours of Minimum Wage	Score Range
A	1.5-4.0	90-100
В	4.0-6.0	80-90
С	6.0-8.0	70-80
D	8.0-10.0	60-70
F	>10.0	0-60

Note: Numerical scores based on linear interpolation within grade ranges. Scores reach zero at 22.0 HM.

When developing this metric, we discussed using a figure more aligned with the "real minimum wage" in Dane County, Wisconsin (roughly \$12.50-\$14.50 in 2020), but for purposes of consistency we decided it would be better to rely on the state's minimum wage and simply bear in mind its limitations.

Wisconsin water utilities' overall performance on affordability was very strong in 2020, with an average score of 85.3 and a median of 87.5. More than a third of utilities earned scores in the A range, and three quarters scored in the B range or better, as Figure 15 shows.

³² https://www.cpuc.ca.gov/industries-and-topics/electrical-energy/affordability

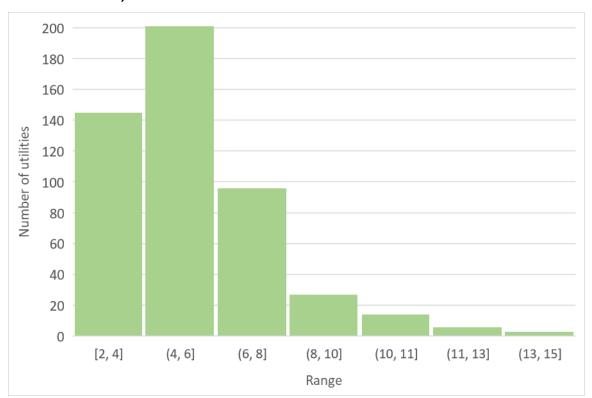


Figure 15. Distribution of hours at minimum wage required to pay for a month of residential water service, 2020

Proportionality: Poehler Index

In addition to raising revenue, water rates distribute a water utility's costs to its customers in different ways. Most utilities charge a combination of fixed and volumetric prices, but these prices may collect more or less revenue from different customers depending on how much water they use. According to the principle of *proportionality*, customers who use more water should pay higher prices per unit consumed; customers who use less should pay less.

To that end, we measure price proportionality or progressivity, with the "Poehler Index." Its name derives from the 2015 drought in California, when Amy Poehler's Beverly Hills home used an astonishing 85,000 gallons of water per month for her family of four. He Poehler index measures progressivity – by calculating the total monthly water bill for a customer at 6,000 gallons (a relatively conservative family), and at 85,000 gallons (Amy Poehler), then dividing that price by each customer's total volume to arrive at average unit costs of water at each level of consumption. The ratio of the two unit prices is the Amy Poehler Index (API) or Poehler Index.

A value of 1.0 means that Amy Poehler and the conservative family pay the same unit price for water. Values less than 1.0 indicate regressive rates (Amy Poehler pays less than a conservative

³³ https://mannyteodoro.com/?p=1400.

³⁴ Brodwin and Mosher (2016).

family), and values greater than 1.0 indicate progressive rates (Amy Poehler pays more than a conservative family). Table 19 shows the scoring rubric we applied to residential prices in order to calculate price proportionality marks for utilities.

Table 19. Finance scoring rubric for the Poehler Index

Grade Range	Amy Poehler Index	Score Range
Α	3.00-1.75	90-100
В	1.75-1.25	80-90
С	1.25-0.75	70-80
D	0.75-0.50	60-70
F	<0.50	0-60

Note: Numerical scores based on linear interpolation within grade ranges. Scores reach zero at Poehler Index = 0.4.

200 180 160 140 Number of utilities 120 100 80 60 40 20 0 ≤ .50 (.50, .62](.62, .74](.74, .86](.86, .98](.98, 1.10]> 1.10 Range

Figure 16. Distribution of Amy Poehler Index, 2020

Price proportionality scores were generally mediocre to poor across Wisconsin water utilities in 2020, with an average score of 58.3, and a median of 82.8. Roughly a third of utilities scored in failing range, and 64.2 percent earned D range grades, as Figure 16 shows. No utilities earned an A grade for price proportionality, and just one (Madison Water Utility) scored in the B range.

These poor proportionality marks reflect the predominant rate structures in Wisconsin, where most utilities use a combination of a fixed monthly charge and uniform or declining volumetric

charges. These rate structures effectively charge higher unit prices to more conservative residential customers and lower prices to higher volume water users. Perhaps unsurprisingly, progressive pricing is more common in more water-scarce regions of the United States, where inclining block rate structures are meant to encourage conservation; promoting residential water efficiency is a less pressing concern in water-rich Wisconsin. Nonetheless, equity considerations make pricing proportionality an important aspect of financial performance.

Finance grades across Wisconsin

Overall grades for *Finance* in 2020 statewide were widely distributed, skewing somewhat high. Table 20 and Figure 17 depict these scores and their corresponding grades statewide. The average overall score was 76.3 and median was 79.6, but as Figure 17 shows, the modal grade was in the B range.

Table 20. Summary of Finance scores, 2020

All scores 0-100	D/A Ratio	ROE	Operating Reserves	PILOT Ratio	НМ	Poehler Index	Overall Grade
Average	89.3	67.6	72.9	78.2	85.3	58.4	76.3
Median	96.0	82.0	96.7	75.0	87.5	64.0	79.6
Maximum	100.0	100.0	100.0	100.0	99.0	84.0	95.4
Minimum	0.0	0.0	0.0	0.1	33.8	0.0	0.0
Standard Dev.	13.8	37.8	37.3	12.3	10.0	16.1	13.4

These mixed results reflect some divergent underlying scores. Most Wisconsin utilities scored strongly on D/A ratio and affordability. On the other hand, ROE and operating reserves were bimodally distributed, with utilities having either very strong or very weak scores on these metrics. Performance was especially poor on price proportionality, since most Wisconsin utilities employ flat or declining block rate structures.

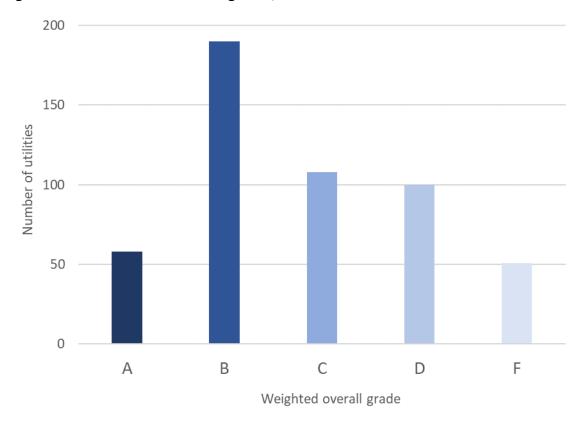


Figure 17. Distribution of Finance grades, 2020

INFRASTRUCTURE & OPERATIONS

Physical integrity and operational effectiveness are both essential to water system excellence. Early in WSEP's development, we anticipated grading *infrastructure* and *operations* as separate subjects. However, after extensive exploration, discussion, and consultation with experts it became clear that operations and infrastructure are inextricably linked. That is, the physical integrity of a water system is directly related to how that system operates, and vice versa. Excellent management of any utility involves optimizing the mix of capital, labor, and other operating expenses. It follows that we should evaluate the two separately, but that their evaluations should contribute equally to an overall *Infrastructure & Operations* grade.

Table 21 shows how various metrics associated with infrastructure quality and operational efficiency contribute to total *Infrastructure & Operations* grades.

Table 21. Infrastructure & Operations grade weights

Factor	Weight (%)	
<u>Infrastructure</u>		
Main breaks	25.00	
Water loss	12.50	
Main replacement rate (unweighted)	6.25	
Main replacement rate (size weighted)	6.25	
Operations		
Energy consumption	10.00	
Operating expense per 1,000 gallons	7.50	
Operating expense per mile of main	7.50	
Operating expense per customer	7.50	
Operating expense per capita	7.50	
SDWA management compliance	10.00	

Infrastructure

Infrastructure accounts for half of the *Infrastructure & Operations* grade. Water utilities' infrastructure needs vary widely, depending on their source water, hydrological conditions, and customer demands. Most obviously, surface water and ground water sources require very different kinds of water treatment facilities and processes. In crafting our rubric, we consulted with drinking water engineering experts, as well as resources from the Water Research Foundation³⁵ and American Water Works Association.³⁶ In order to establish universally applicable grading standards with available data, our infrastructure grade focuses on transmission and distribution systems. These metrics include main and service breaks per 100 miles of main, water loss per 100 miles of main, and replacement rate.

By excluding other elements of infrastructure we do not mean to diminish their importance; our interest here is in crafting a rubric that can apply to all utilities. Future WSEP efforts may include development of specific infrastructure rubrics for surface and ground water systems.

Main Breaks per 100 Miles of Main

Main breaks are critical and tangible indicators of a drinking water system's integrity. Each main break is literally a system failure, as it potentially disrupts homes, businesses, schools, and governments. Moreover, main breaks risk loss of water pressure and can lead to the introduction of biological pathogens into a potable water supply. Customers who experience main breaks report lower trust in their tap water and reduced trust in government generally. In light of their gravity, we weighted main breaks as 50% of the *infrastructure* grade, and therefore 25% of the total *Infrastructure & Operations* grade.

³⁵ Friedman (2010).

³⁶ American Water Works Association (2022).

³⁷ Teodoro, Zuhlke, and Switzer (2022).

Following AWWA convention, breaks per 100 miles of main per year is our measure of main breaks. According to the Partnership for Safe Water, main break frequency should be no greater than 15 breaks per 100 miles of distribution pipelines.³⁸ To calculate this metric, we simply counted the total number of "main breaks" and "service breaks" for each utility in 2020 as recorded by the PSC. Table 22 shows the rubric we applied to score main breaks:

Table 22. Infrastructure & Operations scoring rubric for main breaks per 100 miles

Grade Range	Breaks per 100 miles of main	Score Range	
А	<15	90-100	
В	16-20	80-90	
С	21-25	70-80	
D	26-30	60-70	
F	>30	0-60	

Note: Numerical scores based on linear interpolation within grade ranges. Scores reach zero at 60 breaks per 100 miles of main.

200 180 160 140 Number of utilities 120 100 80 60 40 20 0 [0, 10](10, 20](20, 30](30, 40](40, 50](50, 60]> 60 Range

Figure 18. Distribution of breaks per 100 miles of main, 2020

Figure 18 shows the distribution of breaks per 100 miles of main in 2020 across Wisconsin. About half performed very strongly, with fewer than 15 breaks per 100 miles of main; 38

-

³⁸ Friedman (2010).

utilities reported no main breaks at all in 2020. On the other hand, 23.1% of the state's utilities scored in the failing range with more than 30 breaks a year per 100 miles of main.

Water Loss per 100 Miles of Main

Water loss is another critical indicator of drinking water system integrity and capital condition; it comprises 25% of the total *Infrastructure* grade. Following AWWA guidance, we measure water loss as water lost in gallons per 100 miles of main, rather than water loss as a percentage of total water produced. The data are from the Public Service Commission of Wisconsin's municipal utilities data portal. Table 23 shows the rubric we applied to score water loss:

Table 23. Infrastructure & Operations scoring rubric for water loss per 100 miles of main

Grade Range	Water loss per 100 miles of main (thousand gallons)	Score Range
Α	0-20	90-100
В	20-40	80-90
С	40-80	70-80
D	80-120	60-70
F	>120	0-60

Note: Numerical scores based on linear interpolation within grade ranges. Scores reach zero at 250,000 gallons lost per 100 miles of main.

Figure 19. Distribution of water loss per 100 miles of main (thousands of gallons), 2020

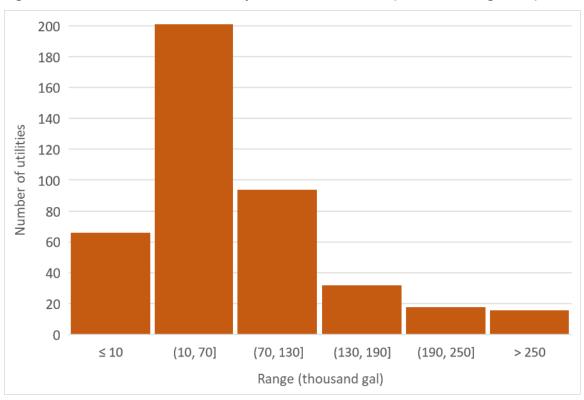


Figure 19 shows the distribution of water loss per 100 miles of main in 2020 across Wisconsin. Performance was mixed: 42.9% of utilities scored in the A or B ranges, but another 15.3% scored in the failing range.

Main Replacement Rate

Regular, ongoing asset replacement is critical to a healthy utility, and so replacement rate comprises another 25% of the infrastructure grade, or 12.5% of the overall *Infrastructure & Operations* grade. Maintaining a steady pace of replacements helps ensure reliable, resilient service and avoids "rate shocks" that can occur when assets fail and require major investments.

We measure replacement rate as feet of distribution pipe added per year, divided by the total length of main in service for each water utility. We transform this value into a "replacement rate," which is effectively the number of years required to replace the entire distribution system if replacements continue at their current pace. Since asset replacement often is "lumpy" (i.e., large investments in single years with little or no investment in others), we calculated replacement rate as a five-year rolling average. Thus, the values calculated here for 2020 include distribution system replacements from 2016-2020.

We calculated this replacement rate twice: once as a simple average replacement rate, and once as a weighted average replacement rate with larger mains weighted more heavily than smaller mains based on their flow capacity (discussed further, below). These unweighted and weighted averages contribute equally (6.25% each) to the *Infrastructure & Operations* grade.

A 2018 Utah State University study on main breaks and drinking water infrastructure provided useful context for developing our replacement rate scoring methodology. The study indicated that replacement rates should be between 1% and 1.6%, equating to 100 - 106-year replacement schedules. If a utility did not have any new feet of pipe added during the 5-year period, we coded their replacement rate as 1,000 years, and they received 0 points (0%) for this grade. Table 23 shows the rubric we applied to score replacement rate:

Table 23. Infrastructure & Operations scoring rubric for main replacement rate in years

Grade Range	Replacement Rate (years required to replace entire system)	Score Range
Α	0-75	90-100
В	75-125	80-90
С	125-175	70-80
D	175-225	60-70
F	>225	0-60

Note: Numerical scores based on linear interpolation within grade ranges. Scores reach zero at 400 years. Systems with zero distribution system replacements from 2016-2020 were scored zero.

-

³⁹ Folkman (2018).

The distribution of main replacement rate in Figure 23 reveals a stark divide in capital replacement investment in 2020. Close to half (46.1%) of Wisconsin's water utilities earned grades in the A range, with replacement rates of under 75 years. At the same time, more than a third (37.3%) of the state's utilities fell into the failing range; 148 of those utilities replaced no mains at all from 2016-2020.

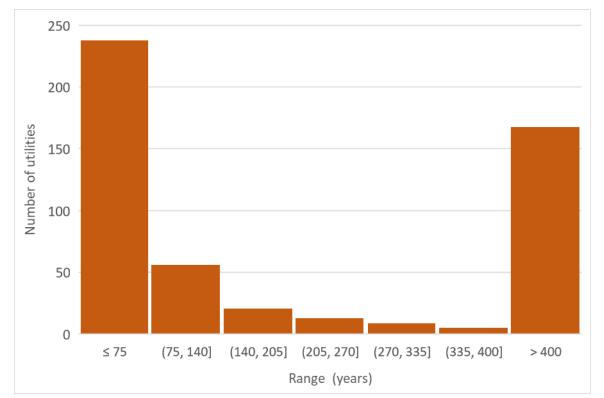


Figure 20. Distribution of main replacement rate (years), 2020

Weighted Main Replacement Rate

Although all water mains are important, they are not all equally important to a drinking water system. Large diameter mains are most critical, since they carry water to large facilities and large numbers of customers; smaller mains serve fewer customers. Recognizing these differences, we also calculated an average replacement rate that weighs main replacement as a function of main size.

As with unweighted replacement rate, we calculated weighted average replacement rate as the average number of feet of main replaced over a five-year period (2016-2020) relative to the utility's total feet of main in service. However, for this metric we weighted feet of main replaced according to a flow factor based on pipe diameter, velocity, and maximum flow. The "number of feet" was then multiplied by its flow weight, which gave us a "weighted replacement rate. Appendix B reports the flow weights used in this calculation.

As with the unweighted replacement rate, if a utility added no new pipe during the 5-year period, we coded their replacement rate to be 1,000 years – therefore giving them 0 points for this grade. Scoring for weighted average replacement rate followed the same rubric as applied to unweighted replacement rate (see Table 23).

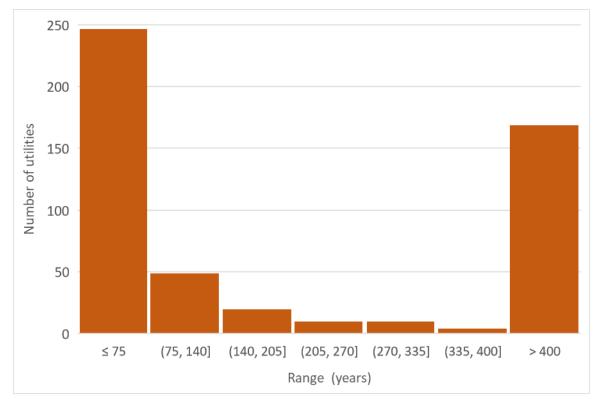


Figure 21. Distribution of diameter-weighted main replacement rate (years), 2020

Unsurprisingly, the weighted distribution of main replacement closely resembles the unweighted distribution, as the bimodal distribution in Figure 21 indicates.

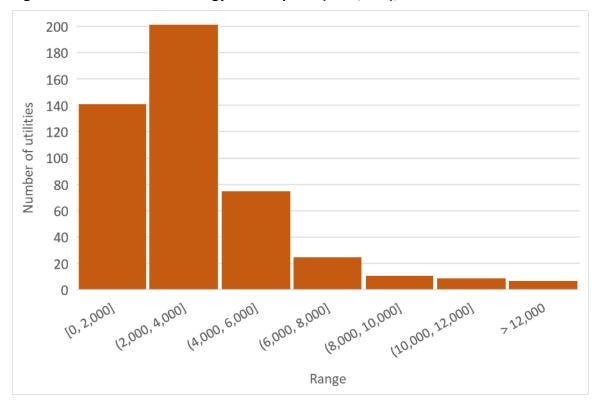
Operations

Operations accounts for the other half of the *Infrastructure & Operations* grade. The operations metrics employed here include measures of efficiency, including energy consumption relative to production and various measures of operating expenses. Compliance with SDWA management requirements also contributes to the *Infrastructure & Operations* grade.

Energy Consumption: kWh per million gallons per year

Energy is one of the largest operating expenses for many utilities, so energy efficiency is an important indicator of operational performance. Following the AWWA Benchmarking report, WSEP uses kBTU per million gallons per year as the metric of energy use. We calculate this

metric by dividing total energy consumption in kilowatt hours (kWH) per year by total water sold in millions of gallons (MG). Table 24 shows the scoring rubric for energy consumption.


Table 24. Infrastructure & Operations scoring rubric for energy consumption

Grade Range	Energy consumption (kWH per million gallons)	Score Range
Α	0-1,500	90-100
В	1,500-3,000	80-90
С	3,000-4,500	70-80
D	4,500-6,000	60-70
F	>6,000	0-60

Note: Numerical scores based on linear interpolation within grade ranges. Scores reach zero at 12,000 kWH/MG.

Figure 22 shows that energy efficiency was relatively strong across Wisconsin utilities in 2020, with 58.1% earning marks in the A-B range. However, a sizable minority of utilities scored in the failing range, consuming more than 6,000 kWH for every million gallons of water sold.

Figure 22. Distribution of energy consumption (kWH/MG), 2020

Total Operating Expenses per Thousand Gallons

Operating expenditures contribute directly to the rates that customers pay. WSEP grades evaluate operating efficiency in four different ways, starting with total operating expenses per thousand gallons of water sold. Table 25 shows the scoring rubric we applied to operating expenses per thousand gallons. This rubric reflects the distribution of results for 2020 and is likely to change in the future due to overall cost inflation.

Table 25. Infrastructure & Operations scoring rubric for operating expenses per 1,000 gallons

Grade Range	Total Operating Expenses per 1,000 Gallons (\$)	Score Range
Α	0.25-5.00	90-100
В	5.00-8.00	80-90
С	8.00-12.00	70-80
D	12.00-16.00	60-70
F	>16.00	0-60

Note: Numerical scores based on linear interpolation within grade ranges. Scores reach zero at \$24.00 per thousand gallons.

Figure 23 shows the distribution of operating expenses per thousand gallons of water sold in 2020 across Wisconsin utilities. Performance on this measure of energy efficiency was generally strong in 2020, with 23.1% of utilities earning marks in the A range, and another 57.5% earning grades in the B-C range. However, nearly 10 percent scored in the failing range, with operating expenses of greater than \$16.00 per thousand gallons.

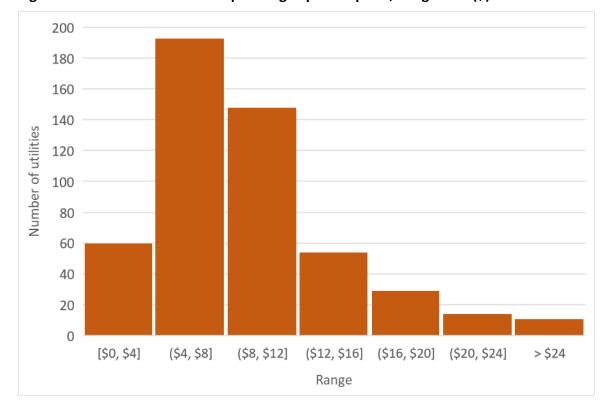


Figure 23. Distribution of total operating expenses per 1,000 gallons (\$)

Total Operating Expenses per Mile of Main

As a complement to operating expenses per thousand gallons, we also calculated total operating expenses per mile of main as an indicator of operational efficiency. To that end, we converted total feet of main into miles, then divided total annual operating expenses by that length. We established a grading scale according to the distribution of those values; Table 26 shows the scoring rubric we applied. This rubric is likely to change in the future due to overall cost inflation.

Table 26. Infrastructure & Operations scoring rubric for operating expenses per mile of main

Grade Range	Total Operating Expenses per Mile (\$)	Score Range
Α	0-18,000	90-100
В	18,000-24,000	80-90
С	24,000-30,000	70-80
D	30,000-40,000	60-70
F	>40,000	0-60

Note: Numerical scores based on linear interpolation within grade ranges. Scores reach zero at \$50,000 per mile.

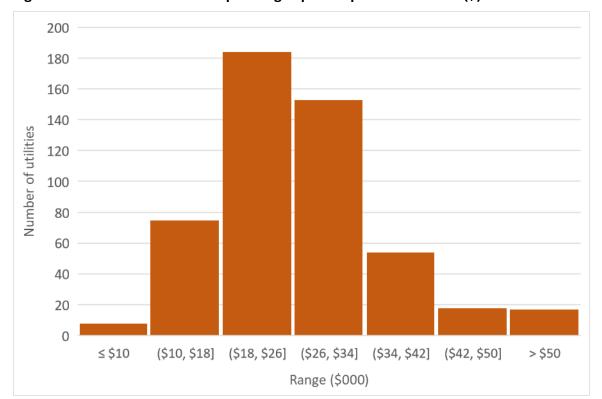


Figure 24. Distribution of total operating expenses per mile of main (\$)

Figure 24 shows the distribution of operating expenses per mile of main in 2020 across Wisconsin utilities. Performance on this measure of energy efficiency was roughly normal in distribution, with roughly three quarters of utilities scoring in the B-D range and just 16.3% earning marks in the A range.

Total Operating Expenses per Customer

Operating expenses per customer is another useful indicator of operational efficiency. Once again, we set the rubric for operating expenses per customer based on its overall distribution; Table 27 reports the scoring rubric. As with other operational expense indicators, this rubric is likely to change over time due to general cost inflation.

Table 27. Infrastructure & Operations scoring rubric for operating expenses per customer connection

Grade Range	Total Operating Expenses per Customer Connection (\$)	Score Range
Α	90-250	90-100
В	250-400	80-90
С	400-550	70-80
D	550-700	60-70
F	>700	0-60

Note: Numerical scores based on linear interpolation within grade ranges. Scores reach zero at \$1,600 per customer connection.

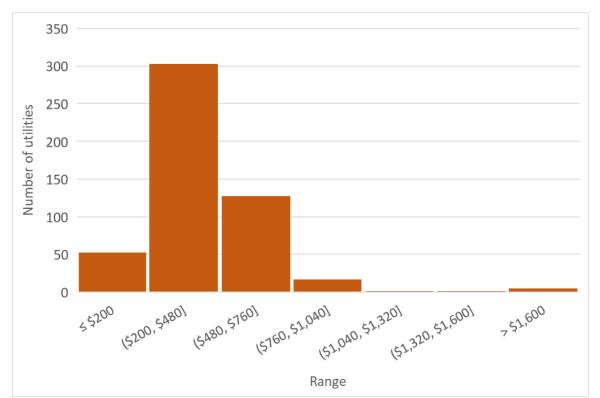


Figure 25. Distribution of total operating expenses per customer connection (\$)

Figure 25 shows the distribution of operating expenses per customer connection in 2020 across Wisconsin utilities. Performance on this measure of energy efficiency was generally strong, with more than half of utilities scoring in the A-B range and just 6.7% in the failing range.

Table 28. Infrastructure & Operations scoring rubric for operating expenses per customer connection

Grade Range	Total Operating Expenses per Capita (\$)	Score Range
Α	80-150	90-100
В	150-200	80-90
С	200-250	70-80
D	250-300	60-70
F	>300	0-60

Note: Numerical scores based on linear interpolation within grade ranges. Scores reach zero at \$600 per capita.

Total Operating Expenses Per Capita

Our last indicator of operating efficiency is total operating expenses per capita. We drew service population data from EPA's SDWIS, then simply divided total operating expenses by the

service population. Table 28 shows the scoring rubric applied to this metric; as with other expense indicators, this rubric is likely to change over time due to general cost inflation.

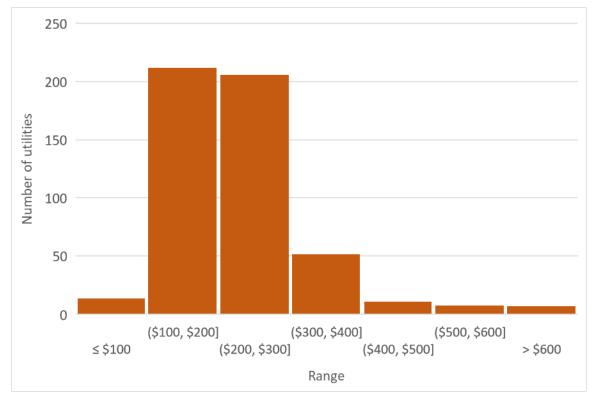


Figure 26. Distribution of total operating expenses per capita (\$)

Figure 26 shows the distribution of operating expenses per customer connection in 2020 across Wisconsin utilities. Performance on this measure of energy efficiency was generally strong, with more than half of utilities scoring in the A-B range and just 6.7% in the failing range.

SDWA Management Compliance

Compliance with SDWA management rules is the final factor contributing to the Operations grade. Under SDWA, utilities must follow a series of management protocols, including maintaining appropriate staffing levels, collecting and submitting data to Wisconsin DNR, reporting water quality to the public, and more. Unlike SDWA health violations, management violations do not necessarily or immediately endanger public health or environmental quality. However, adherence to these rules is a function of organizational management, and so although it is a relatively "blunt instrument," SDWA management compliance allows for valid, comparable measurement across a wide range of utilities. Table 29 reports our scoring rubric for SDWA compliance.

Table 29. Infrastructure & Operations scoring rubric for SDWA management compliance

Grade Range	SDWA management violations in 2020	Score
Α	0	100
В	1	80
С	2	70
D	3	60
F	>3	0-50

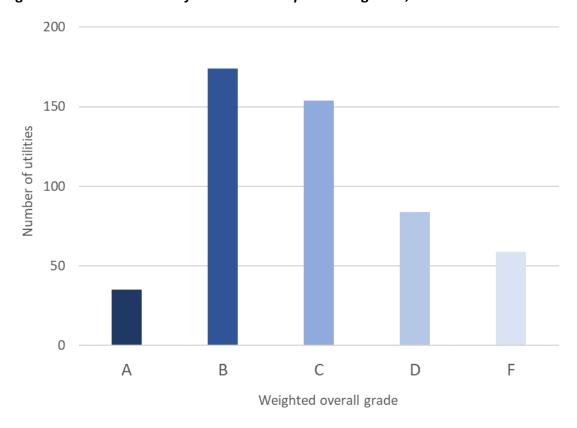
Note: Numerical scores beyond four violations are based on linear interpolation within grade ranges. Scores reach zero at twelve violations.

Fortunately, the overwhelming majority of Wisconsin utilities had no SDWA management violations at all in 2020. Eleven utilities committed a single management violation each, and just one committed two violations.

Infrastructure & Operations grades across Wisconsin

Tables 30 and 31, respectively, summarize scoring for all the metrics that contribute to the Infrastructure and Operations portions of the *Infrastructure & Operations* grade. Figure 27 depicts the overall *Infrastructure & Operations* grades that emerge from these scores.

Statewide performance on *Infrastructure & Operations* was mixed. Just 6.9% of Wisconsin's utilities earned A grades in this subject, with the bulk of systems earning B and C marks (34.4% and 30.4%, respectively); meanwhile, 11.7% Wisconsin utilities received failing marks for *Infrastructure & Operations*. Overall performance for *Infrastructure* was lower than for *Operations*. Particularly notable are the high numbers of main breaks and very long main replacement rates that negatively impacted grades for many utilities.


Table 30. Summary of infrastructure scores for Infrastructure & Operations grade, 2020

All scores 0-100	Breaks per 100	Water loss per	Replacement	Weighted
All Scores 0-100	miles of main	100 miles of main	rate	replacement rate
Average	74.9	73.8	59.3	59.4
Median	90.0	78.4	86.6	88.8
Maximum	100.0	100.0	99.2	99.7
Minimum	0.0	0.0	0.0	0.0
Standard Dev.	30.8	22.8	43.1	43.8

Table 31. Summary of operations scores for Infrastructure & Operations grade, 2020

	Total Operating Expenses					
All scores 0- 100	kWH per MG	Per 1,000 Gallons	Per Mile of Main	Per Customer	Per Capita	SDWA Management Compliance
Average	78.7	76.6	71.1	79.4	74.8	99.5
Median	82.7	80.0	80.0	81.0	78.3	100.0
Maximum	100.0	100.0	100.0	100.0	100.0	100.0
Minimum	33.1	0.0	0.0	0.0	0.0	70.0
Standard Dev.	14.4	19.7	18.9	14.1	18.7	3.2

Figure 27. Distribution of Infrastructure & Operations grades, 2020

COMMUNICATIONS

Water utilities were long regarded as a "silent service," but over the past twenty years water sector leaders have recognized that communicating with the public is central to a utility's success. ⁴⁰ Such engagement is particularly important in Wisconsin, where nearly all drinking water utilities are owned and operated by municipal governments. For municipal utilities

⁴⁰ Lafrance (2012).

transparency and public engagement contribute to trust in both tap water and institutions of government.⁴¹

In order to maintain the public's trust, customers must have ready access to information about their water's quality, their water's price, and their water utility organizations. In the digital age, the dominant communications media are electronic: today's utilities can engage with the public via the internet, mobile phones, and virtual meetings, alongside more traditional methods. The prevalence and increasing use of e-governance in the United States makes communications even more relevant as an important indicator of a utility's overall performance. The use of technology such as the internet and mobile devices to provide public services – such as drinking water – has increased substantially, underscoring the importance of having accessible websites and providing information in a transparent and intentional way. To these ends, WSEP seeks to recognize and encourage water utilities' efforts to communicate and interact with the public.

Elements of *Communications* grade

Unlike the other four subjects, there currently are no widely accepted or time-honored standards or metrics for evaluating water utility communications. There also is very little rigorous research on effective communications for municipal water utilities. In absence of such standards or research literature, we consulted with a panel of experts on e-government in the United States to craft a framework and rubric for evaluating water utility communications in Wisconsin.

Table 32. Communications grade weights

Factor	Weight (%)	
<u>Transparency</u>		
CCR easily available online	20	
Rates and pricing easily available online	20	
Website information & accessibility	35	
<u>Interactivity</u>		
Telephone	5	
Webform / email	5	
Meetings	5	
Social media	10	

Two constructs comprise the *Communications* grade: transparency and interactivity. *Transparency* relates to accessibility of key information about a water utility; *interactivity* relates to how much a utility both interacts with and provides opportunities for the public to interact with their water utility. Based on advice from our panel of experts we developed a *Communications* grade that captures these two elements, with 75% of the grade allotted to transparency, and interactivity contributing to the remaining 25% of the grade. Table 32

Page | 53

⁴¹ Teodoro, Zuhlke, and Switzer (2022).

summarizes the elements of the *Communications* grade; detailed scoring rubrics for each factor follow in the discussion below.

The WSEP's emphasis on online communications for purposes of grading is not meant to imply that the elements scored here are the only important features of a water utility's online presence, or that online communication is the only, best, or most important way for a utility to communicate with the public. Utilities may communicate with the public in near infinite ways that can and should go well beyond the scoring rubric applied here. However, the standards applied in *Communications* scoring here are comparable and achievable statewide. In that sense, they represent reasonable "minimum" levels of transparency and interactivity. Future WSEP rubrics will hopefully evolve as the state's water sector advances.

Data collection

More than any other subject, grading utility communications required significant original data collection from municipality and utility websites, and social media accounts. Here we describe data collection and coding processes. The data reported here were collected from January through May 2022.

Collecting communications data required many hours of careful labor, including searching for and visiting each water utility website and navigating to find various indicators of transparency and interactivity. The methodology and explanation of data collection is below; the explanation of the rubric and weighting of variables is explained in this section.

Transparency

Transparency scores are based on the design of and information available on utilities' websites. Transparency accounts for 75 points of the 100 total points available for the *Communications* grade. Figure 28 shows the distribution of performance on WSEP's indicators of transparency. Scoring rules for each of these conditions are described below.

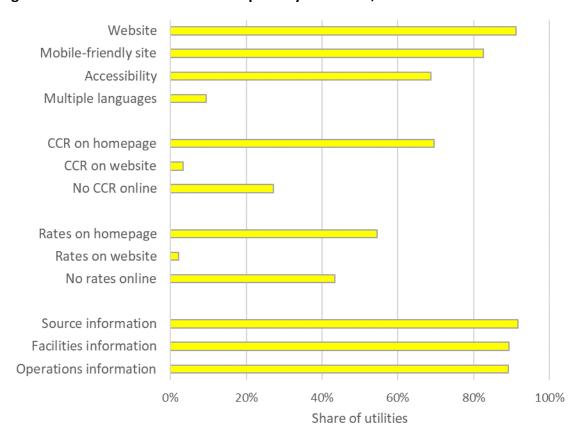


Figure 28. Distribution of online transparency indicators, 2020

Consumer Confidence Report

The federally mandated CCR is one of the most important elements of public information for an American water utility. The Safe Drinking Water Act (1974) requires that each community water system provide a CCR to its customers annually, either by mail or online. The CCR provides information about a utility's water quality with reference to specific contaminants. Although utilities may fulfill this formal regulatory requirement through postal mailing, posting CCRs online reflects a commitment to transparency by making them immediately available to anyone at any time.

Table 33. Communications scoring rubric for CCR and rates availability online

Condition	Score (out of 20 possible)
CCR / rates easily available with link from home page	20
CCR / rates present on official website via search or browsing	15
CCR / rates unavailable from utility	0

Utilities earned up to 20 points for their CCRs, depending on how easily accessible it was. A utility earned the full 20 points if the current CCR was easily accessible either on a utility website's homepage, on the water/utility department homepage, or through a dropdown menu on the website. The utility earned 15 points if the current CCR was present on an official utility or city website but required difficult navigation and/or searching to access it. Utilities received zero points if there was no CCR available online or if the only CCR available was out of date. Table 33 shows the WSEP scoring rubric for CCR availability.

Rates

Along with quality, information about rates is also one of the most important aspects of any utility's publicly available information. In Wisconsin, the PSC establishes rates and monitors public water utilities' financial condition and sufficiency. The PSC has helpful information about rate setting, including statewide bill comparison and the quarterly water comparison tool. The PSC also works with the Environmental Finance Center at the University of North Carolina, Chapel Hill to develop and maintain the Wisconsin Residential Water Rates Dashboard. However, these tools may not be immediately apparent to utility customers. Thus, it is important for utilities to provide rates information to their own customers. Adequate rates information includes clear, easily understood tables or text that communicates the fixed periodic charges and volumetric charges that customers pay for service.

As with CCRs, utilities earned up to 20 points for their rates information, depending on how easily accessible it was. A utility earned the full 20 points if its current rates were easily accessible either on a utility website's homepage, on the water/utility department homepage, or through a dropdown menu on the website. The utility earned 15 points if current rates were present on an official utility or city website but required difficult navigation and/or searching to access. Utilities received zero points if there was no rates information available online or if the only rates available were out of date. Table 33 shows the WSEP scoring rubric for rates availability.

Website

A clearly designed, regularly maintained website is a useful platform for utilities to communicate information to the public and to facilitate interaction. Today building and maintaining a simple website is easy thanks to widely available and often free or inexpensive tools. Utilities earned up to 35 points for various aspects of their websites; Table 34 summarizes our website scoring rubric for transparency.

A utility earned 5 points if it had any website and/or if the municipality had a website with information about the water utility, or 0 if it did not. That is, if a utility did not have a website but the utility information was provided on the municipality's website, it received 5 points. Utilities also earned credit for various aspects of website design and content. Specifically:

Mobile friendly. Today most consumers own a mobile device that can access the internet.
 In fact, 97 percent of Americans have a cell phone, including more than 85 percent owning a

smartphone,⁴² and Wisconsin households own an estimated 10 million mobile phones.⁴³ Further, nearly a quarter of rural Wisconsinites are without access to high-speed internet at home. By 2021 mobile access to the internet reached virtual parity with traditional desktop access in the United States.⁴⁴ In light of these conditions and trends, utilities earned 5 points if their website designs were "mobile-friendly" (i.e., optimized to display on mobile devices), and zero if the website was not mobile-friendly. A utility that had no website but did have a social media presence earned 5 points for mobile-friendly design by providing information via social media.

• Accessibility. Web accessibility is the practice of ensuring there are no barriers that prevent website engagement by people with physical disabilities, situational disabilities, and/or restrictions on bandwidth. To evaluate website accessibility, WSEP scores relied on the Web Accessibility Evaluation Tool (WAVE), which provides a summary information about accessibility for any website.⁴⁵ The WAVE tool provides six categories for accessibility, including Accessible Rich Internet Applications (ARIA), which helps with dynamic content and advanced user interface controls developed with HTML, JavaScript, and related platforms and technologies. ARIA enables users with disabilities – especially people who rely on screen readers and people who cannot use a mouse – to access websites. For website scoring, we entered the utility's website URL into the WAVE tool. Utilities that scored greater than zero for ARIA earned 5 points for accessibility; of ARIA number was zero, utilities received zero (0) points for accessibility.

Table 34. Communications website transparency scoring rubric

Condition	Score
Design features	
Utility has a website or municipality has website with utility information	5
Website design is mobile-friendly	5
Website accessibility (ARIA)	5
Website available in multiple languages or optimized for translation	10
Information	
Source water	4
Facilities	3
Operations	3
Total possible	35

⁴² https://www.pewresearch.org/internet/fact-sheet/mobile/

⁴³ https://dnr.wi.gov/files/PDF/pubs/wa/wa1874.pdf

⁴⁴ https://gs.statcounter.com/platform-market-share/desktop-mobile-tablet/united-states-of-america/2021

⁴⁵ https://wave.webaim.org/

- Language. According to the U.S. Census Bureau, 8.7% of Wisconsin residents spoke a
 language at home other than English. Websites that provided information in multiple
 languages thus earned 10 points for their utilities. "Multiple languages" could mean that the
 website is translated by the municipality or utility itself, or that it has enabled an automated
 translation toolbar (e.g., Google Translate) on the website that allows users to translate the
 page. Utilities without these multiple language features earned no points for multiple
 languages.
- Source water. Information about the utility's water source helps the public understand
 where their drinking water comes from and the efforts required to protect, sustain, and
 extract that source water. Utilities whose websites included information about source
 water earned 4 points, otherwise they scored zero. Typically, utilities earned these points by
 posting information about the utility's wells or aquifer or referring to surface water sources
 such as Lake Michigan or Lake Superior.
- Facilities. Information about the utility's facilities source helps the public understand the
 investments and infrastructure required to provide excellent drinking water service. Typical
 facilities information included text descriptions and/or images of treatment facilities,
 pumphouses, water towers, water treatment process, water main data, and/or other
 information about facilities. Utilities whose websites included information about facilities
 earned 3 points, otherwise they scored zero.
- Operations. Information about the utility's operations and operators source helps the public understand the supplies, energy, and skilled labor required to provide excellent drinking water service. Typical operations information included descriptions of staff and personnel, water treatment, number of customers, volume of water treated/pumped, water main information, and other relevant information. Utilities whose websites included information about operations earned 3 points, otherwise they scored zero.

Interactivity

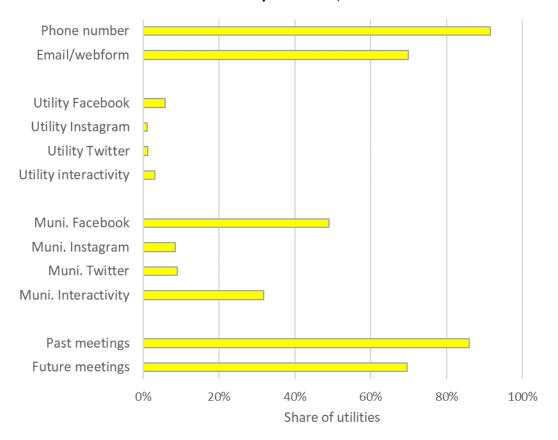

A water utility that actively engages and interacts with its customers is more likely to understand the concerns and needs of its community. In this context, interactivity means that utilities' online information included means of collecting feedback or fora where ratepayers and customers can voice their concerns. Interactivity also included whether utility websites or social media included information about public meetings and how customers can reach the utility by telephone or email. Interactivity accounts for 25 points of the 100 total points that comprise the *Communications* grade. Table 35 shows how various types of online information contribute to WSEP interactivity scores.

Table 35. Communications online interactivity scoring rubric

Condition	Score
<u>Customer contact channels</u>	
Phone number	5
Email or webform	5
Social media	
Utility	5
Municipality	5
Meetings	
Past meeting agendas, minutes, or video recordings	2.5
Future meeting schedules/agendas	2.5
Total possible	25

Figure 29 shows the distribution of performance on WSEP's indicators of interactivity. Scoring rules for each of these conditions are described below.

Figure 29. Distribution of online interactivity indicators, 2020

Phone Number

Telephone remains the conventional method of communication between utility organizations and their customers. An easily available phone number allows customers to speak with someone about their bills, water quality, maintenance or construction projects, or other concerns. Utilities whose websites or social media accounts included a phone number to contact the utility earned 5 points, otherwise they received zero points.

Email / webform

Electronic communications are more convenient and efficient than phone calls for many customers, especially for those whose work schedules do not allow them to call during regular business hours or individuals with certain disabilities. Utilities can facilitate electronic communication by providing an email address for general inquiries on their websites or social media accounts. Utilities whose websites or social media accounts included an email address or webform for electronic submission of queries earned 5 points, otherwise they received zero points.

Social Media

We collected data both on the social media accounts of the utility, and the social media accounts of each utility's municipality. Based on the advice of e-government experts, we collected data on Facebook, Instagram, and Twitter, as these are the social media platforms that experts indicated were the most widely used and popular platforms in 2020. For each platform (Facebook, Instagram, Twitter), utilities earned one point for each current account with evidence of posts or activity within the past 90 days. Utilities scored 0 if they did not have an account, or if the account was not current or showed no evidence of activity within 90 days. Utilities and their municipalities also earned credit for social media interactivity. Utilities/municipalities received 2 points if there was evidence of interacting with the public within 90 days on any of the three scored platforms, zero otherwise.

WSEP separately scored social media for both utilities and their municipal governments. For example, if a utility had a social media account specifically for its water utility, it earned one point for that account; if the utility's municipality also had a social media account for general government, it also received a 1 for that value.

Past Meetings

Official meetings of relevant governing bodies, such as water utility boards, city councils, town boards, village boards, or committees allow the public to understand the governance of their own critical infrastructure. Public information about completed, or *past* meetings, can help the public access important information about their local government, and is critical for transparency and government accountability. Utilities earned 2.5 points if information such as minutes, agendas, or video recordings of past meetings of the municipality's legislative body (e.g., city council, village board, etc.) was available online; if such information on past meetings was not available online, they scored zero.

Future Meetings

Notice of *future* official meetings of relevant governing bodies, such as water utility boards, city councils, town boards, village boards, or committees gives the public an opportunity to speak with elected or appointed officials regarding their water utility. Utilities earned 2.5 points if schedule and/or agenda information for future meetings was available online via websites or social media; We scored this on a binary, (1/0) scale. If the website included information about upcoming meetings, they scored 1; if such information on past meetings was not available online, they scored zero.

Communications grades across Wisconsin

Table 36 summarizes *Communications* scores; Figure 30 depicts the overall *Communications* grades that emerge from these scores.

. Table 36. Summary of *Communications* scores, 2020

	Total Score
Average	54.6
Median	62.5
Maximum	100.0
Minimum	0.0
Standard Deviation	26.7

Among the graded subjects, average *Communications* grades were easily the lowest across Wisconsin's utilities: just 5% of the state's utilities earned A grades for *Communications*, and nearly 47% received failing marks. Inspection of the subject's individual components indicates that most utilities had a website with basic information about the utility, contact information, and notices of past and future meetings. Failure to provide rates information and a lack of communications in multiple languages were the most common weaknesses for transparency, while low social media engagement was the most common weakness for interactivity.

While statewide performance on this subject is poor overall, it is also an area in which utilities can improve their grades very quickly and at little cost. For example, creating simple social media accounts with monthly posts that link to rates and CCRs will help many utilities in this regard. Opening and maintaining social media accounts requires little investment relative to its potential communication impact. With a modicum of effort, every utility in the state can earn strong marks for *Communications*.

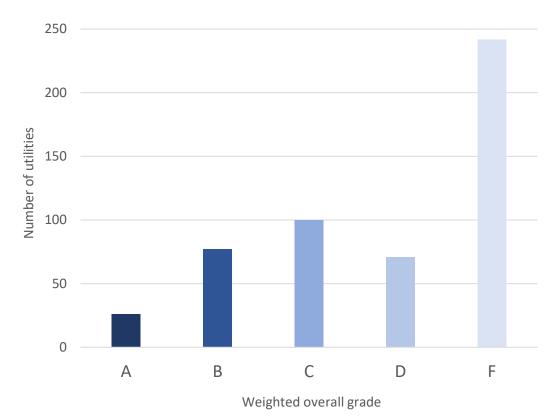


Figure 30. Distribution of Communications grades, 2020

CONCLUSION

The WSEP's goal is to provide clear and accessible information to the public and to policymakers about Wisconsin drinking water utilities' water quality, infrastructure, financial strength, and communications. The initial WSEP grades serve as a pilot or "beta test" —a proof of concept and baseline for future development. This report is intended to provide water utility leaders and other stakeholders with the first round of grades and the methodology used to create them. Figure 31 shows the overall distribution of grades across all five WSEP subjects; Table 37 converts the average grades earned across the state onto a four-point academic scale.

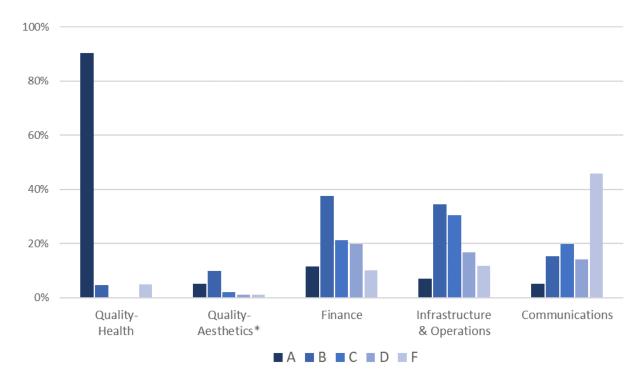


Figure 31. 2020 WSEP grade distribution by subject

*Excludes 81% of utilities that received "Incomplete" for Quality-Aesthetics.

Table 37. Statewide average WSEP grades by subject, 2020

Subject	Average (100-point scale)	Average (academic 4-point scale)
Quality-Health	92.1	3.75
Quality-Aesthetics*	83.9	2.88
Finance	75.5	2.21
Infrastructure & Operations	75.7	2.08
Communications	54.6	1.20

^{*}Based on data for 97 utilities with complete secondary contaminant data.

How good are Wisconsin's water utilities?

The initial grades that emerge from this study are at once reassuring and troubling. Very strong overall performance on *Quality-Health* demonstrates that Wisconsin's water utilities are fulfilling their most fundamental mission of providing safe, healthy drinking water. Despite WSEP's demanding rubric, more than 90% of the state's water utilities earned A grades for *Quality-Health*—evidence that, when it comes to drinking water safety, Wisconsin's water utility leaders perform far better than what is required of them by law. It is difficult to gauge Wisconsin water's overall aesthetic quality, owing to the large number of "incomplete" marks we assigned due to missing data.

On the other hand, overall performance on *Finance* and *Infrastructure & Operations* raises some concerns about the sustainability of these critical systems. Most utilities earned solid or strong grades for *Finance* though a significant minority of utilities earned poor marks here, which drags down the state's overall average on that subject. Aggregate results for *Infrastructure & Operations* grades were less impressive. More than 40% of the state's utilities earned strong marks on the subject in 2020, but a majority of utilities received mediocre (C) or poor (D-F) *Infrastructure & Operations* marks. In the long run, poor financial, capital, and/or operational performance are likely to erode water quality—and public confidence in the state's water systems. Maintaining that public confidence will be a challenge, especially as WSEP *Communications* grades were mostly poor: nearly half of Wisconsin's utilities failed the subject, and barely one in twenty earned an A grade. Fortunately, significant improvements to communications are possible at relatively low cost.

Taken together, these results suggest that Wisconsin's water utility leaders manage to maintain sound water quality, often under difficult financial, capital, and operating conditions. Improvements to performance in these aspects of water systems will ensure that Wisconsinites enjoy excellent tap water quality well into the future.

As any student knows, earning good grades requires effort and commitment; making straight A's in a demanding discipline is a rare and admirable feat. The WSEP recognizes truly excellent performance among Wisconsin's water utilities and helps identify areas for improvement for individual utilities and for the state as a whole. Excellence is possible for every Wisconsin water system; we hope that this initial WSEP report will move us closer to that goal.

Next steps forward

WSEP efforts to date indicate at least three clear paths for the project going forward: 1) refining and updating WSEP grades with data from 2022-2023; 2) identifying correlates and causes of water utility performance; and 3) disseminating findings to help improve management and policy.

With the initial rubrics established and "beta" report cards calculated, an obvious next step is to recalculate grades with more recent data. WSEP's work to date has been to develop grading rubrics for Wisconsin water utilities and to calculate their grades for 2020. This process required significant effort to gather and compile a wide variety of data, as well as lengthy consultative processes with water sector experts across the country. The global COVID-19 pandemic complicated that effort, as it is possible that the pandemic affected aspects of utility performance in ways that make 2020 an exceptional year. Calculating grades for 2022-2023 will test the durability and soundness of the rubric, and its findings will help put any pandemic-related oddities in context. We hope to replicate the WSEP grades biennially going forward, compiling a rich store of data to fuel rigorous analysis of utility performance.

The second clear avenue for future work is to analyze the correlates and causes of water utility performance. This initial WSEP report is entirely descriptive, not analytical—the grades in this report reveal performance across the five graded subjects, but do not explain why some utilities perform better than others. In other words, this report offers the *what* and *where*, but not the *why* or *how*. With the initial 2020 grades in hand, WSEP will set out to identify key correlates of performance. For example, cursory inspection of 2020 grades suggests that, perhaps unsurprisingly, performance seems to correlate positively with utility size, with larger utilities mostly outperforming smaller ones. At the same time, there are some notable high performers among small systems. Further analysis and research will examine the reasons for those patterns and identify the small systems that "punch above their weight." Other potentially important correlates of water utility performance include source water, local economic conditions, local political processes, and more.

Third, these initial WSEP grades provide an opportunity to frame public conversations about the organization, management, and policies that shape this most basic of basic services in Wisconsin.

References

- Abhold, Kristyn et al. 2021. 2021 Drinking Water Needs Assessment. California Water Boards.
- American Water Works Association. 2022. *AWWA Utility Benchmarking Performance Indicators*. Denver, CO: AWWA.
- Bash, Rachel et al. 2020. *Addressin Financial Sustainability of Drinking Water Systems with Declining Populations*. Durham, NC: Duke University. https://hdl.handle.net/10161/26618.
- Brodwin, Erin, and Dave Mosher. 2016. "Amy Poehler Has Nothing on the Water-Guzzling 'Wet Prince' of Los Angeles." *Business Insider* (June 7).
- Doria, Miguel de França, Nick Pidgeon, and Paul R. Hunter. 2009. "Perceptions of Drinking Water Quality and Risk and Its Effect on Behaviour: A Cross-National Study." *Science of The Total Environment* 407(21): 5455–64.
- Evans, Jessica, and Adam T. Carpenter. 2019. "Utility Approaches to Evaluating the Effectiveness of Consumer Confidence Reports." *Utilities Policy* 58: 136–44.
- Folkman, Steven. 2018. Water Main Breaks in the USA and Canada: A Comprehensive Study. Logan, UT: Utah State University.
- Friedman, Melinda. 2010. *Criteria for Optimized Distribution Systems*. Denver, CO: Water Research Foundation.
- Gormley, William T., and David L. Weimer. 1999. *Organizational Report Cards:* Cambridge, MA: Harvard University Press.
- Hansen, Katy, and Megan Mullin. 2022. "Barriers to Water Infrastructure Investment: Findings from a Survey of U.S. Local Elected Officials." *PLOS Water* 1(8): e0000039.
- Johnson, Branden B. 2003. "Customer Reaction to Hypothetical and Actual CCRs and Related Information." *Journal AWWA* 95(8): 90–99.
- Lafrance, David. 2012. "A Voice for Water Service." Journal AWWA 104(1): 6-6.
- Nicholas, William, and Sridhar Vedachalam. 2021. "Poor Accessibility of Water Utilities' Consumer Confidence Reports." *Utilities Policy* 72: 101272.
- Roy, Siddhartha et al. 2015. "An Evaluation of the Readability of Drinking Water Quality Reports: A National Assessment." *Journal of Water and Health* 13(3): 645–53.
- Teodoro, Manuel P. 2011. Bureaucratic Ambition. Baltimore: Johns Hopkins University Press.
- ——. 2018. "Measuring Household Affordability for Water and Sewer Utilities." *Journal AWWA* 110(1): 13–24.

- ——. 2021. "Wisconsin's Utilities Levy Hidden Taxes on the Water That Flows from Your Tap. There Are Better Ways to Fund Government." *Milwaukee Journal-Sentinel* (Nov. 11).
- Teodoro, Manuel P., Samantha Zuhlke, and David Switzer. 2022. *The Profits of Distrust*. Cambridge University Press.
- Wolman, Abel. 1958. "A Fresh Approach to Water Law." *Journal (American Water Works Association)* 50(10): 1279–84.

Appendix A | Return on Equity (ROE) formula

Return on Equity = Weighted Cost of Earning Equity/% Earning Equity

% Earning Equity = Earning Equity/Total Earning Capital Structure

Equity = Account 200 + Account 216.1 + Account 216.2

Earning Equity = Account 200 (Schedule F-15) + Account 216.1 (Schedule F-02)

Total Earning Capital Structure = Earning Equity + Debt

Debt = Account 221 (Schedule F-17) + Account 223 (Schedule F-18) + Account 224 (F-18) + Account 231 (F-18) (Also could include Account 233 (Payables to Municipality) on Schedule F-22))

Weighted/Proportion of Debt used to Finance Assets = Return on Rate Base (ROR) – Weighted Cost of Debt

Return on Rate Base (Schedule F-23) = Net Operating Income/Average Net Rate Base

Weighted Cost of Debt = Cost of Debt x % Debt

Cost of Debt = 2021 Interest/2020 EOY Total Debt Balance

% Debt = Debt/Total Earning Capital Structure

Appendix B | Main flow weights

The table below shows the flow weights used to calculate weighted average replacement rates as part of the *Infrastructure & Operations* grade.

Pipe diameter	Maximum Flow at 3 ft/sec	Weight
(inches)	(cubic ft/sec)	(2" Base)
0.75	0.11	0.14
1.00	0.20	0.25
1.25	0.31	0.39
2.00	0.79	1.00
3.00	1.77	2.25
4.00	3.14	4.00
6.00	7.07	9.00
8.00	12.57	16.00
10.00	19.63	25.00
12.00	28.27	36.00
16.00	50.27	64.00
18.00	63.62	81.00
20.00	78.54	100.00
24.00	113.10	144.00
28.00	153.94	196.00
30.00	176.71	225.00
36.00	254.47	324.00
42.00	346.36	441.00
48.00	452.39	576.00
54.00	572.56	729.00
60.00	706.86	900.00
72.00	1,017.88	1,296.00

Appendix C | Utility report cards

Grade Color Kev	Α	В	С	D	F
Grade Color Key	(>90)	(80-90)	(70-80)	(60-70)	(<60)

Name	Quality - Health	Quality - Aesthetics	Finance	Infrastructure & Operations	Communications
ABBOTSFORD MUNICIPAL WATER UTILITY	98		79	78	65
ADAMS MUNICIPAL WATER AND SEWER UTIL	99		63	78	70
ADELL MUN SEWER AND WATER UTILITY	91		84	68	43
ALBANY MUN WATER AND SEWER UTILITY	99		77	69	51
ALGOMA UTILITY COMMISSION	99		75	77	73
ALLOUEZ VILLAGE OF WATER DEPT	99	61	73	74	75
ALMA MUNICIPAL WATER UTILITY	100		53	63	66
ALMA CENTER WATER UTILITY	0	94	73	70	15
ALMENA MUNICIPAL WATER UTILITY	99		69	91	31
ALTOONA MUN WATER AND SEWER UTILITY	91	98	93	85	70
AMERY MUN JOINT WTR & SWR UTY	99		89	81	70
AMHERST VILL OF WATER UTILITY	97	0.5	81	70	43
ANTIGO UTILITIES	91	96	79	84	70
APPLETON WATER DEPT	97	97	87	75	75
ARCADIA ELECTRIC & WATER UTILITY	100		87	74	93 71
ARENA MUNICIPAL WATER UTILITY	99	87	90 83	78 73	
ARGYLE MUN ELECTRIC & WATER UTIL ARLINGTON WATER UTILITY	99 99	8/	59	75 59	25 14
ASHLAND WATER UTILITY	0		82	80	77
ASHWAUBENON WATER AND SEWER UTILITY	98	71	70	76	75
ATHENS MUNICIPAL WATER UTILITY	99	94	71	74	43
AUGUSTA; CITY OF MUN WTR & SWR UTY	0	54	63	74	28
AVOCA MUNICIPAL WATER UTILITY	98		83	75	68
BAGLEY MUNICIPAL WATER UTILITY	99		59	51	5
BALDWIN MUNICIPAL WATER UTILITY	92		93	82	76
BALSAM LAKE MUN WATER UTILITY	91		79	77	45
BANGOR MUNICIPAL UTILITY	92		67	89	68
BARABOO CITY WATER WORKS	90		65	86	73
BARNEVELD MUNICIPAL WATER UTILITY	98		70	69	48
BARRON LIGHT AND WATER UTILITY	99		85	88	56
BAY CITY VILLAGE OF WATER UTILITY	99		72	76	48
BAYFIELD WATER & SEWER UTILITY	100		91	73	65
BEAR CREEK WATER UTILITY	100	81	78	66	30
BEAVER DAM WATER UTILITY	100		85	86	83
BELGIUM MUNICIPAL WATER UTILITY	99		92	89	81
BELLEVILLE MUN WATER & SEWER UTY	100		78	92	81
BELLEVUE WATER UTILITY	98	57	64	80	79
BELMONT MUN WATER AND ELECTRIC UTIL	99	87	78	65	51
BELOIT WATER UTILITY	0	87	80	80	65
BENTON MUN ELECTRIC AND WATER UTIL	100		47	62	71
BERLIN MUN WATER AND SEWER UTILITY	98		83	87	73
BIRCHWOOD MUNICIPAL WATER UTILITY	94		94	53	28
BIRNAMWOOD MUNICIPAL WATER UTILITY	99		95	84	28
BIRON MUN WATER UTILITY	99		62	83	45
BLACK CREEK MUN WATER & SEWER UTIL	97		81	68	45
BLACK EARTH VILL OF WATER UTILITY	100		75	89	30
BLACK RIVER FALLS MUN ELEC & WTR	99		85	77	75
BLAIR MUNICIPAL WATER UTILITY	99	95	88	79	40
BLANCHARDVILLE MUN WATER UTILITY	92		68	63	0
BLOOMER CITY OF WATER UTILITY	98	95	81	78	50
BLOOMINGTON MUNICIPAL WATER UTILITY	100		85	91	45
BLUE MOUNDS VILL OF MUNICIPAL WT UT	100		86	69	70
BLUE RIVER MUN WATER AND SEWER UTIL	100		83	75	0
BONDUEL WATER & SEWER UTILITY	98		88	88	60
BOSCOBEL MUNICIPAL UTILITIES	99	77	89	88	80
BOWLER WATER AND SEWER UTILITY	98		63	62	20
BOYCEVILLE MUNICIPAL WATER UTILITY	98		73	89	50
BOYD MUN WATER AND SEWER UTILITY	99		86	74	71

Condo Colon Kon	Α	В	С	D	F
Grade Color Key	(>90)	(80-90)	(70-80)	(60-70)	(<60)

Name	Quality - Health	Quality - Aesthetics	Finance	Infrastructure & Operations	Communications
BRANDON SEWER & WATER UTIL	100		83	76	28
BRILLION MUNICIPAL WATER UTILITY	98	90	66	84	70
BRISTOL WATER UTILITY	99		91	58	50
BRODHEAD WATER AND LIGHT COMMISSION	99		90	79	78
BROOKFIELD MUNICIPAL WATER UTILITY	0	59	71	86	92
BROOKLYN WATER UTILITY	99		82	79	73
BROWN DEER WATER PUBLIC UTILITY	91		79	88	93
BROWNSVILLE WATER UTILITY	91		80	56	68
BROWNTOWN MUNICIPAL WATER UTILITY	100		50	43	70
BRUCE MUN WATER & SEWER UTILITY	97		78	50	46
BURLINGTON MUNICIPAL WATERWORKS	99		87	73	84
BUTLER PUBLIC WATER UTILITY	83		64	52	53
BUTTERNUT MUNICIPAL WATER DEPT	100		58	61	18
CADOTT LIGHT AND WATER MUN UTILITY	99		67	78	15
CALEDONIA VILLAGE OF WATER UTILITY	89		80	73	56
CAMBRIA MUNICIPAL WATER UTILITY	98		70	66	18
CAMBRIDGE MUNICIPAL WATER UTILITY	100		73	74	0
CAMERON VILL OF MUNICIPAL WTR UTY	99		63	79	72
CAMPBELLSPORT MUN WATER UTILITY	99		80	71	68
CAMP DOUGLAS MUNICIPAL WATER UTILITY	99		78	90	71
CASCADE WATER UTILITY	92	80	65	84	31
CASHTON MUN ELECTRIC AND WATER UTIL	99		89	89	46
CASSVILLE WATER & SEWER UT	99		64	73	29
CAZENOVIA VILL OF WATER UTILITY	94		87	79	0
CEDARBURG LIGHT AND WATER COMMISSION	90		72	83	78
CEDAR GROVE MUNICIPAL WATER UTILITY	99		70	73	45
CENTURIA MUN WATER AND SEWER UTILITY	99		63	49	48
CHASEBURG WATER & SEWER UTILITY	100		86	70	6
CHETEK MUNICIPAL WATER UTILITY	100		86	87	70
CHILTON MUNICIPAL WATER UTILITY	96		83 91	79	73
CHIPPEWA FALLS DEPT OF PUBLIC UTIL CLAYTON MUNICIPAL WATER UTILITY	97 99		69	85 93	90 70
CLEAR LAKE MUNICIPAL WATER UTILITY	99		86	68	35
CLEVELAND WATER UTILITY	99	83	45	70	68
CLINTON MUNICIPAL WATERWORKS	99	65	80	69	65
CLINTON MONICIPAE WATERWORKS CLINTONVILLE WATER & ELECTRIC UTY	99		86	87	96
CLYMAN UTILITY COMMISSION	100		70	67	40
COBB MUNICIPAL WATER UTILITY	100	77	83	74	48
COCHRANE MUNICIPAL WATER UTILITY	100	//	93	92	43
COLBY CITY OF MUN WATER UTILITY	97		75	87	50
COLEMAN WATER UTILITY	99	83	46	89	70
COLFAX MUN WATER AND SEWER UTILITY	99		86	76	45
COLOMA MUNICIPAL WATER UTILITY	98		77	61	66
COLUMBUS WATER AND LIGHT DEPT	0	93	87	84	81
COMBINED LOCKS WATER UTILITY	90		83	67	74
COON VALLEY MUNICIPAL WATER UTILITY	100		67	67	48
CORNELL MUN WATER AND ELECTRIC UTIL	99		85	71	57
COTTAGE GROVE WATER & SEWER UTIL	100		84	92	73
CRANDON WATER AND SEWER UTILITY	92		69	93	23
CRIVITZ VILLAGE OF WATER UTILITY	99		64	76	57
CROSS PLAINS WATER UTIL	99		83	60	73
CUBA CITY ELECTRIC & WATER UTILITY	99		90	87	80
CUDAHY CITY OF WATER UTILITY	92	94	85	56	93
CUMBERLAND MUNICIPAL UTILITY	92		90	82	70
CURTISS MUNICIPAL WTR & SWR UTY	92		90	72	45
DALLAS MUNICIPAL WATER UTILITY	92		71	81	10
DANE WATER & SEWER UTY	92		89	79	70
DARIEN WATER WORKS & SEWER SYSTEM	99		58	57	80

Condo Colon Kon	Α	В	С	D	F
Grade Color Key	(>90)	(80-90)	(70-80)	(60-70)	(<60)

Name	Quality - Health	Quality - Aesthetics	Finance	Infrastructure & Operations	Communications
DARLINGTON MUN WATER AND SEWER UTIL	100	87	92	84	80
DEERFIELD WATER UTILITY	98		84	74	74
DEFOREST MUNICIPAL WATER UTILITY	99		91	95	74
DELAVAN WATER & SEWAGE COMMISSION	90		57	84	60
DELAFIELD MUNICIPAL WATER UTILITY	100		90	66	71
DENMARK MUNICIPAL WATER UTILITY	95	27	85	80	69
DE PERE WATER DEPARTMENT	96	67	63	79	77
DICKEYVILLE WATER UTILITY	98		71	85	50
DODGEVILLE WATER UTILITY	99		67	77	83
DORCHESTER VILLAGE OF WATER UTILITY	100		81	67	39
DOUSMAN WATER UTILITY	99		81	88	34
DRESSER MUNICIPAL WATER UTILITY	92		26	48	63
DURAND MUNICIPAL WATER UTILITY	92		77	59	76
EAGLE VILL OF MUNICIPAL WTR UTY	90	73	83	8 6	58
EAGLE RIVER LIGHT AND WATER COMM	100		70	89	30
EASTMAN WATER UTILITY	100		86	70	18
EAST TROY VILL OF MUN WTR UTY	99		88	80	74
EAU CLAIRE MUNICIPAL WATER UTILITY	92	73	87	89	94
EDGAR MUNICIPAL WATER UTILITY	99		92	83	61
EDGERTON MUNICIPAL WATER UTILITY	99	89	90	80	47
ELEVA MUNICIPAL WATER UTILITY	100		73	74	6
ELKHART LAKE WATER DEPT	99		81	88	80
ELKHORN LIGHT AND WATER	97	98	85	78	72
ELK MOUND MUN WATER & SEWER UTY	100	88	68	77	62
ELLSWORTH MUN WATER AND SEWER UTIL	98		73	70	31
ELMWOOD MUNICIPAL WATER UTILITY	99		91	76	71
ELROY MUN ELECTRIC AND WATER UTY	98		68	86	81
EMBARRASS WATER AND SEWER UTIL	97		86	81	0
ETTRICK MUN WATER AND SEWER UTILITY	100		67	80	0
EVANSVILLE CITY OF WATER & LIGHT	99		86	87	81
EXELAND MUNICIPAL WATER UTILITY	99		75	66	0
FAIRCHILD MUNICIPAL WATER UTILITY	98		60	67	44
FAIRWATER MUN WATER UTILITY	100		72	76	66
FALL CREEK MUNICIPAL WATER UTILITY	90		77	89	49
FALL RIVER MUNICIPAL WATER UTILITY	99		88	92	46
FENNIMORE WATER AND LIGHT PLANT	99		85	90	79
FITCHBURG WATER UTILITY	97		94	91	93
FLORENCE UTILITY COMMISSION	99		81	88	76
FOND DU LAC WATER UTILITY	90	88	65	73	85
FONTANA MUNICIPAL WATER UTILITY	99		63	72	51
FOOTVILLE WATER UTILITY	96		64	74	50
FORT ATKINSON CITY OF WATER UTILITY	91		83	78	94
FOUNTAIN CITY WATER UTILITY	100		52	45	63
FOX LAKE CITY OF WATER UTILITY	99		91	82	58
FOX POINT VILL OF WATER UTILITY	90	70	66	73	80
FRANKLIN MUNICIPAL WATER UTILITY	99	78	70	86	80
FREDERIC WATER COMMISSION	92	86	65	75	45
FREDONIA MUNICIPAL WATER UTILITY	92		91	74	23
FRIENDSHIP VILLAGE OF WATER LITHITY	90	07	79	74	0
FRIESLAND MUNICIPAL WATER UTILITY	92	87	67	59	23
FULTON WATER UTILITY	91	04	90	82	50
GALESVILLE CITY OF MUN WTR UTY	99	94	89	69	68
GAYS MILLS VILL OF MUN WTR UTY	100		92	79	51
GENOA MUN WATER AND SEWER UTILITY	0	77	86	54 79	8 E1
GENOA CITY VILLAGE OF MUN WATER UT	92	77	89	_	51
GERMANTOWN WATER UTILITY	98		70	90 87	83
GILLETT WATER AND SEWER COMM	99		80		80
GILMAN WATER UTILITY	99		64	70	19

Condo Colon Kon	Α	В	С	D	F
Grade Color Key	(>90)	(80-90)	(70-80)	(60-70)	(<60)

Name	Quality - Health	Quality - Aesthetics	Finance	Infrastructure & Operations	Communications
GLENBEULAH MUN WATER UTILITY	99		85	83	20
GLENDALE WATER UTILITY	91		63	79	68
GLENWOOD CITY MUN WATER UTILITY	100		71	83	23
GLEN FLORA; VILLAGE OF; WATER UTY	99		47	22	0
GRAFTON WATER & WASTEWATER UTILITY	85		94	92	85
GRANTON MUNICIPAL WATER UTILITY	98		88	65	33
GRANTSBURG VILL OF MUN WTR UTY	100		90	89	51
GRATIOT MUNICIPAL WATER UTILITY	0		54	50	8
GREEN BAY WATER UTILITY	95	92	85	62	95
GREENDALE VILLAGE OF WATER UT	91		79	69	53
GREEN LAKE CITY OF WATER UTILITY	97		68	72	50
GREENWOOD CITY OF WATER UTILITY	91		77	76	43
GRESHAM MUNICIPAL WATER AND SEWER UT	91		43	79	49
LAKE HALLIE (VILLAGE OF) PUBLIC WORK	97		86	93	50
HAMMOND MUNICIPAL WATER UTILITY	99		91	86	45
HARTFORD CITY OF UTILITIES	98		68	80	85
HARTLAND MUN WATER UTILITY	93		90	87	82
HATLEY VILLAGE OF WATER UTILITY	99		65	76	23
HAUGEN VILLAGE OF WATER UTILITY	98	63	68	53	40
HAWKINS MUN WATER AND SEWER UTILITY	100		67	57	30
HAYWARD CITY OF WATERWORKS AND SWR	99		89	94	53
HAZEL GREEN MUNICIPAL UTILITY	88		90	80	24
HIGHLAND MUNICIPAL WATER UTILITY	99		82	86	48
HILBERT MUNICIPAL WATER UTILITY	97	00	61	85	23
HILLSBORO MUN WATER UTY	0	93	75 	51	51
HIXTON MUNICIPAL WATER UTILITY	99		77	75	24
HOBART VILLAGE OF WATER UTILITY	98		86	88	81
HOLLANDALE WATER UTILITY	92		55	41	16
HOLMEN MUNICIPAL WATER UTILITY	89		91	95	44
HORICON CITY OF WATER UTILITY	99		63	82	80
HORTONVILLE VILLAGE OF WTR & SWR	96	42	83	71	56
HOWARD VILLAGE OF WTR & SWR DEP	98	43	69	66	74
HUDSON PUBLIC UTILITIES HURLEY CITY OF WATER UTILITY	98 90		66 50	89 53	73 0
HUSTISFORD UTILITIES	99		81	53	60
	99		67	76	0
HUSTLER MUNICIPAL WATER UTILITY INDEPENDENCE MUNICIPAL WATER UTILITY	100		83	88	43
IOLA MUNICIPAL WATER UTILITY	99		61	72	40
IRON RIDGE MUNICIPAL WATER UTILITY	94		66	85	58
IRONTON WATER UTILITY	99		86	72	0
JACKSON VILL OF WATER UTILITY	99		61	75	75
JANESVILLE WATER UTILITY	97	82	71	68	85
JEFFERSON WATER AND ELECTRIC DEPT	92	62	87	84	81
JOHNSON CREEK WATER UTILITY	99	87	56	49	68
JUNCTION CITY WATER UTILITY	99	- 3/	75	56	15
JUNEAU UTILITY COMMISSION	0	78	71	76	73
KAUKAUNA UTILITIES	99	70	85	81	88
KELLNERSVILLE WATER UTILITY	98		73	88	0
KENDALL MUNICIPAL WATER UTILITY	98	82	53	82	26
KENOSHA WATER UTILITY	99	94	70	63	94
KEWASKUM MUNICIPAL WATER UTILITY	92		92	80	50
KEWAJKOW MONICIPAL WATER OTHERT	99		58	75	51
KIEL CITY OF UTILITIES	95		79	85	76
KIMBERLY MUNICIPAL WATER UTILITY	92		90	58	58
KNAPP MUN WATER AND SEWER UTILITY	100		95	79	0
KOHLER MUNICIPAL WATER UTILITY	90		93	74	72
KRONENWETTER WATER UTILITY	99		93	97	78
	98	83	93	63	83

Condo Colon Kon	Α	В	С	D	F
Grade Color Key	(>90)	(80-90)	(70-80)	(60-70)	(<60)

Name	Quality - Health	Quality - Aesthetics	Finance	Infrastructure & Operations	Communications
LADYSMITH MUNICIPAL WATER UTILITY	99		43	79	70
LA FARGE MUN WATER AND SEWER UTILITY	99	82	78	70	28
LAKE DELTON VILLAGE OF WATER UTIL	99		78	77	75
LAKE GENEVA UTILITY COMMISSION	97		75	84	69
LAKE MILLS LIGHT AND WATER DEPT	90	82	63	77	75
LANCASTER MUNICIPAL WATER UTILITY	98		79	85	43
LANNON MUNICIPAL WATER UTILITY	92		84	57	53
LA VALLE MUNICIPAL WATER UTILITY	0		60	48	30
LAWRENCE TOWN OF WATER UTILITY	99		66	89	66
LENA MUNICIPAL WATER & SEWER UTY	99		81	54	60
LINDEN MUNICIPAL WATER UTILITY	100		80	83	30
LITTLE CHUTE MUNICIPAL WATER DEPT	100		82	84	70
LIVINGSTON MUNICIPAL WATER UTILITY	100		81	70	25
LODI MUNICIPAL LIGHT AND WATER UTILI	98	89	68	69	80
LOGANVILLE MUN WATER & SEWER UTILITY	99		69	51	23
LOMIRA MUNICIPAL WATER UTILITY	99		69	87	73
LONE ROCK UTILITIES	98	90	71	75	40
LOWELL MUN WATER AND SEWER UTILITY	99		64	49	24
LOYAL MUNICIPAL WATER UTILITY	97		64	83	19
LUCK MUNICIPAL WATER UTILITY	98		66	68	38
LUXEMBURG MUNICIPAL WATER UTILITY	99		75	92	61
LYNDON STATION MUN WATER UTILITY	100	98	66	59	18
MADISON WATER UTILITY	99	86	80	83	100
MAIDEN ROCK; VILLAGE OF; MUN WTR UTY	99		59	67	0
MANAWA MUNICIPAL WATER UTILITY	98		86	69	68
MANITOWOC PUBLIC UTILITIES	99	95	67	62	83
MAPLE BLUFF VILLAGE OF MUN WTR UTY	91		56	77	46
MARATHON VILLAGE OF WTR & SWR UTY	99		85	76	83
MARIBEL MUN WTR & SWR UTY	99		66	75	0
MARINETTE MUNICIPAL WATER UTILITY	99		69	85	65
MARION MUN WATER AND SEWER UTILITY	99	07	86 87	67 91	58
MARKESAN MUN WATER PLANT	98	87			51
MARSHALL WATER AND SEWER UTILITY MARSHFIELD UTILITIES	98 98	87	72 89	89 78	83 78
	99	6/	90	68	0
MATTOON MUNICIPAL WATER UTILITY MAUSTON CITY OF MUNICIPAL WTR UTY	99		90	84	83
MAYVILLE MUNICIPAL WATER UTILITY	91	85	90	87	59
MAZOMANIE WATER UTILITY	99	65	75	90	45
MCFARLAND WATER & SEWER UTILITY	99		85	87	84
MEDFORD WATER WORKS	96		87	88	60
MELLEN MUN WATER UTILITY	92		71	61	0
MELROSE MUNICIPAL WATER UTILITY	100		79	68	58
MENASHA - TOWN OF - UTILITY DISTRICT	99		81	79	81
MENASHA ELECTRIC & WATER UTILITIES	92		78	67	88
MENOMONEE FALLS VILLAGE OF WTR UTY	99		70	76	93
MENOMONIE CITY OF WATER DEPT	99		87	80	65
MEQUON MUNICIPAL WATER UTILITY	90		90	90	80
MERRILL WATER UTILITY	91		77	88	83
MERRILLAN MUN ELECTRIC & WTR UTIL	100		76	63	74
MERRIMAC MUNICIPAL WATER UTILITY	100		78 78	76	66
MIDDLETON MUNICIPAL WATER UTILITY	99		90	89	83
MILLADORE VILLAGE OF WATER UTILITY	99		63	74	0
MILLTOWN VIL OF WATER UTY	83		67	50	20
MILTON CITY OF MUN WTR UTY	97		92	80	75
MILWAUKEE WATER WORKS	99	94	68	75	95
MINERAL POINT MUN WATER UTILITY	0		77	55	61
MINONG VILLAGE OF WATER UTILITY	100		66	78	23
	99		86	76	71

Condo Colon Kon	Α	В	С	D	F
Grade Color Key	(>90)	(80-90)	(70-80)	(60-70)	(<60)

Name	ne Quality - Quality - Health Aesthetics		Finance	Infrastructure & Operations	Communications
MONDOVI MUN WATER AND SEWER UTILITY	100		85	69	66
MONONA WATER UTILITY	99		88	87	90
MONROE MUNICIPAL WATER UTILITY	99	89	61	65	85
MONTELLO CITY OF WATER UTILITY	99		72	84	70
MONTFORT MUNICIPAL WATER UTILITY	100		78	85	63
MONTICELLO VILLAGE OF WATER UTY	98		86	63	61
MONTREAL MUNICIPAL WATER UTILITY	99		83	46	30
MOSINEE MUNICIPAL WATER AND SEWER UT	98		63	85	60
MT CALVARY VILL OF MUN WTR& SWR	99		73	80	21
MOUNT HOPE MUNICIPAL WATER UTILITY	100		73	78	0
MOUNT HOREB WATER AND SEWER UTILITY	94		93	88	84
MOUNT STERLING MUN WATER UTILITY	92		46	62	0
MUKWONAGO MUNICIPAL WATER UTILITY	99		70	87	83
MUSCODA LIGHT AND WATER UTILITY	99		82	83	76
MUSKEGO CITY OF WATER PUBLIC UTY	92		86	91	80
NECEDAH VILL OF MUN WATER UTILITY	99		75	54	10
NEENAH CITY OF WATER UTILITY	90		89	81	93
NEILLSVILLE CITY OF MUN WTR UTY	99		77	71	76
NEKOOSA MUNICIPAL WATER UTILITY	99		83	76	51
NELSON WATER AND SEWER DEPARTMENT	99		76	73	60
NEW AUBURN MUNICIPAL WATER UTILITY	92		60	67	73
NEW BERLIN WATER UTILITY	83		91	87	74
NEW GLARUS LIGHT AND WATER WORKS	99		87	90	66
NEW HOLSTEIN PUBLIC UTILITY	97		80	88	79
NEW LISBON CITY OF ELEC & WATER UT	99	07	84	85	48
NEW LONDON ELECTRIC & WATER UTILITY	91 92	87	85	76 91	75 78
NEW RICHMOND MUNICIPAL WATER UTILITY			73 83	88	41
NIAGARA MUNICIPAL WATER LITHITY	99 100		72	65	28
NICHOLS MUNICIPAL WATER UTILITY	0	63	89	61	28 51
NORTH FOND DU LAC WATER UTILITY NORTH FREEDOM MUN WATER UTILITY	98	03	80	77	63
NORWALK MUNICIPAL WATER UTILITY	100		64	57	41
OAK CREEK WATER & SEWER UTILITY	91		88	82	85
OAKDALE WATER UTILITY VILLAGE OF	97		87	75	6
OAKFIELD VILLAGE OF MUN WTR UTY	100		70	59	73
OCONOMOWOC CITY OF UTILITIES	98		91	89	95
OCONTO UTILITY COMMISSION	0		88	92	63
OCONTO FALLS WATER AND LIGHT COMM	99		87	89	75
OLIVER MUNICIPAL WATER PLANT	100		41	60	25
OMRO CITY OF WTR UTY	93	55	74	85	73
ONALASKA MUNICIPAL WATER UTILITY	93	87	48	89	81
ONTARIO MUNICIPAL WATER UTILITY	100		72	80	24
OOSTBURG MUNICIPAL WATER UTILITY	100		81	75	64
OREGON MUN WATER AND SEWER UTILITY	98	89	93	88	71
ORFORDVILLE MUNICIPAL WATER UTILITY	99		46	77	25
OSCEOLA MUNICIPAL WATER UTILITY	99		87	84	80
OSHKOSH CITY OF WATER UTILITY	97	94	87	85	83
OSSEO MUN WATER AND SEWER UTILITY	99	92	90	84	73
OWEN MUN WATER UTILITY	90		82	70	70
PADDOCK LAKE MUN WATER UTILITY	92		60	42	75
PALMYRA VILLAGE OF WTR & SWR UTY	99		92	78	74
PARDEEVILLE MUN WATER UTY	99		75	87	70
PARK FALLS MUNICIPAL WATER UTILITY	92	95	63	64	83
PATCH GROVE MUNICIPAL WATER UTILITY	100		91	52	0
PENCE TOWN OF MUN WTR DEPT	90		88	71	0
BLOOMFIELD VILLAGE OF UTILITY DEPART	98		95	76	65
PEPIN MUNICIPAL WATER UTILITY	90	89	48	57	60
PESHTIGO MUN WATER UTILITY	99		85	80	45

0 1 0 1 1/4	Α	В	С	D	F
Grade Color Key	(>90)	(80-90)	(70-80)	(60-70)	(<60)

Name	Quality - Health	Quality - Aesthetics	Finance	Infrastructure & Operations	Communications
PEWAUKEE VILLAGE OF WATER UTILITY	0		82	63	85
PEWAUKEE CITY OF WATER UTILITY	0		52	79	84
PHILLIPS MUN WATER WORKS	99		82	90	30
PIGEON FALLS MUNICIPAL WATER UTILITY	100	89	28	42	0
PITTSVILLE MUN WATER UTILITY	98		86	76	65
PLAIN MUNICIPAL WATER UTILITY	99		82	62	26
PLAINFIELD VILL OF WATER UTILITY	99		49	71	18
PLATTEVILLE WATER & SEWER UTILITY	97	83	80	84	69
PLEASANT PRAIRIE VILL OF WTR UTY	90		91	84	84
PLOVER VILL OF MUN WTR UTY	97		75	94	93
PLYMOUTH UTILITIES	90		87	82	55
PORTAGE WATER UTILITY	99		87	89	68
PORT EDWARDS WATER UTILITY	100		93	80	43
PORT WASHINGTON MUN WATER UTILITY	92		87	82	83
POTOSI MUNICIPAL WATER UTILITY	99		92	53	6
POUND VILL OF WATER & SWR UTY	100		54	68	78
POYNETTE MUNICIPAL WATER UTILITY	99		82	74	80
PRAIRIE DU CHIEN MUN WATER UTILITY	92		70	74	80
PRAIRIE DU SAC MUN ELECTRIC & WTR	100		88	82	69
PRENTICE VILLAGE OF WTR & SWR UTY	84		87	68	43
PRESCOTT CITY OF MUN WTR UTY	98		91	95	90
PRINCETON MUN WATER & ELECTRIC UTIL	99		82	83	63
PULASKI WATER DEPT	0	71	86	73	51
RACINE WATER WORKS COMMISSION	92	94	82	77	93
RADISSON WATER AND SEWER UTILITY	92	87	79	72	23
RANDOLPH MUNICIPAL WATER UTILITY	98		64	84	45
RANDOM LAKE MUNICIPAL WATER DEPT	92		77	54	53
READSTOWN MUNICIPAL WATER UTILITY	100		70	56	36
REDGRANITE WATER UTILITY	99		47	80	38
REEDSBURG UTILITY COMMISSION	97		73	91	79
REEDSVILLE MUNICIPAL WATER UTILITY	0		80	55	61
REESEVILLE WATER UTILITY	99		92	86	49
REWEY MUNICIPAL WATER UTILITY	0 99		67 85	37 85	73
RHINELANDER CITY OF WATER UTY	100		83	77	66
RIB LAKE VILLAGE OF WATER UTILITY	90		91	77	71
RICE LAKE MUN WATER & ELECTRIC UTIL RICHLAND CENTER WATER UTILITY	99	88	66	87	83
RIDGEWAY VILL OF MUN WATER UTY	99	00	64	83	66
RIO MUNICIPAL WATER UTILITY	99	90	89	68	68
RIPON WATER UTILITY	99	90	80	73	50
RIVER FALLS MUNICIPAL UTILITY	92		94	92	74
ROBERTS VILL OF WATER UTILITY	99		86	79	46
ROCKLAND MUN WATER AND SEWER UTILITY	100		81	79	46
ROCK SPRINGS MUNICIPAL UTILITY	0		61	64	24
ROME TOWN OF WATER UTILITY	91		82	66	70
ROTHSCHILD MUNICIPAL WATER UTILITY	92	90	77	86	71
ST CLOUD WATER & SEWER UTY	99	30	79	76	39
ST CROIX FALLS MUN WATER UTILITY	99		91	85	50
ST NAZIANZ WATER UTILITY	99		85	89	50
SAUK CITY MUN WATER & LIGHT UTIL	99	88	63	88	63
SAUKVILLE MUN WATER & LIGHT OTIL	99	- 50	87	68	91
SCHOFIELD MUN WATER & SEWER UTILITY	99		86	65	0
SCOTT TOWN OF WATER UTILITY	98		77	85	25
SEYMOUR MUN WATER UTILITY	99		91	70	44
SHARON WATERWORKS & SEWER SYSTEM	98		76	71	61
SHAWANO CITY OF WATER & SEWER UTILIT	96	88	76	90	85
SHEBOYGAN WATER UTILITY	99	- 50	65	82	83
	- 33		03	OZ.	

0 1 0 1 1/4	Α	В	С	D	F
Grade Color Key	(>90)	(80-90)	(70-80)	(60-70)	(<60)

Name	Quality - Health	Quality - Aesthetics	Finance	Infrastructure & Operations	Communications
SHELDON MUNICIPAL WATER UTILITY	91		73	68	0
SHELL LAKE MUNICIPAL UTILITIES	92		86	85	38
SHERWOOD VILLAGE OF WTR & SWR UTY	100	98	69	71	83
SHIOCTON MUNICIPAL UTILITY	100		55	54	51
SHOREWOOD MUNICIPAL WATER UTILITY	90		81	66	94
SHOREWOOD HILLS VILL OF WATER UTY	91		65	70	65
SHULLSBURG WATER UTILITY	99	90	60	84	45
SIREN MUNICIPAL WATER UTILITY	0		86	81	26
SISTER BAY WATER AND SEWER UTILITY	97		91	78	65
SLINGER UTILITIES	91	61	83	84	63
SOLDIERS GROVE VILL OF MUN WTR UTY	100		71	78	44
SOMERS WATER UTILITY TOWN OF	90		70	85	75
SOMERSET VILLAGE OF WATER UTILITY	99	59	48	83	68
SOUTH MILWAUKEE WATER UTILITY	92		77	69	83
SOUTH WAYNE MUNICIPAL WATER UTILITY	100		63	82	55
SPARTA MUNICIPAL WATER DEPT	94		91	91	70
SPENCER MUNICIPAL WATER UTILITY	100		86	87	38
SPOONER MUNICIPAL UTILITIES	99		92	82	80
SPRING GREEN MUNICIPAL WATER UTILITY	99		64	79	40
SPRING VALLEY WATERWORKS	99		48	87	70
STANLEY MUNICIPAL WATERWORKS	99		85	67	48
STAR PRAIRIE MUNICIPAL WATER UTILITY	92		63	39	50
STETSONVILLE WATER UTILITY	0	91	59	80	65
STEVENS POINT MUN WATER UTILITY	98		88	85	84
STOCKBRIDGE WATER UTILITY	99		51	73	80
STODDARD MUNICIPAL WATER UTILITY	92		85	64	14
STOUGHTON WATER UTILITY	98	84	91	75	78
STRATFORD MUN WATER & ELECTRIC UTIL	98		82	75	73
STRUM MUNICIPAL UTILITIES	100		83	85	46
STURGEON BAY UTILITIES	92		77	80	86
SUAMICO WATER UTILITY	99	00	91	67	29
SUN PRAIRIE UTILITIES	91	88	87	92	88
SURING VILLAGE OF WATER UTILITY	99 99	87 82	59 71	63 80	65 85
SUSSEX VILLAGE OF WATER LITTLEY		82	67	89	23
TAYLOR VILLAGE OF WATER UTILITY	100		58	65	23 6
TENNYSON WATER UTILITY	99 99		65	76	70
THERESA MUN WATER AND SEWER UTILITY THORP MUN WATER AND SEWER UTILITY	90	91	77	81	43
TIGERTON MUNICIPAL WATER & SEWER UTY	96	91	71	62	43 65
TOMAH WATER UTILITY	96		86	92	83
TOMAHAWK MUN WATER & SEWER UTILITY	100		79	76	78
TONY MUNICIPAL WATER & SEWER OTHERT	100		73	73	0
TREMPEALEAU MUN ELECTRIC & WTR UTY	99		83	80	68
TURTLE LAKE MUN WATER & SEWER UTIL	99		89	60	70
TWO RIVERS WATER & LIGHT UTILITY	84		65	81	63
UNION CENTER VILLAGE OF WTR UTY	98		55	66	51
UNION GROVE MUNICIPAL WATER UTILITY	100		83	73	70
VALDERS PUBLIC UTILITY	97		89	86	75
VERONA WATER UTILITY	98		92	89	94
VESPER MUN WATER AND SEWER UTILITY	99		78	75	25
VIOLA MUN WATER AND ELECTRIC UTILITY	99		69	83	48
VIROQUA CITY OF MUN WATER UTILITY	99		85	83	80
WALDO WATER AND SEWER UTILITY	92	83	89	81	66
WALWORTH MUN WATER AND SEWER UTILITY	0	88	73	66	63
WARRENS MUN WTR & SWR UTILITIES	100	- 50	81	73	48
WASHBURN MUN WATER AND SEWER UTILITY	99		83	79	80
WATERFORD VILLAGE OF WTR & SWR UTY	99		89	91	73

Crada Calar Kau	Α	В	С	D	F
Grade Color Key	(>90)	(80-90)	(70-80)	(60-70)	(<60)

Name	Quality - Health	Quality - Aesthetics	Finance	Infrastructure & Operations	Communications
WATERTOWN WATER DEPARTMENT	99	89	88	85	94
WAUKESHA WATER UTILITY CITY OF	0	86	79	89	80
WAUNAKEE WATER AND LIGHT COMMISSION	99		93	91	89
WAUPACA WATER UTILITY	96		84	81	83
WAUPUN PUBLIC UTILITIES	99		88	82	78
WAUSAU WATER UTILITY	97		83	94	94
WAUSAUKEE WTR & SWR UTY	0		73	75	28
WAUWATOSA WATER UTILITY	90		83	65	84
WAUTOMA PUBLIC WATER UTILITY	99		82	83	36
WAUZEKA MUNICIPAL WATER UTILITY	99		72	55	8
WEBSTER VILL OF MUN WATER UTILITY	92		84	76	23
WEST ALLIS MUNICIPAL WATER UTILITY	90		62	82	95
WEST BARABOO MUN WTR & SWR UTY	99		83		46
WEST BEND CITY OF WATER UTY	84	81	70	80	55
WESTBY CITY OF MUN ELEC & WTR UTY	100		84	67	65
WESTON WATER UTILITY	91		87	90	83
WEST SALEM MUN JOINT WTR & SWR UTIL	91		94	84	46
WESTPORT WATER UTILITY DISTRICT	100		95	82	51
WEYAUWEGA CITY OF WATER & SEWER UTY	99		88	79	73
WEYERHAEUSER MUNICIPAL WATER UTILITY	100		38	59	45
WHEELER VILL OF MUN WTR UTY	99		48	62	0
WHITEFISH BAY VILLAGE OF WTR UTY	90		78	66	85
WHITEHALL MUNICIPAL WATER UTILITY	100		67	71	30
WHITE LAKE VILLAGE OF WTR UTY	92		48	59	13
WHITELAW MUN WATER AND SEWER UTIL	98		52	52	0
WHITEWATER MUNICIPAL WATER UTILITY	99	86	64	88	85
WHITING MUN WATER AND SEWER UTILITY	98		89	82	45
WILLIAMS BAY MUNICIPAL WATER UTILITY	85		72	71	50
WILSON VILLAGE OF MUN WTR UTY	99		91	74	0
WILTON MUNICIPAL WATER & SEWER UTY	100		59	83	25
WIND POINT MUNICIPAL WATER UTILITY	90		85	80	81
WINNECONNE WATER UTILITY	98		70	73	76
WINTER VILLAGE OF WATER UTILITY	99		82	72	0
WISCONSIN DELLS MUN WATER UTILITY	98		88	78	66
WISCONSIN RAPIDS WATER WORKS & LIGHT	96	95	85	86	74
WITHEE MUNICIPAL WATER UTILITY	100		86	57	68
WITTENBERG MUN WTR & SWR UTILITY	98		66	77	68
WONEWOC ELEC & WTR UTY	100		85	83	38
WOODVILLE WATER AND SEWER UTY	99		84	88	0
WRIGHTSTOWN VILLAGE OF WTR UTILITY	98		48	72	83
WYOCENA MUN WATER & SEWER UTILITY	99		77	56	65
YUBA MUNICIPAL WATERWORKS	87	89	75	72	0

Appendix D | Illustrative report card calculation: Eau Claire, Wisconsin

This appendix provides a detailed illustration of WSEP grade calculations by focusing on Eau Claire's drinking water utility. Eau Claire's report card was strong overall, with a total weighted grade of 86.8% across all five subjects. Detailed discussion of each element for each subject follows, below.

Quality-Health

Eau Claire scored very well overall for *Quality – Health*, with a total weighted grade of 91. Eau Claire's performance for chronic contamination was exceptionally strong, with a grade of 99.2 that contributed 25% to the utility's overall grade. The Eau Claire municipal water utility had a positivity rate of 11 percent for Total Coliform, resulting in a weighted grade of 89.5 for acute contaminants (contributing 75% to the overall grade). Eau Claire also had no SDWA health violations, which would have resulted in an automatic failing grade. Table D1 provides details on Eau Claire's contaminant levels and corresponding scores; Table D2 reports these details for chronic contaminants.

Table D1. Quality-Health values and scores for acute contaminants, Eau Claire, 2020

Contaminant	Value	Score
Cadmium	0 mg/L	100.0
Coliform, Total	11% positive	0.0
Copper	38 μg/L	99.6
Dalapon	0 μg/L	100.0
o-Dichlorobenzene	0 μg/L	100.0
p-Dichlorobenzene	0 μg/L	100.0
1,1-Dichloroethylene	0 mg/L	100.0
Nitrate (NO3-N)	2.4 mg/L	95.4
Nitrite (NO2-N)	0 mg/L	100.0
Oxamyl (Vydate)	0 μg/L	100.0
Violations?		None
Acute Average		89.5

Table D2. Quality-Health values and scores for chronic contaminants, Eau Claire, 2020

Contaminant	Value	Score	Contaminant	Value	Score
Arsenic	.00027 mg/L	99.6	Glyphosate	0 μg/L	100.0
Alachlor (Lasso)	0 mg/L	100.0	Heptachlor	0 μg/L	100.0
Antimony Total	0 mg/L	100.0	Heptachlor Epoxide	0 μg/L	100.0
Atrazine	0 μg/L	100.0	Hexachlorobenzene (HCB)	0 μg/L	100.0
Barium	.03 mg/L	99.8	Hexachlorocyclopentadiene	0 μg/L	100.0
Benzene	0 μg/L	100.0	Lead	14 μg/L	73.5
Beryllium Total	0 mg/L	100.0	Mercury	0 μg/L	100.0
Carbofuran	0 μg/L	100.0	Methoxychlor	0 μg/L	100.0
Carbon Tetrachloride	0 μg/L	100.0	PCB, Total	0 μg/L	100.0
Chloramine	1.13 mg/L	94.4	Pentachlorophenol	0 μg/L	100.0
Chlordane	0 μg/L	100.0	Picloram	0 μg/L	100.0
Chromium	.00085 mg/L	100.0	Radium (226 + 228)	.813 pCi/L	96.8
Cyanide	0 mg/L	100.0	Selenium	0 μg/L	100.0
2,4-D	0 μg/L	100.0	2,4,5-TP (Silvex)	0 μg/L	100.0
1,2-Dibromo-3-Chloropro (DBCP)	0 μg/L	100.0	Simazine	0 μg/L	100.0
1,2-Dichloroethane	0 μg/L	100.0	Styrene	0 μg/L	100.0
cis-1,2-dichloroethylene	0 μg/L	100.0	Tetrachloroethylene	0 μg/L	100.0
trans-1,2-dichloroethylene	0 μg/L	100.0	Thallium total	0 μg/L	100.0
Dichloromethane	0 μg/L	100.0	Toluene	0 μg/L	100.0
1,2-Dichloropropane	0 μg/L	100.0	Toxaphene	0 μg/L	100.0
Di(2-ethylhexyl) adipate	0 μg/L	100.0	1,2,4-Trichlorobenzene	0 μg/L	100.0
Di(2-ethylhexyl) phthalate	0 μg/L	100.0	1,1,1-Trichloroethane	0 μg/L	100.0
Dinoseb	0 μg/L	100.0	1,1,2-Trichloroethane	0 μg/L	100.0
Diquat	0 μg/L	100.0	Trichloroethylene	0 μg/L	100.0
Endothall	0 μg/L	100.0	TTHM	27.3 μg/L	93.2
Endrin	0 μg/L	100.0	Combined Uranium	0 μg/L	100.0
Ethylbenzene	0 μg/L	100.0	Vinyl Chloride	0 μg/L	100.0
Ethylene Dibromide (EDB)	0 μg/L	100.0	Xylenes, total	0 μg/L	100.0
Violations?				None	
Chronic Average				99.2	

Quality-Aesthetics

Eau Claire earned solid marks for *Quality-Aesthetics*. In particular, Eau Claire performed very well for hardness (99.7%), and Iron (100%), which are both weighted heavily at 25 percent. Eau Claire customers should be overall confident in the aesthetic quality of their drinking water. The main reduction in the grade came from the zero grade for Manganese, which is weighted at 25 percent. Like iron, manganese can turn the water brown or rust color, and cause staining of laundry and plumbing fixtures, and give the water an off taste or odor. Table D3 shows details for Eau Claire's *Quality-Aesthetics* grade.

Table D3. Quality-Aesthetics values and scores, Eau Claire, 2020

Contaminant	Value	Score	Weight (%)
Hardness	150 mg/L	96.67	25.0
Iron	0.011 mg/L	100.0	25.0
Manganese	1.5 mg/L	0.0	25.0
Chloride	26 mg/L	98.2	6.0
Sulfate	6.3 mg/L	99.6	6.0
Alkalinity	130 mg/L	92.8	6.0
Fluoride	0.6 mg/L	77.1	3.5
Aluminum	0 mg/L	100.0	3.5
Weighted Average		73.4	

Finance

Eau Claire's overall *Finance* performance was strong in 2020, with an overall grade of 86.9. Eau Claire performed particularly strongly with debt to assets ratio (100%) and days of operating reserve (100%), each of which is weighted at 20 percent. These indicate that Eau Claire has relatively low debt levels and has more than 9 months of operating reserve, which are both critical measures for overall financial strength. The main indicators that lowered the finance grade were price proportionality, measured with the Poehler Index (weighted at 10 percent), and return on equity (weighted at 10 percent). Table D4 shows the detailed calculation of Eau Claire's *Finance* grade.

Table D4. Finance values and scores, Eau Claire, 2020

Indicator	Value	Score	Weight (%)
Debt to Assets Ratio	16.0%	100.0	20.0
Monthly bill in Hours of Minimum Wage	3.3	93.0	20.0
Days of Operating Reserve	305.3	100.0	25.0
Poehler Index	0.73	68.0	6.0
Return on Equity	2.1%	70.0	6.0
PILOT/Property Tax Equivalent	1.0	75.0	6.0
Weighted Average		86.9	

Infrastructure & Operations

Eau Claire exhibited very strong overall performance for *Infrastructure & Operations*. In particular, Eau Claire performed very well in main breaks per 100 miles of main (94.7%), replacement rate (94.0%) and weighted replacement rate (95.9%), as well as total operating expenses per thousand gallons (95.8%) and total operating expenses per customer (96.7%). With main and service breaks per 100 miles weighted at 50 percent for Infrastructure, Eau Claire's grade of 94.7 helps offset the relatively poor mark (65.1 percent) for water loss per 100 miles. Eau Claire also scored a perfect 100 for Safe Drinking Water Act Management Compliance. Table D5 provide details for Eau Claire's 2020 *Infrastructure & Operations* grade.

Table D5. Infrastructure & Operations values and scores, Eau Claire, 2020

		, -	
INFRASTRUCTURE			
Indicator	Value	Score	Weight (%)
Main & Service Breaks per 100 miles	8.6	94.7	50.0
Water Loss per 100 miles (gallons)	99,577	65.1	25.0
Replacement Rate (years)	45.9	94.0	12.5
Weighted Replacement Rate (years)	31.3	95.9	12.5
Infrastructure Weighted Average (50% overall)		86.9	
<u>OPERATIONS</u>			
Indicator	Value	Score	Weight (%)
kWh per Million Gallons per Year	2,647.85	82.7	20.0
0	2.42	05.0	45.0

Communications

Eau Claire performed exceptionally well for *Communications*, with an overall grade of 94.0. Eau Claire makes a significant amount of information easily available on their website and are relatively interactive on their municipal social media accounts. Eau Claire's online resources include information about their source water, facilities, operations, as well as the rates and consumer confidence report – both of which are valued at 20 points. The only areas where Eau Claire could have performed better were with social media. Establishing a utility-specific social media presence and using their municipal social media accounts more often would yield a near-perfect overall *Communications* score for Eau Claire. Table D6 provides full scoring detail for Eau Claire's 2020 *Communications* grade.

Table D6. Communications values and scores, Eau Claire, 2020

Indicator	Possible Points	Points Earned
Website Present	5.0	5.0
Mobile-friendly	5.0	5.0
Accessibility	5.0	5.0
Non-English	10.0	10.0
Consumer Confidence Report	20.0	20.0
Rates	20.0	20.0
Source Water Information	4.0	4.0
Facilities Information	3.0	3.0
Operations Information	3.0	3.0
Phone Number	5.0	5.0
Webform/Email	5.0	5.0
Past Meetings	2.5	2.5
Future Meetings	2.5	2.5
Utility Social Media	5.0	0.0
Municipal Social Media	5.0	4.0
Total	100.0	94.0

Data year: 2020

		10/	
Name	Mean	Max	Numerical Grade
ABBOTSFORD MUNICIPAL WATER UTILITY			
ADAMS MUNICIPAL WATER AND SEWER UTIL			
ADELL MUN SEWER AND WATER UTILITY			
ALBANY MUN WATER AND SEWER UTILITY			
ALGOMA UTILITY COMMISSION			
ALLOUEZ VILLAGE OF WATER DEPT	225.00	240	67.6
ALMA MUNICIPAL WATER UTILITY			
ALMA CENTER WATER UTILITY	60.00	60	90.0
ALMENA MUNICIPAL WATER UTILITY			
ALTOONA MUN WATER AND SEWER UTILITY	110.78	140	93.3
AMERY MUN JOINT WTR & SWR UTY			
AMHERST VILL OF WATER UTILITY			
ANTIGO UTILITIES	135.56	230	85.0
APPLETON WATER DEPT	74.09	76	94.7
APPLEWOOD HILL WATER UTILITY			
ARCADIA ELECTRIC & WATER UTILITY			
ARENA MUNICIPAL WATER UTILITY			
ARGYLE MUN ELECTRIC & WATER UTIL	307.00	337	63.0
ARLINGTON WATER UTILITY			
ASHLAND WATER UTILITY			
ASHWAUBENON WATER AND SEWER UTILITY	227.50	260	67.4
ATHENS MUNICIPAL WATER UTILITY	112.00	112	92.7
AUGUSTA; CITY OF MUN WTR & SWR UTY			
AVOCA MUNICIPAL WATER UTILITY			
BAGLEY MUNICIPAL WATER UTILITY			
BALDWIN MUNICIPAL WATER UTILITY			
BALSAM LAKE MUN WATER UTILITY			
BANGOR MUNICIPAL UTILITY			
BARABOO CITY WATER WORKS			
BARNEVELD MUNICIPAL WATER UTILITY			
BARRON LIGHT AND WATER UTILITY			
BAY CITY VILLAGE OF WATER UTILITY			
BAYFIELD WATER & SEWER UTILITY			
BEAR CREEK WATER UTILITY	237.00	237	66.9
BEAVER DAM WATER UTILITY			
BELGIUM MUNICIPAL WATER UTILITY			
BELLEVILLE MUN WATER & SEWER UTY			

Data year: 2020

Name	Mean	Max	Numerical Grade
BELLEVUE WATER UTILITY	305.00	400	63.2
BELMONT MUN WATER AND ELECTRIC UTIL	261.00	351	65.6
BELOIT WATER UTILITY	338.81	389	61.3
BENTON MUN FLECTRIC AND WATER UTIL	000.01	000	01.0
BERLIN MUN WATER AND SEWER UTILITY			
BIRCHWOOD MUNICIPAL WATER UTILITY			
BIRNAMWOOD MUNICIPAL WATER UTILITY			
BIRON MUN WATER UTILITY			
BLACK CREEK MUN WATER & SEWER UTIL			
BLACK EARTH VILL OF WATER UTILITY			
BLACK RIVER FALLS MUN ELEC & WTR			
BLAIR MUNICIPAL WATER UTILITY	51.75	63	87.9
BLANCHARDVILLE MUN WATER UTILITY			
BLOOMER CITY OF WATER UTILITY	43.29	60	86.1
BLOOMINGTON MUNICIPAL WATER UTILITY			
BLUE MOUNDS VILL OF MUNICIPAL WT UT			
BLUE RIVER MUN WATER AND SEWER UTIL			
BONDUEL WATER & SEWER UTILITY			
BOSCOBEL MUNICIPAL UTILITIES	271.67	290	65.0
BOWLER WATER AND SEWER UTILITY			
BOYCEVILLE MUNICIPAL WATER UTILITY			
BOYD MUN WATER AND SEWER UTILITY			
BRANDON SEWER & WATER UTIL	372.00	372	55.0
BRILLION MUNICIPAL WATER UTILITY	156.80	390	78.0
BRISTOL WATER UTILITY			
BRODHEAD WATER AND LIGHT COMMISSION			
BROKAW VILLAGE OF WATER UTILITY			
BROOKFIELD MUNICIPAL WATER UTILITY	370.00	370	55.8
BROOKLYN WATER UTILITY			
BROWN DEER WATER PUBLIC UTILITY			
BROWNSVILLE WATER UTILITY	430.00	430	30.2
BROWNTOWN MUNICIPAL WATER UTILITY			
BRUCE MUN WATER & SEWER UTILITY			
BURLINGTON MUNICIPAL WATERWORKS			
BUTLER PUBLIC WATER UTILITY			
BUTTERNUT MUNICIPAL WATER DEPT			
CADOTT LIGHT AND WATER MUN UTILITY			

Data year: 2020

		\	
Name	Mean	Max	Numerical Grade
CALEDONIA VILLAGE OF WATER UTILITY		. Tux	
CAMBRIA MUNICIPAL WATER UTILITY			
CAMBRIDGE MUNICIPAL WATER UTILITY	299.00	299	63.5
CAMERON VILL OF MUNICIPAL WTR UTY	200.00	200	33.3
CAMPBELL WATER UTILITY			
CAMPBELLSPORT MUN WATER UTILITY			
CAMP DOUGLAS MUNICIPAL WATER UTILITY			
CASCADE WATER UTILITY	300.00	300	63.4
CASHTON MUN ELECTRIC AND WATER UTIL			
CASSVILLE WATER & SEWER UT			
CAZENOVIA VILL OF WATER UTILITY			
CEDARBURG LIGHT AND WATER COMMISSION			
CEDAR GROVE MUNICIPAL WATER UTILITY			
CENTURIA MUN WATER AND SEWER UTILITY			
CHASEBURG WATER & SEWER UTILITY			
CHETEK MUNICIPAL WATER UTILITY			
CHILTON MUNICIPAL WATER UTILITY			
CHIPPEWA FALLS DEPT OF PUBLIC UTIL			
CLAYTON MUNICIPAL WATER UTILITY			
CLEAR LAKE MUNICIPAL WATER UTILITY			
CLEVELAND WATER UTILITY	346.13	397	60.9
CLINTON MUNICIPAL WATERWORKS			
CLINTONVILLE WATER & ELECTRIC UTY			
CLYMAN UTILITY COMMISSION			
COBB MUNICIPAL WATER UTILITY	280.00	280	64.5
COCHRANE MUNICIPAL WATER UTILITY			
COLBY CITY OF MUN WATER UTILITY			
COLEMAN WATER UTILITY	248.24	270	66.3
COLFAX MUN WATER AND SEWER UTILITY			
COLOMA MUNICIPAL WATER UTILITY			
COLUMBUS WATER AND LIGHT DEPT	128.08	271	87.3
COMBINED LOCKS WATER UTILITY			
COON VALLEY MUNICIPAL WATER UTILITY			
CORNELL MUN WATER AND ELECTRIC UTIL			
COTTAGE GROVE WATER & SEWER UTIL			
CRANDON WATER AND SEWER UTILITY			
CRIVITZ VILLAGE OF WATER UTILITY	190.00	190	69.5

Data year: 2020

	<u> </u>	19, =1	
Name	Mean	Max	Numerical Grade
CROSS PLAINS WATER UTIL	rioun	TIUX	
CUBA CITY ELECTRIC & WATER UTILITY			
CUDAHY CITY OF WATER UTILITY	140.00	140	83.4
CUMBERLAND MUNICIPAL UTILITY	140.00	140	00.4
CURTISS MUNICIPAL WTR & SWR UTY			
DALLAS MUNICIPAL WATER UTILITY			
DALTON VOLUNTEER FIRE DEPT INC			
DANE WATER & SEWER UTY			
DARIEN WATER WORKS & SEWER SYSTEM			
DARLINGTON MUN WATER AND SEWER UTIL	305.00	320	63.2
DEFREIELD WATER UTILITY	200.00	020	33.2
DEFOREST MUNICIPAL WATER UTILITY			
DELAVAN WATER & SEWAGE COMMISSION			
DELAFIELD MUNICIPAL WATER UTILITY			
DENMARK MUNICIPAL WATER UTILITY	450.00	450	21.6
DE PERE WATER DEPARTMENT	260.00	330	65.6
DICKEYVILLE WATER UTILITY			
DODGEVILLE WATER UTILITY			
DORCHESTER VILLAGE OF WATER UTILITY			
DOUSMAN WATER UTILITY			
DRESSER MUNICIPAL WATER UTILITY	215.00	230	68.1
DURAND MUNICIPAL WATER UTILITY			
EAGLE VILL OF MUNICIPAL WTR UTY	275.09	380	64.8
EAGLE RIVER LIGHT AND WATER COMM			
EASTMAN WATER UTILITY			
EAST TROY VILL OF MUN WTR UTY			
EAU CLAIRE MUNICIPAL WATER UTILITY	100.08	150	96.7
EDGAR MUNICIPAL WATER UTILITY			
EDGERTON MUNICIPAL WATER UTILITY	276.90	346	64.7
ELEVA MUNICIPAL WATER UTILITY			
ELKHART LAKE WATER DEPT			
ELKHORN LIGHT AND WATER	90.17	200	100.0
ELK MOUND MUN WATER & SEWER UTY	85.00	87	98.3
ELLSWORTH MUN WATER AND SEWER UTIL			
ELMWOOD MUNICIPAL WATER UTILITY			
ELROY MUN ELECTRIC AND WATER UTY			
EMBARRASS WATER AND SEWER UTIL			

Data year: 2020

Name	Mean	Max	Numerical Grade
ETTRICK MUN WATER AND SEWER UTILITY	ricali	1.1av	0.440
EVANSVILLE CITY OF WATER & LIGHT			
EXELAND MUNICIPAL WATER UTILITY			
FAIRCHILD MUNICIPAL WATER UTILITY			
FAIRWATER MUN WATER UTILITY			
FALL CREEK MUNICIPAL WATER UTILITY			
FALL RIVER MUNICIPAL WATER UTILITY			
FENNIMORE WATER AND LIGHT PLANT			
FITCHBURG WATER UTILITY			
FLORENCE UTILITY COMMISSION			
FOND DULLAC WATER UTILITY	360.71	450	60.1
FONTANA MUNICIPAL WATER UTILITY	550.71	400	00.1
FOOTVILLE WATER UTILITY			
FORT ATKINSON CITY OF WATER UTILITY			
FOUNTAIN CITY WATER UTILITY			
FOX LAKE CITY OF WATER UTILITY			
FOX POINT VILL OF WATER UTILITY			
FRANKLIN MUNICIPAL WATER UTILITY	290.00	290	64.0
FREDERIC WATER COMMISSION	176.67	190	71.4
FREDONIA MUNICIPAL WATER UTILITY			
FRIENDSHIP VILLAGE OF WATER UTILITY			
FRIESLAND MUNICIPAL WATER UTILITY	344.00	351	61.0
FULTON WATER UTILITY			
GALESVILLE CITY OF MUN WTR & SWR UT	111.75	115	93.0
GAYS MILLS VILL OF MUN WTR UTY			
GENOA MUN WATER AND SEWER UTILITY			
GENOA CITY VILLAGE OF MUN WATER UT	314.38	499	62.7
GERMANTOWN WATER UTILITY			
GILLETT WATER AND SEWER COMM			
GILMAN WATER UTILITY			
GLENBEULAH MUN WATER UTILITY			
GLENDALE WATER UTILITY			
GLENWOOD CITY MUN WATER UTILITY	157.00	157	77.7
GLEN FLORA; VILLAGE OF; WATER UTY			
GRAFTON WATER & WASTEWATER UTILITY			
GRANTON MUNICIPAL WATER UTILITY			
GRANTSBURG VILL OF MUN WTR UTY			

Data year: 2020

			Numerical
Name	Mean	Max	Grade
GRATIOT MUNICIPAL WATER UTILITY			
GREEN BAY WATER UTILITY	142.76	440	82.7
GREENDALE VILLAGE OF WATER UT			
GREEN LAKE CITY OF WATER UTILITY			
GREENWOOD CITY OF WATER UTILITY			
GRESHAM MUNICIPAL WATER AND SEWER UT			
LAKE HALLIE (VILLAGE OF) PUBLIC WORK			
HAMMOND MUNICIPAL WATER UTILITY			
HANCOCK MUNICIPAL WATER UTILITY			
HARTFORD CITY OF UTILITIES			
HARTLAND MUN WATER UTILITY	417.14	470	35.7
HATLEY VILLAGE OF WATER UTILITY			
HAUGEN VILLAGE OF WATER UTILITY	160.00	160	76.7
HAWKINS MUN WATER AND SEWER UTILITY			
HAYWARD CITY OF WATERWORKS AND SWR			
HAZEL GREEN MUNICIPAL UTILITY			
HIGHLAND MUNICIPAL WATER UTILITY	201.00	201	68.9
HILBERT MUNICIPAL WATER UTILITY			
HILLSBORO MUN WATER UTY	150.92	173	80.0
HIXTON MUNICIPAL WATER UTILITY			
HOBART VILLAGE OF WATER UTILITY	265.00	265	65.4
HOLLANDALE WATER UTILITY			
HOLMEN MUNICIPAL WATER UTILITY			
HORICON CITY OF WATER UTILITY			
HORTONVILLE VILLAGE OF WTR & SWR			
HOWARD VILLAGE OF WTR & SWR DEP	271.50	286	65.0
HUDSON PUBLIC UTILITIES			
HURLEY CITY OF WATER UTILITY			
HUSTISFORD UTILITIES			
HUSTLER MUNICIPAL WATER UTILITY			
INDEPENDENCE MUNICIPAL WATER UTILITY			
IOLA MUNICIPAL WATER UTILITY			
KNIGHT TOWN OF MUN WATER UTILITY			
IRON RIDGE MUNICIPAL WATER UTILITY			
IRONTON WATER UTILITY			
JACKSON VILL OF WATER UTILITY			
JANESVILLE WATER UTILITY	263.68	370	65.5

Data year: 2020

			Numerical
Name	Mean	Max	Grade
JEFFERSON WATER AND ELECTRIC DEPT			
JOHNSON CREEK WATER UTILITY	280.00	300	64.5
JUNCTION CITY WATER UTILITY			
JUNEAU UTILITY COMMISSION	290.00	290	64.0
KAUKAUNA UTILITIES			
KELLNERSVILLE WATER UTILITY			
KENDALL MUNICIPAL WATER UTILITY	185.33	203	69.8
KENOSHA WATER UTILITY	141.56	150	83.0
KEWASKUM MUNICIPAL WATER UTILITY			
KEWAUNEE MUNICIPAL WATER UTILITY			
KIEL CITY OF UTILITIES			
KIMBERLY MUNICIPAL WATER UTILITY			
KNAPP MUN WATER AND SEWER UTILITY			
KOHLER MUNICIPAL WATER UTILITY			
KRONENWETTER WATER UTILITY			
LA CROSSE WATER UTILITY	305.65	418	63.2
LADYSMITH MUNICIPAL WATER UTILITY	140.00	140	83.4
LA FARGE MUN WATER AND SEWER UTILITY	160.44	234	76.7
LAKE DELTON VILLAGE OF WATER UTIL			
LAKE GENEVA UTILITY COMMISSION			
LAKE MILLS LIGHT AND WATER DEPT	327.00	327	61.9
LANCASTER MUNICIPAL WATER UTILITY			
LANNON MUNICIPAL WATER UTILITY			
LA VALLE MUNICIPAL WATER UTILITY			
LAWRENCE TOWN OF WATER UTILITY	197.00	197	69.1
LENA MUNICIPAL WATER & SEWER UTY			
LINDEN MUNICIPAL WATER UTILITY	313.00	313	62.7
LITTLE CHUTE MUNICIPAL WATER DEPT			
LIVINGSTON MUNICIPAL WATER UTILITY			
LODI MUNICIPAL LIGHT AND WATER UTILI	312.50	330	62.8
LOGANVILLE MUN WATER & SEWER UTILITY			
LOMIRA MUNICIPAL WATER UTILITY			
LONE ROCK UTILITIES	189.14	257	69.5
LOWELL MUN WATER AND SEWER UTILITY			
LOYAL MUNICIPAL WATER UTILITY			
LUCK MUNICIPAL WATER UTILITY			
LUXEMBURG MUNICIPAL WATER UTILITY			

Data year: 2020

	1141411666	1 <u>0, =1</u>	
			Numerical
Name	Mean	Max	Grade
LYNDON STATION MUN WATER UTILITY	97.00	97	97.7
MADISON WATER UTILITY	359.13	490	60.2
MAIDEN ROCK; VILLAGE OF; MUN WTR UTY			
MANAWA MUNICIPAL WATER UTILITY			
MANITOWOC PUBLIC UTILITIES	138.79	150	84.0
MAPLE BLUFF VILLAGE OF MUN WTR UTY			
MARATHON VILLAGE OF WTR & SWR UTY			
MARIBEL MUN WTR & SWR UTY			
MARINETTE MUNICIPAL WATER UTILITY			
MARION MUN WATER AND SEWER UTILITY			
MARKESAN MUN WATER PLANT	330.00	340	61.8
MARSHALL WATER AND SEWER UTILITY			
MARSHFIELD UTILITIES	249.62	310	66.2
MATTOON MUNICIPAL WATER UTILITY			
MAUSTON CITY OF MUNICIPAL WTR UTY			
MAYVILLE MUNICIPAL WATER UTILITY	321.67	460	62.3
MAZOMANIE WATER UTILITY			
MCFARLAND WATER & SEWER UTILITY			
MEDFORD WATER WORKS			
MELLEN MUN WATER UTILITY			
MELROSE MUNICIPAL WATER UTILITY			
MELVINA MUNICIPAL WATER UTILITY			
MENASHA - TOWN OF - UTILITY DISTRICT			
MENASHA ELECTRIC & WATER UTILITIES			
MENOMONEE FALLS VILLAGE OF WTR UTY			
MENOMONIE CITY OF WATER DEPT			
MEQUON MUNICIPAL WATER UTILITY			
MERRILL WATER UTILITY			
MERRILLAN MUN ELECTRIC & WTR UTIL			
MERRIMAC MUNICIPAL WATER UTILITY			
MIDDLETON MUNICIPAL WATER UTILITY			
MILLADORE VILLAGE OF WATER UTILITY			
MILLTOWN VIL OF WATER UTY			
MILTON CITY OF MUN WTR UTY			
MILWAUKEE WATER WORKS	134.81	140	85.3
MINERAL POINT MUN WATER UTILITY			
MINONG VILLAGE OF WATER UTILITY			

Data year: 2020

	1141411666	1 0. =/	
Name	Mean	Max	Numerical Grade
MISHICOT WATER UTILITY & SEW DEPT	Plean	ויומא	Ordac
MONDOVI MUN WATER AND SEWER UTILITY			
MONONA WATER UTILITY			
MONROE MUNICIPAL WATER UTILITY	252.72	210	66.1
MONTELLO CITY OF WATER UTILITY	252.72	310	66.1
MONTFORT MUNICIPAL WATER UTILITY			
MONTICELLO VILLAGE OF WATER UTY			
MONTREAL MUNICIPAL WATER UTILITY MOSINEE MUNICIPAL WATER AND SEWER UT			
MT CALVARY VILL OF MUN WTR& SWR			
MOUNT HOPE MUNICIPAL WATER UTILITY			
MOUNT STEPLING MUNICIPALITY			
MOUNT STERLING MUN WATER UTILITY			
MUKWONAGO MUNICIPAL WATER UTILITY MUSCODA LIGHT AND WATER UTILITY			
MUSKEGO CITY OF WATER PUBLIC UTY	001.00	001	0.0
	891.00	891	0.0
NECEDAH VILL OF MUN WATER UTILITY			
NEENAH CITY OF WATER UTILITY			
NEILLSVILLE CITY OF MUN WTR UTY NEKOOSA MUNICIPAL WATER UTILITY			
NELSON WATER AND SEWER DEPARTMENT			
NEW AUBURN MUNICIPAL WATER UTILITY NEW BERLIN WATER UTILITY			
NEW GLARUS LIGHT AND WATER WORKS			
NEW HOLSTEIN PUBLIC UTILITY			
NEW HOLSTEIN PUBLIC OTILITY NEW LISBON CITY OF ELEC & WATER UT			
NEW LONDON ELECTRIC & WATER UTILITY	278.18	400	64.6
NEW RICHMOND MUNICIPAL WATER UTILITY	2/0.10	480	64.6
NIAGARA MUNICIPAL WATER UTILITY			
NICHOLS MUNICIPAL WATER UTILITY			
NORTH FOND DU LAC WATER UTILITY	245.00	330	66.5
NORTH FREEDOM MUN WATER UTILITY	245.00	330	00.5
NORWALK MUNICIPAL WATER UTILITY			
OAK CREEK WATER & SEWER UTILITY			
OAKDALF WATER UTILITY VILLAGE OF			
OAKFIELD VILLAGE OF MUN WTR UTY OCONOMOWOC CITY OF UTILITIES			
OCONOMOVOC CITY OF UTILITIES			

Data year: 2020

			Numerical
Name	Mean	Max	Grade
OCONTO UTILITY COMMISSION	160.00	160	76.7
OCONTO FALLS WATER AND LIGHT COMM			
OLIVER MUNICIPAL WATER PLANT			
OMRO CITY OF WTR UTY	312.50	340	62.8
ONALASKA MUNICIPAL WATER UTILITY	338.95	392	61.3
ONTARIO MUNICIPAL WATER UTILITY			
OOSTBURG MUNICIPAL WATER UTILITY			
OREGON MUN WATER AND SEWER UTILITY	313.15	347	62.7
ORFORDVILLE MUNICIPAL WATER UTILITY			
OSCEOLA MUNICIPAL WATER UTILITY			
OSHKOSH CITY OF WATER UTILITY	139.12	170	83.7
OSSEO MUN WATER AND SEWER UTILITY	112.50	148	92.7
OWEN MUN WATER UTILITY			
PADDOCK LAKE MUN WATER UTILITY			
PALMYRA VILLAGE OF WTR & SWR UTY			
PARDEEVILLE MUN WATER UTY	278.00	278	64.6
PARK FALLS MUNICIPAL WATER UTILITY	122.50	160	89.3
PATCH GROVE MUNICIPAL WATER UTILITY			
PENCE TOWN OF MUN WTR DEPT			
BLOOMFIELD VILLAGE OF UTILITY DEPART			
PEPIN MUNICIPAL WATER UTILITY	288.70	313	64.1
PESHTIGO MUN WATER UTILITY			
PEWAUKEE VILLAGE OF WATER UTILITY			
PEWAUKEE CITY OF WATER UTILITY			
PHILLIPS MUN WATER WORKS			
PIGEON FALLS MUNICIPAL WATER UTILITY	35.67	39	84.3
PITTSVILLE MUN WATER UTILITY			
PLAIN MUNICIPAL WATER UTILITY			
PLAINFIELD VILL OF WATER UTILITY			
PLATTEVILLE WATER & SEWER UTILITY	288.15	330	64.1
PLEASANT PRAIRIE VILL OF WTR UTY			
PLOVER VILL OF MUN WTR UTY			
PLYMOUTH UTILITIES			
PORTAGE WATER UTILITY			
PORT EDWARDS WATER UTILITY			
PORT WASHINGTON MUN WATER UTILITY			
POTOSI MUNICIPAL WATER UTILITY			

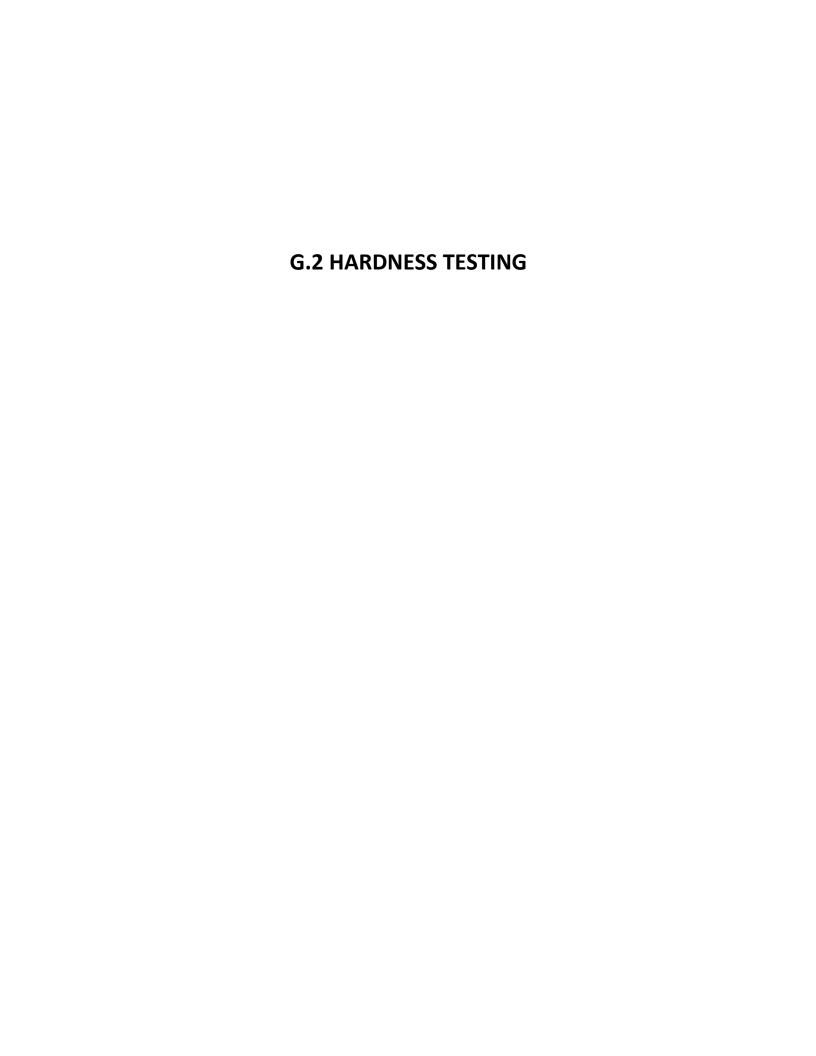
Data year: 2020

	1141411666	\ o , =/	
			Numerical Grade
Name	Mean	Max	Graue
POUND VILL OF WATER & SWR UTY			
POYNETTE MUNICIPAL WATER UTILITY			
PRAIRIE DU CHIEN MUN WATER UTILITY			
PRAIRIE DU SAC MUN ELECTRIC & WTR			
PRENTICE VILLAGE OF WTR & SWR UTY			
PRESCOTT CITY OF MUN WTR UTY			
PRINCETON MUN WATER & ELECTRIC UTIL			
PULASKI WATER DEPT	286.00	300	64.2
RACINE WATER WORKS COMMISSION	137.31	140	84.3
RADISSON WATER AND SEWER UTILITY	147.00	147	81.0
RANDOLPH MUNICIPAL WATER UTILITY			
RANDOM LAKE MUNICIPAL WATER DEPT			
RAY HUPPERT UTILITY INCORPORATED			
READSTOWN MUNICIPAL WATER UTILITY			
REDGRANITE WATER UTILITY			
REEDSBURG UTILITY COMMISSION			
REEDSVILLE MUNICIPAL WATER UTILITY			
REESEVILLE WATER UTILITY			
REWEY MUNICIPAL WATER UTILITY	283.00	283	64.4
RHINELANDER CITY OF WATER UTY			
RIB LAKE VILLAGE OF WATER UTILITY			
RICE LAKE MUN WATER & ELECTRIC UTIL			
RICHLAND CENTER WATER UTILITY	225.00	250	67.6
RIDGEWAY VILL OF MUN WATER UTY			
RIO MUNICIPAL WATER UTILITY	248.25	254	66.3
RIPON WATER UTILITY			
RIVER FALLS MUNICIPAL UTILITY			
ROBERTS VILL OF WATER UTILITY			
ROCKLAND MUN WATER AND SEWER UTILITY			
ROCK SPRINGS MUNICIPAL UTILITY			
ROME TOWN OF WATER UTILITY			
ROTHSCHILD MUNICIPAL WATER UTILITY	157.50	180	77.7
ST CLOUD WATER & SEWER UTY			
ST CROIX IMPROVEMENTS INC			
ST CROIX FALLS MUN WATER UTILITY			
ST NAZIANZ WATER UTILITY			
SAUK CITY MUN WATER & LIGHT UTIL	285.80	291	64.3

Data year: 2020

		, ,	Numerical
Name	Mean	Max	Grade
SAUKVILLE MUN WATER UTILITY			
SCHOFIELD MUN WATER & SEWER UTILITY			
SCOTT TOWN OF WATER UTILITY	352.00	352	60.6
SEYMOUR MUN WATER UTILITY			
SHARON WATERWORKS & SEWER SYSTEM			
SHAWANO CITY OF WATER & SEWER UTILIT	349.29	380	60.7
SHEBOYGAN WATER UTILITY			
SHEBOYGAN FALLS UTILITIES			
SHELDON MUNICIPAL WATER UTILITY			
SHELL LAKE MUNICIPAL UTILITIES			
SHERWOOD VILLAGE OF WTR & SWR UTY	99.71	110	97.0
SHIOCTON MUNICIPAL UTILITY			
SHOREWOOD MUNICIPAL WATER UTILITY			
SHOREWOOD HILLS VILL OF WATER UTY			
SHULLSBURG WATER UTILITY	240.50	347	66.7
SIREN MUNICIPAL WATER UTILITY			
SISTER BAY WATER AND SEWER UTILITY			
SLINGER UTILITIES	489.17	510	4.9
SOLDIERS GROVE VILL OF MUN WTR UTY			
SOMERS WATER UTILITY TOWN OF			
SOMERSET VILLAGE OF WATER UTILITY	199.50	201	69.0
SOUTH MILWAUKEE WATER UTILITY			
SOUTH WAYNE MUNICIPAL WATER UTILITY	331.00	331	61.7
SPARTA MUNICIPAL WATER DEPT			
SPENCER MUNICIPAL WATER UTILITY			
SPOONER MUNICIPAL UTILITIES			
SPRING GREEN MUNICIPAL WATER UTILITY			
SPRING VALLEY WATERWORKS			
STANLEY MUNICIPAL WATERWORKS			
STAR PRAIRIE MUNICIPAL WATER UTILITY			
STETSONVILLE WATER UTILITY	115.00	130	91.7
STEVENS POINT MUN WATER UTILITY			
STOCKBRIDGE WATER UTILITY			
STODDARD MUNICIPAL WATER UTILITY			
STOUGHTON WATER UTILITY	313.21	360	62.7
STRATFORD MUN WATER & ELECTRIC UTIL			
STRUM MUNICIPAL UTILITIES			

Data year: 2020


Hardness (mg/L)

Numerical

Name Mean Max Grade STURGEON BAY UTILITIES SUAMICO WATER UTILITY 230.00 230 67.3 SUN PRAIRIE UTILITIES 343.53 390 61.1 SURING VILLAGE OF WATER UTILITY 180.00 180 70.0 SUSSEX VILLAGE OF WATER UTILITY 350.00 350 60.7 TAYLOR VILLAGE OF WATER UTILITY TENNYSON WATER UTILITY THERESA MUN WATER AND SEWER UTILITY THORP MUN WATER AND SEWER UTILITY TOMAH WATER UTILITY TOMAH WATER UTILITY TOMAHAWK MUN WATER & SEWER UTILITY TOMY MUNICIPAL WATER & SEWER UTILITY TONY MUNICIPAL WATER & SEWER UTILITY TURTLE LAKE MUN WATER & SEWER UTIL
SUAMICO WATER UTILITY SUN PRAIRIE UTILITIES 343.53 390 61.1 SURING VILLAGE OF WATER UTILITY 180.00 180 70.0 SUSSEX VILLAGE OF WATER UTILITY TENNYSON WATER UTILITY THERESA MUN WATER AND SEWER UTILITY THORP MUN WATER AND SEWER UTILITY TOMAH WATER UTILITY TOMAH WATER UTILITY TOMAHAWK MUN WATER & SEWER UTILITY TONY MUNICIPAL WATER UTILITY TONY MUNICIPAL WATER UTILITY TONY MUNICIPAL WATER UTILITY TREMPEALEAU MUN ELECTRIC & WTR UTY
SUN PRAIRIE UTILITIES 343.53 390 61.1 SURING VILLAGE OF WATER UTILITY 180.00 180 70.0 SUSSEX VILLAGE OF WTR PUBLIC UTY 350.00 350 60.7 TAYLOR VILLAGE OF WATER UTILITY TENNYSON WATER UTILITY THERESA MUN WATER AND SEWER UTILITY THORP MUN WATER AND SEWER UTILITY TOMAH WATER UTILITY TOMAH WATER UTILITY TOMAH WATER UTILITY TOMAHAWK MUN WATER & SEWER UTILITY TONY MUNICIPAL WATER UTILITY TONY MUNICIPAL WATER UTILITY TREMPEALEAU MUN ELECTRIC & WTR UTY
SURING VILLAGE OF WATER UTILITY SUSSEX VILLAGE OF WTR PUBLIC UTY TAYLOR VILLAGE OF WATER UTILITY TENNYSON WATER UTILITY THERESA MUN WATER AND SEWER UTILITY THORP MUN WATER AND SEWER UTILITY TIGERTON MUNICIPAL WATER & SEWER UTY TOMAH WATER UTILITY TOMAHAWK MUN WATER & SEWER UTILITY TONY MUNICIPAL WATER WATER WATER WATER WATER UTILITY TONY MUNICIPAL WATER UTILITY TONY MUNICIPAL WATER UTILITY TREMPEALEAU MUN ELECTRIC & WTR UTY
SUSSEX VILLAGE OF WTR PUBLIC UTY TAYLOR VILLAGE OF WATER UTILITY TENNYSON WATER UTILITY THERESA MUN WATER AND SEWER UTILITY THORP MUN WATER AND SEWER UTILITY TORP MUNICIPAL WATER & SEWER UTY TOMAH WATER UTILITY TOMAHAWK MUN WATER & SEWER UTILITY TONY MUNICIPAL WATER WATER UTILITY TONY MUNICIPAL WATER UTILITY TREMPEALEAU MUN ELECTRIC & WTR UTY
TAYLOR VILLAGE OF WATER UTILITY TENNYSON WATER UTILITY THERESA MUN WATER AND SEWER UTILITY THORP MUN WATER AND SEWER UTILITY THORP MUN WATER AND SEWER UTILITY TOMAH WATER UTILITY TOMAH WATER UTILITY TOMAHAWK MUN WATER & SEWER UTILITY TONY MUNICIPAL WATER UTILITY TREMPEALEAU MUN ELECTRIC & WTR UTY
TENNYSON WATER UTILITY THERESA MUN WATER AND SEWER UTILITY THORP MUN WATER AND SEWER UTILITY TIGERTON MUNICIPAL WATER & SEWER UTY TOMAH WATER UTILITY TOMAHAWK MUN WATER & SEWER UTILITY TONY MUNICIPAL WATER UTILITY TREMPEALEAU MUN ELECTRIC & WTR UTY
THERESA MUN WATER AND SEWER UTILITY THORP MUN WATER AND SEWER UTILITY 193.33 220 69.3 TIGERTON MUNICIPAL WATER & SEWER UTY TOMAH WATER UTILITY TOMAHAWK MUN WATER & SEWER UTILITY TONY MUNICIPAL WATER UTILITY TREMPEALEAU MUN ELECTRIC & WTR UTY
THORP MUN WATER AND SEWER UTILITY TIGERTON MUNICIPAL WATER & SEWER UTY TOMAH WATER UTILITY TOMAHAWK MUN WATER & SEWER UTILITY TONY MUNICIPAL WATER UTILITY TREMPEALEAU MUN ELECTRIC & WTR UTY
TIGERTON MUNICIPAL WATER & SEWER UTY TOMAH WATER UTILITY TOMAHAWK MUN WATER & SEWER UTILITY TONY MUNICIPAL WATER UTILITY TREMPEALEAU MUN ELECTRIC & WTR UTY
TOMAH WATER UTILITY TOMAHAWK MUN WATER & SEWER UTILITY TONY MUNICIPAL WATER UTILITY TREMPEALEAU MUN ELECTRIC & WTR UTY
TOMAHAWK MUN WATER & SEWER UTILITY TONY MUNICIPAL WATER UTILITY TREMPEALEAU MUN ELECTRIC & WTR UTY
TONY MUNICIPAL WATER UTILITY TREMPEALEAU MUN ELECTRIC & WTR UTY
TREMPEALEAU MUN ELECTRIC & WTR UTY
TURTLE LAKE MUN WATER & SEWER UTIL
TWO RIVERS WATER & LIGHT UTILITY
UNION CENTER VILLAGE OF WTR UTY
UNION GROVE MUNICIPAL WATER UTILITY
VALDERS PUBLIC UTILITY
VERONA WATER UTILITY
VESPER MUN WATER AND SEWER UTILITY
VIOLA MUN WATER AND ELECTRIC UTILITY
VIROQUA CITY OF MUN WATER UTILITY
WALDO WATER AND SEWER UTILITY 341.75 348 61.2
WALWORTH MUN WATER AND SEWER UTILITY 349.20 430 60.7
WARRENS MUN WTR & SWR UTILITIES
WASHBURN MUN WATER AND SEWER UTILITY
WATERFORD VILLAGE OF WTR & SWR UTY
WATERLOO WATER AND LIGHT COMM 442.50 490 25.0
WATERTOWN WATER DEPARTMENT 242.90 390 66.6
WAUKESHA WATER UTILITY CITY OF 310.87 440 62.9
WAUNAKEE WATER AND LIGHT COMMISSION
WAUPACA WATER UTILITY
WAUPUN PUBLIC UTILITIES
WAUSAU WATER UTILITY
WAUSAUKEE WTR & SWR UTY
WAUWATOSA WATER UTILITY

Data year: 2020

Name	Mean	Max	Numerical Grade
WAUTOMA PUBLIC WATER UTILITY			
WAUZEKA MUNICIPAL WATER UTILITY			
WEBSTER VILL OF MUN WATER UTILITY			
WEST ALLIS MUNICIPAL WATER UTILITY	140.00	140	83.4
WEST BARABOO MUN WTR & SWR UTY			
WEST BEND CITY OF WATER UTY	372.90	580	55.0
WESTBY CITY OF MUN ELEC & WTR UTY			
WESTON WATER UTILITY			
WEST SALEM MUN JOINT WTR & SWR UTIL			
WESTPORT WATER UTILITY DISTRICT			
WEYAUWEGA CITY OF WATER & SEWER UTY			
WEYERHAEUSER MUNICIPAL WATER UTILITY			
WHEELER VILL OF MUN WTR UTY			
WHITEFISH BAY VILLAGE OF WTR UTY			
WHITEHALL MUNICIPAL WATER UTILITY			
WHITE LAKE VILLAGE OF WTR UTY			
WHITELAW MUN WATER AND SEWER UTIL			
WHITEWATER MUNICIPAL WATER UTILITY	326.67	370	62.0
WHITING MUN WATER AND SEWER UTILITY			
WILLIAMS BAY MUNICIPAL WATER UTILITY			
WILSON VILLAGE OF MUN WTR UTY			
WILTON MUNICIPAL WATER & SEWER UTY			
WIND POINT MUNICIPAL WATER UTILITY			
WINNECONNE WATER UTILITY			
WINTER VILLAGE OF WATER UTILITY			
WISCONSIN DELLS MUN WATER UTILITY			
WISCONSIN RAPIDS WATER WORKS & LIGHT	61.64	63	90.3
WITHEE MUNICIPAL WATER UTILITY			
WITTENBERG MUN WTR & SWR UTILITY			
WONEWOC ELEC & WTR UTY			
WOODVILLE WATER AND SEWER UTY			
WRIGHTSTOWN VILLAGE OF WTR UTILITY	496.00	687	1.9
WYOCENA MUN WATER & SEWER UTILITY			
YORKVILLE TOWN OF WATER UTILITY			
YUBA MUNICIPAL WATERWORKS	259.75	277	65.7

Water Hardness Converstion Chart

Hardness	Hardness	Hardness	Hardness	Hardness	Hardness	
CaCO3	CaCO3	CaCO3	CaCO3	CaCO3	CaCO3	
Grains	mg/L	Grains	mg/L	Grains	mg/L	
0.5	9	11	188	31	530	
1.0	17	12	205	32	547	Well 10
1.5	26	13	222	33	564	
2.0	34	14	239	34	581	Well 8
2.5	43	15	257	35	599	
3.0	51	16	274	36	616	
3.5	60	17	291	37	633	Avg Well 8&9
4.0	68	18	308	38	650	Well 9
4.5	77	19	325	39	667	
5.0	86	20	342	40	684	Avg MFP
5.5	94	21	359	41	701	
6.0	103	22	376	42	718	
6.5	111	23	393	43	735	
7.0	120	24	410	44	752	
7.5	128	25	428	45	770	Well 4& 5
8.0	137	26	445	46	787	
8.5	145	27	462	47	804	
9.0	154	28	479	48	821	
9.5	162	29	496	49	838	
10.0	171	30	513	50	855	

1/24/2024

Kaukauna uses a Hach 5 EP test kit for determining hardness

This test kit is for a range of 1-30 Grains per gallon for Hardness (17-513 mg/l) or advertised as 20-400 mg/l

Conclusion. This range does not meet Kaukauna's water range for Hardness.

The Hach test method 8204 for the digital titration method with EDTA will fit into the range of Kaukauna's hardness. There are substances that interfere with the total hardness test: Orthophosphate, Polyphosphate, and Strontium. The raw water samples are taken before the Orthophosphate and Polyphosphate chemicals are added to the water. The strontium interferes with the test and precipitates with the calcium and is counted as calcium. See correspondence with Hach.

Need Model HAC-DT Range is 10-4,000 mg/l \$468

HA-71A is only 1-20 mg/l and 17-342 mg/l (1-20 GPG)

Hardness Test, 1-30 gpg

For test kit 145400 (Model 5-EP)

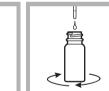
DOC326.98.00020

Additional copies available on www.hach.com

Test preparation

- Rinse tube with the sample water before testing. Rinse tube and bottle with deionized water after testing.
- When titrating, count each drop of titrant. Hold the dropper vertically. Swirl after each drop
 is added.
- · Accuracy is not affected by undissolved powder.
- To check reagent accuracy, use a standard solution in place of the sample (see Optional items).
- Interferences—high levels of iron or manganese will interfere and cause an orange-brown or brown color to form after the UniVer® 3 Reagent is added. If this occurs:
 - 1. Add 1 to 3 drops of Hardness 3 Titrant Reagent to the sample before adding the UniVer 3 Hardness Reagent.
 - 2. Immediately add drops of Hardness 3 Titrant Reagent until the pink to blue color change occurs.
 - Count all the drops of Hardness 3 Titrant Reagent used to determine the hardness of the sample, including the drops added before the UniVer 3 Hardness Reagent.

CAUTION: Handle chemical standards and reagents carefully. Review Material Safety Data Sheets for safe handling, storage and disposal information.


Test procedure

1. Add one full measuring tube of sample to the bottle.

2. Add one UniVer 3 Hardness Reagent Powder Pillow to the bottle. Swirl to mix.

3. Add Hardness 3 Titrant Reagent by drops. Count the drops until the color changes from pink to blue. Hold the dropper vertically. Swirl to mix after each

drop.

4. Calculate the results. Each drop of Hardness 3 Titrant Reagent equals 1 grain per gallon hardness as calcium carbonate (CaCO₃).

Note: The result can be expressed in mg/L by multiplying the number of grains per gallon by 17.1.

Replacement items

Description	Unit	Catalog no.
Bottle, square mixing	6/pkg	43906
Hardness 3 Titrant Reagent	100 mL MDB ¹	42632
Measuring Tube, plastic, 5.83-mL	each	43800
UniVer 3 Hardness Reagent Powder Pillows	100/pkg	96299

¹Marked dropping bottle

Optional items

Description	Unit	Catalog no.
Deionized Water	500 mL	27249
Hardness Standard Solution, 20 gpg as CaCO ₃	500 mL	47949

DOC316.53.01175

Hardness, Calcium

Titration Method with EDTA

Method 8204

10-4000 mg/L as CaCO₃

Digital Titrator

Scope and application: For water, wastewater and seawater.

Test preparation

Before starting

Magnesium is not included in the results but must be in the sample for a sharp endpoint. If the sample does not contain magnesium, add 1 to 2 drops of Magnesium Standard Solution, 10-g/L as CaCO₃, to the sample before the test is started.

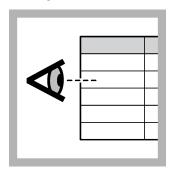
As an alternative to the CalVer 2 Calcium Indicator Power Pillow (85299), use two CalVer 2 Calcium Indicator Power Pillows (94799) or 0.1 g scoop of CalVer 2 Calcium Indicator Powder.

The optional TitraStir Titration Stand can hold the Digital Titrator and stir the sample.

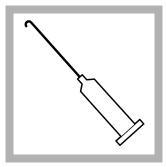
Review the Safety Data Sheets (MSDS/SDS) for the chemicals that are used. Use the recommended personal protective equipment.

Dispose of reacted solutions according to local, state and federal regulations. Refer to the Safety Data Sheets for disposal information for unused reagents. Refer to the environmental, health and safety staff for your facility and/or local regulatory agencies for further disposal information.

Items to collect


Description	Quantity
CalVer 2 Calcium Indicator Powder Pillow	1 pillow
Potassium Hydroxide Standard Solution, 8 N	1 or 2 mL
EDTA Titration Cartridge (refer to Sample volumes and digit multipliers on page 3)	1
Digital Titrator	1
Delivery tube for Digital Titrator	1
Graduated cylinder (use a size that is applicable to the selected sample volume)	1
Erlenmeyer flask, 250 mL	1
Water, deionized	varies

Refer to Consumables and replacement items on page 5 for order information.


Sample collection

- Collect samples in clean glass or plastic bottles that have been cleaned with a detergent and rinsed with 1:1 nitric acid and deionized water.
- To preserve samples for later analysis, adjust the sample pH to 2 or less with concentrated nitric acid (about 2 mL per liter). No acid addition is necessary if the sample is tested immediately.
- Keep the preserved samples at room temperature for a maximum of 6 months.
- Before analysis, adjust the pH to 7 with Potassium Hydroxide Standard Solution.
- Correct the test result for the dilution caused by the volume additions.

Test procedure

1. Select a sample volume and titration cartridge from Table 1 on page 3.

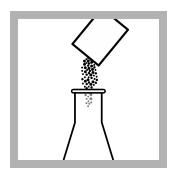
2. Insert a clean delivery tube into the digital titration cartridge. Attach the cartridge to the Digital Titrator.

3. Hold the Digital Titrator with the cartridge tip up. Turn the delivery knob to eject air and a few drops of titrant. Reset the counter to zero and clean the tip.

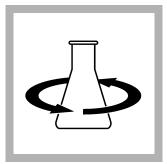
4. Use a graduated cylinder or a pipet¹ to measure the sample volume from Table 1 on page 3.

5. Pour the sample into a clean, 250-mL Erlenmeyer flask.

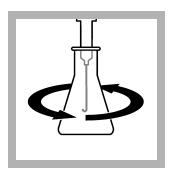
6. If the sample volume is 100 mL, add 2 mL of 8 N Potassium Hydroxide Standard Solution. If the sample volume is 50 mL or less, add 1 mL of 8 N Potassium Hydroxide Standard Solution.



7. Swirl to mix.



8. If the sample volume is less than 100 mL, dilute to approximately 100 mL with deionized water.


¹ Titration accuracy has a direct relation to the accuracy of the sample volume measurement. For smaller volumes, it is recommended to use a pipet to increase accuracy.

9. Add the contents of one CalVer 2 Calcium Indicator Powder Pillow.

10. Swirl to mix.

11. Put the end of the delivery tube fully into the solution. Swirl the flask. Turn the knob on the Digital Titrator to add titrant to the solution. Continue to swirl the flask. Add titrant until the color changes from red to pure blue. Record the number of digits on the counter.

12. Use the multiplier in Table 1 on page 3 to calculate the concentration. Digits used × digit multiplier = mg/L (or Gdh) Ca as CaCO₃.

Sample volumes and digit multipliers

Select a range in Table 1 or Table 2 as applicable, then read across the table row to find the applicable information for this test. Use the digit multiplier to calculate the concentration in the test procedure.

Example: A 50-mL sample was titrated with 0.800 M EDTA titration cartridge and the counter showed 250 digits at the endpoint. The concentration is 250 digits \times 2.0 = 500 mg/L as CaCO₃ (or with the 0.714 M EDTA titration cartridge, 250 x 0.1 = 25 mg/L Gdh).

Table 1 Sample volumes and digit multipliers-mg/L

Range (mg/L as CaCO ₃)	Sample volume (mL)	Titration cartridge	Digit multiplier
10–40	100	0.0800 M EDTA	0.1
40–160	25	0.0800 M EDTA	0.4
100–400	100	0.800 M EDTA	1.0
200–800	50	0.800 M EDTA	2.0
500–2000	20	0.800 M EDTA	5.0
1000–4000	10	0.800 M EDTA	10.0

Table 2 Sample volumes and digit multipliers—Gdh

Range (Gdh as CaCO ₃)	Sample volume (mL)	Titration cartridge	Digit multiplier
1–4	100	0.1428 M EDTA	0.01
4–16	25	0.1428 M EDTA	0.04
10–40	50	0.714 M EDTA	0.1
25–100	20	0.714 M EDTA	0.25
> 100	10	0.714 M EDTA	0.5

Conversion units

To change the units or chemical form of the test result, multiply the test result by the factor in Table 3.

Table 3 Conversions

mg/L Ca as CaCO ₃ to	multiply by	Example
mg/L as Ca	0.40	1000 mg/L as CaCO ₃ x 0.40 = 400 mg/L Ca
German degrees hardness (Gdh)	0.056	1000 mg/L as CaCO ₃ × 0.056 = 56 Gdh
Grains per gallon (gpg)	0.058	1000 mg/L as CaCO ₃ x 0.058 = 58 gpg

Interferences

AWARNING

Chemical hazard. Potassium cyanide is toxic. Make sure to add potassium cyanide to the sample after the Potassium Hydroxide has been added. Keep cyanide solutions at more than pH 11 to prevent exposure to hydrogen cyanide gas. Dispose of reacted solutions according to local, state and federal regulations.

An interfering substance can prevent the color change at the titration endpoint. A smaller sample volume can often dilute the interfering substance to a level at which the substance does not interfere. Table 4 shows the substances that can interfere with this test.

Table 4 Interferences

Interfering substance	Interference level
Acidity	10,000 mg/L acidity as CaCO ₃ does not interfere.
Alkalinity	10,000 mg/L alkalinity as CaCO ₃ does not interfere.
Aluminum	Causes a slow endpoint. The sample can contain a maximum of 200 mg/L aluminum if sufficient time is given for the color change.
Barium	Barium is titrated at the same time with calcium and interferes with this test, but it is unusual to find high levels of Barium in natural waters.
Chloride	The chloride level in seawater does not interfere. Solutions that are saturated with chloride do not show a sharp endpoint.
Cobalt	Interferes directly. Add 0.5 grams of potassium cyanide after the Potassium Hydroxide during the test procedure to remove the interference from a maximum of 20 mg/L cobalt.
Copper	Interferes at 0.1 mg/L copper. Add 0.5 grams of potassium cyanide after the Potassium Hydroxide during the test procedure to remove the interference from a maximum of 100 mg/L copper.
Iron	More than 8 mg/L iron causes an orange-red to green endpoint. Results are accurate to 20 mg/L iron with this endpoint.
Magnesium	The formation of magnesium hydroxide at the high test pH prevents interference from 200 mg/L magnesium. Samples with more than 200 mg/L magnesium do not give a distinct endpoint.
Manganese	Interferes at more than 5 mg/L manganese.
Nickel	Interferes at 0.5 mg/L nickel. Add 0.5 grams of potassium cyanide after the Potassium Hydroxide during the test procedure to remove the interference from a maximum of 200 mg/L nickel.
Orthophosphate	Forms calcium phosphate and causes a slow endpoint. If sufficient time is given to let the calcium phosphate dissolve during the titration, the orthophosphate will not interfere with the test.
Polyphosphates	Interfere directly and are included in the test result.
Strontium	Strontium is titrated at the same time with calcium and interferes with this test, but it is unusual to find high levels of Strontium in natural waters.
Temperature	Samples at 20 °C (68 °F) or colder should be titrated slowly near the endpoint to give sufficient time for the color change.

Table 4 Interferences (continued)

Interfering substance	Interference level
Zinc	Interferes at 5 mg/L zinc. Add 0.5 grams of potassium cyanide after the Potassium Hydroxide during the test procedure to remove the interference from a maximum of 100 mg/L zinc.
Highly buffered samples or extreme sample pH	Can prevent the correct pH adjustment (of the sample) by the reagents. Sample pretreatment may be necessary.

Accuracy check

Standard additions method (sample spike)

Use the standard additions method to validate the test procedure, reagents, apparatus, technique and to find if there is an interference in the sample.

Items to collect:

- Hardness Voluette Ampule Standard Solution, 10,000 mg/L as CaCO₃
- Ampule Breaker
- Pipet, TenSette, 0.1–1.0 mL and pipet tips
- 1. Use the test procedure to measure the concentration of the sample.
- 2. Use a TenSette pipet to add 0.1 mL of the standard solution to the titrated sample.
- 3. Titrate the spiked sample to the endpoint. Record the number of digits on the counter.
- **4.** Add one more 0.1-mL addition of the standard solution to the titrated sample.
- **5.** Titrate the spiked sample to the endpoint. Record the number of digits on the counter.
- 6. Add one more 0.1-mL addition of the standard solution to the titrated sample.
- 7. Titrate the spiked sample to the endpoint. Record the number of digits on the counter.
- **8.** Compare the actual result to the correct result. The correct result for this titration is 10 digits of 0.800 M titration cartridge or 100 digits of 0.0800 titration cartridge (11 digits of 0.714 M or 56 digits of 0.1428 M titrant) for each 0.1-mL addition of the standard solution. If much more or less titrant was used, there can be a problem with user technique, reagents, apparatus or an interference.

Summary of method

Potassium hydroxide is added to the sample to adjust the pH to 12 to 13, which causes a magnesium hydroxide precipitate to form. CalVer 2 Calcium Indicator is then added, which reacts with calcium to give a red color. The EDTA titrant is added, which reacts with all the free calcium. After the EDTA has reacted with all of the free calcium ions, the EDTA removes the calcium from the indicator. The indicator color then changes from red to blue.

Consumables and replacement items

Required reagents

Description	Quantity/Test	Unit	Item no.
Reagent set, 10–160 mg/L range (approximately 100 tests):		each	2447200
CalVer 2 Calcium Indicator Powder Pillows	1 pillow	100/pkg	85299
Potassium Hydroxide Standard Solution, 8 N	1–2 mL	100 mL MDB	28232H
EDTA Titration Cartridge, 0.0800 M	varies	each	1436401
Reagent set, 100–4000 mg/L range (approximately 100 tests):	_	each	2447500
CalVer 2 Calcium Indicator Powder Pillows	1 pillow	100/pkg	85299
Potassium Hydroxide Standard Solution, 8 N	1–2 mL	100 mL MDB	28232H
EDTA Titration Cartridge, 0.800 M	varies	each	1439901

Consumables and replacement items (continued)

Description	Quantity/Test	Unit	Item no.
Reagent set, 1–16 G.d.h. range (approximately 100 tests):	_	each	2447300
CalVer 2 Calcium Indicator Powder Pillows	1 pillow	100/pkg	85299
Potassium Hydroxide Standard Solution, 8 N	1–2 mL	100 mL MDB	28232H
EDTA Titration Cartridge, 0.1428 M	varies	each	1496001
Reagent set, 10–100 G.d.h. range (approximately 100 tests):	_	each	2447400
CalVer 2 Calcium Indicator Powder Pillows	1 pillow	100/pkg	85299
Potassium Hydroxide Standard Solution, 8 N	1–2 mL	100 mL MDB	28232H
EDTA Titration Cartridge, 0.714 M	varies	each	1495901

Required apparatus

Description	Quantity/test	Unit	Item no.
Graduated cylinders—Select one or more for the sample volume:			
Cylinder, graduated, 5 mL	1	each	50837
Cylinder, graduated, 10 mL	1	each	50838
Cylinder, graduated, 25 mL	1	each	50840
Cylinder, graduated, 50 mL	1	each	50841
Cylinder, graduated, 100 mL	1	each	50842
Digital Titrator	1	each	1690001
Delivery tube for Digital Titrator, J-hook tip	1	5/pkg	1720500
Flask, Erlenmeyer, 250 mL	1	each	50546
Pipet, TenSette [®] , 0.1–1.0 mL	1	each	1970001
Pipet tips, for TenSette [®] Pipet, 0.1–1.0 mL	1	50/pkg	2185696

Recommended standards

Description	Unit	Item no.
Calcium Hardness Standard Solution, 10,000-mg/L as CaCO ₃ , 10-mL Voluette ampule	16/pkg	218710
Hardness Quality Control Standard, high range	500 mL	2833349
Hardness Quality Control Standard, low range	500 mL	2833449

Optional reagents and apparatus

Description	Unit	Item no.
Ampule Breaker, 10-mL Voluette® Ampules	each	2196800
CalVer® 2 Calcium Indicator Powder	113 g	28114H
CDTA Magnesium Salt Powder Pillow	100/pkg	1408099
Delivery tube for Digital Titrator, 90-degree bend for use with TitraStir Titration Stand	5/pkg	4157800
Magnesium Standard Solution, 10 g/L as CaCO ₃	29 mL	102233
Nitric Acid, concentrated	500 mL	15249
Nitric Acid Solution, 1:1	500 mL	254049
Pipet filler, safety bulb	each	1465100

Optional reagents and apparatus (continued)

Description	Unit	Item no.
Pipet, volumetric, Class A, 10 mL	each	1451538
Pipet, volumetric Class A, 20 mL	each	1451520
Pipet, volumetric, Class A, 25 mL	each	1451540
Potassium Cyanide, ACS	100 g	76714
Potassium Hydroxide, 8 N	500 mL	28249
Sampling bottle with cap, low density polyethylene, 500 mL	12/pkg	2087079
Sampling bottle, with cap, low density polyethylene, 250 mL	12/pkg	2087076
Spoon, measuring, 0.1 g	each	51100
Stir bar, octagonal	each	2095352
TitraStir® Titration Stand, 115 VAC	each	1940000
TitraStir® Titration Stand, 230 VAC	each	1940010

Jeff Wolford

From: US - Tech Help <techhelp@hach.com>
Sent: Tuesday, January 30, 2024 9:51 AM

To: avandenheuvel@ku-wi.org

Cc: Jeff Wolford

Subject: Fwd: Hardness Testing - HACH Case # 01240323 [ref:!00Di00c0fJ.!5003q01eKv7L:ref]

Hello Jeff,

I am wondering if the different labs are reporting total versus calcium hardness and that is why the values are different. Are the units the same in each lab report?

What happens when you use the Hach 5-EP for testing hardness in the 600-800 mg/L range? How far does the accuracy get thrown off. Can you use half the sample volume and then multiple the number of drops by 2?

We do not know how the accuracy is changed outside of the reported method limits. Please see the below article about deviations from the method. The best solution for a higher concentration outside of the range is to perform a dilution.

Can Hach advise on how deviations from the method procedure will impact results?

What is the purpose of dilution and instructions for performing a dilution?

For the HAC-DT test: for strontium - Do you know how it interferes with the test? Does strontium just count as Calcium in the total hardness of CaCO3?

Hardness in water is caused by dissolved minerals, primarily divalent cations, including calcium (Ca2+), iron (Fe2+), strontium (Sr2+), zinc (Zn2+) and manganese (Mn2+). Calcium and magnesium ions are usually the only ions present in significant concentrations as it is unusual to have high strontium in natural waters.

The result of this test method linked below, if strontium is present, is strontium and calcium, so yes it does "count" as calcium, but this method is not a total hardness test as it does not measure magnesium.

Hardness, Calcium, Titration Method 8204 using EDTA, Digital Titrator

I see that strontium interferes with the straight Calcium test too? (Method 8204) Does strontium just count as Calcium so the value is still accurate for (Calcium + Strontium)? We have a strontium test results so maybe I can just subtract the value.

Yes, this is a correct statement. I would definitely suggest verifying the result with a separate strontium test method.

Thank you for contacting HACH Technical Support

Grace | Technical Advisor Hach | <u>www.hach.com</u>

800-227-4224 | USA Mountain Time Zone | Techhelp@hach.com

We value your feedback! Click here to contact a Hach Manager

----- Original Message -----

From: Andy Vanden Heuvel [avandenheuvel@ku-wi.org]

Sent: 1/29/2024 5:16 PM

To: jwolford@cbssquaredinc.com; techhelp@hach.com

Subject: Re: Hardness Testing - HACH Case # 01240323 [ref:!00Di00c0fJ.!5003q01eKv7L:ref]

Jeff,

That's fine we can get samples done anywhere but we get our samples done at badger labs. So not sure how labs can be that much different

Andy Vanden Heuvel Water Superintendent

KAUKAUNA UTILITIES
920-858-9180
avandenheuvel@ku-wi.org
www.kaukaunautilities.com

Customer Driven / Community Minded / Environmentally Responsible

From: Jeff Wolford < jwolford@cbssquaredinc.com>

Sent: Monday, January 29, 2024 4:44:39 PM **To:** US - Tech Help techhelp@hach.com

Cc: Andy Vanden Heuvel <avandenheuvel@ku-wi.org>

Subject: RE: Hardness Testing - HACH Case # 01240323 [ref:!00Di00c0fJ.!5003q01eKv7L:ref]

Grace

The reason I am questioning this information is the water utility is using the wrong test kit for hardness and the results between field, and two laboratories vary a lot. We had the water sample sent out to two different labs and those two labs vary by more than 150 mg/l which is significant. So I would like to try to narrow down the issue and get stable hardness results. Then we can design a hardness removal system.

What happens when you use the Hach 5-EP for testing hardness in the 600-800 mg/L range? How far does the accuracy get thrown off. Can you use half the sample volume and then multiple the number of drops by 2?

For the HAC-DT test: for strontium - Do you know how it interferes with the test? Does strontium just count as Calcium in the total hardness of CaCO3?

I see that strontium interferes with the straight Calcium test too? (Method 8204) Does strontium just count as Calcium so the value is still accurate for (Calcium + Strontium)? We have a strontium test results so maybe I can just subtract the value.

Jeff Wolford, PE

CBS Squared, Inc.

2500 E. Enterprise Ave. Suite A

Appleton, WI 54913

920.621.0296

Find us on Facebook and LinkedIN!

The information contained in this e-mail (and any attachments) is confidential and may not be used by anyone other than the addressee. If you are not this intended recipient please notify us immediately.

From: US - Tech Help < techhelp@hach.com > Sent: Monday, January 29, 2024 3:27 PM

To: Jeff Wolford < jwolford@cbssquaredinc.com>

Subject: Fwd: Hardness Testing - HACH Case # 01240323 [ref:!00Di00c0fJ.!5003q01eKv7L:ref]

Hello Jeff,

Apologies but it looks like our email got lost!

The HAC-DT is the correct option for the test range you are in. There is no pretreatment information listed that would allow you to address strontium interference. It just references the following:

Strontium is titrated at the same time with calcium and interferes with this test, but it is unusual to find high levels of Strontium in natural waters.

So the more strontium in your water the higher the interference level would be. Unfortunately, I do not show that we have a test method where this is not an interference.

Thank you for contacting HACH Technical Support

Grace | Technical Advisor Hach | www.hach.com 800-227-4224 | USA Mountain Time Zone | Techhelp@hach.com We value your feedback! Click here to contact a Hach Manager

----- Original Message -----

From: Jeff Wolford [jwolford@cbssquaredinc.com]

Sent: 1/29/2024 10:54 AM
To: techhelp@hach.com
Subject: RE: Hach 01240323

I have not received a response back on my question.

Jeff Wolford, PE

CBS Squared, Inc.

2500 E. Enterprise Ave. Suite A

Appleton, WI 54913

920.621.0296

Find us on Facebook and LinkedIN!

The information contained in this e-mail (and any attachments) is confidential and may not be used by anyone other than the addressee. If you are not this intended recipient please notify us immediately.

From: Global Technical Support < technelp@hach.com >

Sent: Monday, January 29, 2024 9:16 AM

To: Jeff Wolford < jwolford@cbssquaredinc.com >

Subject: Hach 01240323

Hello Dear Valued Hach Customer,

This is a courtesy reminder that your ticket is not closed yet. If you are aware of this please disregard. Otherwise, please reply if this is still an ongoing issue or to let us know it should be closed.

Thank you for contacting HACH Technical Support

HACH Global Technical Support Team

Do you have additional questions about Hach products?

Find answers at any time by searching our knowledge tool at www.hach.com. If you do not find the answer you are looking for, submit questions using the Ask A Question link.

Links contained in this email have been replaced by ZixProtect Link Protection. If you click on a link in the email above, the link will be analyzed for known threats. If a known threat is found, you will not be able to proceed to the destination. If suspicious content is detected, you will see a warning.

G.3 WATER SOFTENER INFORMATION

WATER

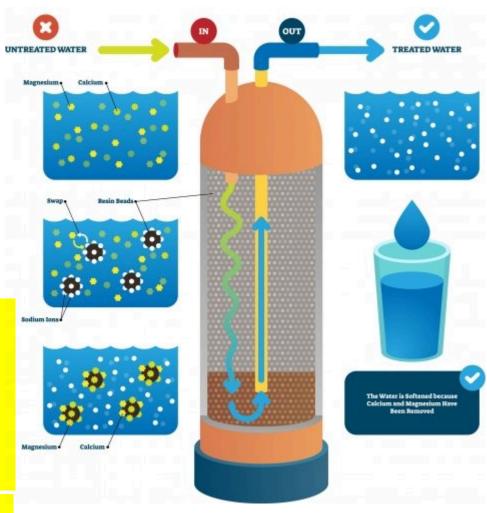
Purchasing and Maintaining A Water Softener

Energy Saver

Energy Saver » Water » Water Heating » Purchasing and Maintaining A Water Softener

A water softener has many benefits are an excellent option for homes with light to heavy hard water. Because it reduces water hardness by removing of heavy minerals like calcium, iron, and magnesium from the water supply coming into the home, a water softener prevents common water problems including mineral deposits and scale buildup on leading to leaky faucets and clogged pipes, damage to water-based appliances, chalky films on dishwasher cleaned glasses, dry skin and hair after showering, and faded colored clothing from the washing machine.

A water softener solves these issues by preventing heavy minerals from binding or flowing through the water. Softened water can:


- Save money in the long term
- Provide cleaner hair and softer skin
- Brighten and soften clothes
- Clean dishes and glasses better
- Reduce time spent cleaning
- Make drinking water clearer and better tasting

How a Water Softener Works

There are many water softeners on the market, but almost all rely on the same principle—ion exchange, a chemical process that substitutes sodium (sometimes potassium) for the minerals that make water hard. In a conventional

system, water passes
through a tank with a bed
of resin beads saturated
with sodium, exchanging
any calcium and
magnesium ions in the
water with sodium ions.

When the minerals attach

to the beads, the sodium that had been on the beads enters the volume of water. By the time household water exits the system, it is no longer hard.

Over time, the resin bed becomes flush with the minerals that have been drawn out of the hard water. At that point, the water softener must go through a "regeneration" cycle, during which sodium-rich water restores the resin beads to their initial sodium-saturated state. Upon completion of the cycle, the softener returns to regular operation, softening the household water that passes through it.

Types of Water Softeners

Water softeners work by either drawing heavy minerals out of the water using a process called ion exchange or by neutralizing these minerals so that they are unable to bind together and remain soluble in the water.

There are two main types of water softeners that do this, although in different ways:

- Salt-based, including dual-tank systems
- Salt-free, including magnetic systems

Salt-Based Water Softeners

Salt-based water softeners are the most commonly used and effective softener types. Most water softener systems are salt-based systems, so there are a high number of salt-based options available. They come in a variety of sizes and are appropriate for just about every dwelling.

A salt-based water softener typically works by drawing heavy minerals in the water, like calcium and magnesium, into a resin within the softener and exchanging them for sodium (salt). By removing the heavy minerals, the water returns to a healthy neutral state.

The downside to these softeners is that the resin then needs to be recharged with salt. For most homes, this will need to be done about once a week. These water

softeners are also much larger than salt-free or magnetic softeners, making them not the best choice for smaller spaces.

However, there are portable water softeners that are salt-based. Designed specifically for portable functionality, these softeners are an excellent choice for an RV, a large boat, an mini/micro home, or an efficiency apartment. An included hose allows the user to connect directly to an outdoor faucet or campground water supply for instant access to softened water for cleaning, drinking, and bathing.

These sand-based 16,000-grain capacity water softeners can be recharged using simple table salt, but they do require frequent recharging with regular use. However, with the reduced size, there is also a lower price, making this option easier on the wallet for simple, low volume instances.

While salt-based water softeners do add salt to the water, it is only in trace amounts that rarely get noticed. This level of sodium is safely within the recommended range for healthy individuals, but those with low-sodium diets may wish to opt for a salt-free water softener (read next section) that uses potassium, not sodium.

DUAL-TANK WATER SOFTENERS

A dual-tank water softener is a salt-based softener with two resin tanks. This style is often the best water softener to use for well water due to its better ability to filter heavy minerals. These tanks function in the same way as a single-tank salt-based softener, except that when one tank is in the regeneration cycle, the other tank is still providing softened water to the household.

Dual-tank softeners aren't necessary for most homes, and due to their size, they can be challenging to place and install. They also carry a higher price tag than the other styles and do need to be recharged. However, a dual-tank water softener can handle more water per regeneration cycle and never run out of softened water.

Salt-Free Water Softeners

Understanding how the different types of salt-free water softeners work, as well as how much water they can treat on a daily basis, is integral to purchasing the right unit.

As indicated by their name, salt-free water softeners don't use salt to remove heavy minerals from water; in fact, they don't remove the heavy deposits at all. Instead, they condition the water so these particles cannot build up on faucets and showerheads. While the minerals remain in the water, they are put through a conditioning process.

Salt-free water softeners tend to cost more initially, do not use salt or electricity. These models are also smaller than salt-based systems, so they can easily be used for small- to large-size houses. However, these units may struggle with very high levels of hard water and households with higher than average water usage.

ELECTROMAGNETIC AND MAGNETIC

Electromagnetic water softeners take up almost no space at all so are great for small spaces. Similar to other salt-free water softeners, electromagnetic water softeners do not remove particles that cause hardness in water but rather use a magnetic field to strip negative or positive ions from heavy minerals to magnetize the grains and neutralize them, which prevents them from clinging to surfaces and causing scaling because they are no longer positively or negatively charged, the minerals cannot bond to each other. Instead, they remain entirely soluble in the water. These systems plug into a standard outlet and don't need to be plumbed into a home, making them an attractive low-maintenance option for softening water. Magnetic models perform the same task but don't need electricity and require little to no maintenance. However, they are not as powerful and are only suitable for small homes.

POLYPHOSPHATES

Instead of removing impurities from the water, the use of polyphosphates conditions the water so impurities cannot create scaling on plumbing or faucets using a filtration cartridge. This type of system is used primarily in restaurants and other commercial settings to protect appliances from scaling.

FULL FILTRATION

Full filtration systems not only soften water, but they also remove other contaminants in drinking water. This type of salt-free water softener functions by passing the water through a filter that crystallizes minerals, preventing them

from sticking to one another and creating the scaling that can damage pipes and appliances. They also remove other contaminants, including herbicides, bacteria, viruses, pesticides, and chlorine. Filters on these water softeners can be pricey and typically last 6 months to 1 year.

It is important to be mindful that there is a difference between a water softener and a water purifier. It is safe to drink water from a water softener if the only contaminants are hardening minerals. The water softener will remove the hardening minerals or neutralize them so they cannot bind together. However, a water softener is not a water filter and will not remove any other harmful particles. As such, it should only be relied on to soften water, not purify it. If you're unsure about the safety of your drinking water, contact your local health department, test it yourself, or send out a sample for to be expert-tested.

FLOW RATE

A salt-free water-conditioning system functions between the main water line that enters a home and all of the water receptacles in a home, treating the water as it flows into the home's plumbing.

Salt-free systems that use filtration can affect the flow of water, potentially slowing it. Electromagnetic water treatment systems aren't plumbed into a home's water system, so they don't affect a home's flow rate. With that in mind, the water softeners with filtration systems must have a flow rate that meets the demands of the household to prevent drops in water pressure.

The average household, homes with one to three bathrooms, requires a filtration system with a flow rate of between 8 and 12 gallons per minute. Larger households require around 15 gallons per minute.

INSTALLATION

One of the main advantages of a salt-free water softener is that they're generally much easier to install than salt-based water softener systems. While the latter typically requires professional installation, a salt-free system is typically an easy DIY job.

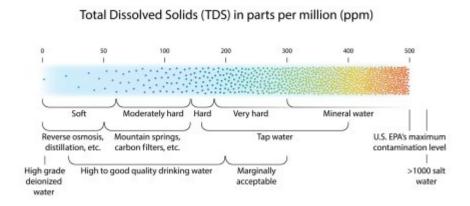
Electromagnetic salt-free water softeners don't require any plumbing and typically take about 15 minutes to install. This type of water softener has wires that wrap around the water supply pipe with a power source that sends electromagnetic waves through the wire.

Full filtration systems and

whole-house systems are more involved as they need to be attached to the incoming water supply pipe but are still relatively quick and easy to install.

What to Consider When Choosing A Water Softener System

Unlike more common consumer items, water softener systems are often not widely understood products, so it can be difficult for consumers to judge the best systems. Before choosing a water softener, take a few minutes to recognize the most important shopping considerations to keep in mind.


Usage and Hardness

Water softeners come in different sizes to meet the needs of different households. Determining which size a household needs depends on usage and hardness.

Determining water usage is as simple as multiplying the number of people in a household by gallons per day. The average person uses 75 gallons of water per day. So, for example, a family of three will use an average of 225 gallons of water per day.

Water hardness or softness is measured using grains per gallon (gpg), where one grain is equal to 0.002 ounces of calcium carbonate dissolved in 1 gallon of water.

- 0-3 gpg is considered soft water.
- 3.5–7 gpg is considered moderate and ideal.
- >7.5 gpg is regarded as hard water and should be treated with a water softener.

Multiply the water hardness by the water usage in the home to determine what size water softener is needed.. For example, a home that uses 225 gallons of water per day with a water hardness of 10 grains per gallon requires a water softener with a capacity of 2,250 grains per day.

Capacity

A water softener's capacity is the measurement of grains per week that the unit can handle before needing to be replenished.

Small water softeners come with weekly grain capacities of 16,000, 24,000, and 32,000. These are ideal for RVs, apartments, and small houses. Medium water softeners have grain capacities of 40,000, 48,000, and 64,000. Use these models for **medium to large households**. For big families and large properties, a residential water softener with a grain capacity of 80,000 or 100,000 would be most appropriate.

Keep in mind that the harder the water, the more grains the system will need to handle it. A 40,000-grain system would operate very differently with 3 gpg water running through it than if it had 10 gpg water to manage.

Available Area

Salt-based, and even some salt-free water softeners can take up a lot of space. The area where the water softener will be installed needs to be measured and compared to the manufacturer's installation specifications.

Most salt-free water softeners are smaller than the salt-based models. They are installed directly on the waterline and hang down only 1 or 2 feet, depending on the brand. Similar in size to the salt-free softeners, portable salt-based water softeners are an alternative option for small homes or RVs that prefer a salt-based model to remove heavy metals entirely.

Magnetic water softeners take up the least amount of space, and you can install them without cutting into your plumbing. Typically, these smaller softeners can be mounted directly on the pipe and do not interfere with your floor space. These softeners are the best option to save space in smaller homes, RVs, or apartments.

Bypass Valve

A valve controls the flow of water through a pipe, closing, or opening when necessary. A bypass valve works in the same way as a regular valve, but its purpose, when used with a water softener, is to divert the flow of water away from the softener, giving you access to the hard water running into the home.

If you have just purchased a water softener, this feature may seem pointless. However, a bypass valve can save you time and money by preventing your water softener from using excess salt or energy to soften the water used for watering the lawn or washing the deck.

For those purposes, the bypass valve may be used to divert the flow of water around the softener and back into the pipes. Once completed, just close the bypass valve and restore the flow of water through the softener.

Regeneration Cycles

Salt-based water softeners must be regenerated or refreshed when their salt content runs out. This can be regulated using a metered system or with a timed system.

METERED WATER SOFTENERS

Metered water softeners work by counting the gallons of water that pass through the water softener and automatically regenerating when necessary. This system is great for vacation homes or cottages with long periods of disuse because the system will only regenerate when necessary.

TIMED WATER SOFTENERS

Timed water softeners are set to automatically regenerate the salt within the softener at a designated time. These softeners allow for more control over the scheduled regeneration but will use more salt than necessary if the regeneration intervals are too short. This system could also result in hard water passing through the pipes if the regeneration intervals are too long.

Whether or not the system provides water softening during regeneration—and whether it's a manual or automatic process—depends on the sophistication of the appliance.

Fully automatic water softeners are the most expensive, but features alone do not dictate price. Size matters too. The correct size for a given home takes into account daily water use as well as the hardness of the water. A simple sizing calculation involves multiplying the number of household members by the number of gallons used per person, per day. Next, multiply the number of gallons consumed by the grains per gallon (GPG) figure. Then to accommodate for regeneration and days of heavy use, multiply your total by three. For the average four-person home, experts recommend a capacity of 33,000 GPG.

Care & Maintenance Tips for Water Softeners

The average water softener lasts for 10-15 years. However, with proper maintenance and care, there are some ways to extend the life of a water softener well beyond this normal life span.

One of the most important and basic things to do is check the salt levels every 4-6 weeks. If the salt level of a water softener drops, then hard water will begin to return to the home's water system.

While checking the salt levels, also make sure to check on the condition of the brine tank as salt bridges may have formed over time. These bridges can prevent the resin beads from softening the water properly and must

be cleared to ensure the proper functionality of the water softener.

Using the correct salt in for the water softener type is key to maintaining its functionality. Cubes or crystal salt is recommended for most available models but be sure to read the owner's manual to make sure.

Cleaning the Water Softener

Flushing the resin bed with a water softener cleaner can help to remove iron and other heavy metals from the beads, allowing them to regenerate with salt properly.

To clean a water softener, begin by dumping all water and salt out of the tank and disposing of it. To do this, dig a hole in the yard away from any plants, line the hole with sand and gravel, and discard the excess brine. Then remove the brine grid from the base of the tank and set it aside. Next, use warm, soapy water and a long-handled brush to scrub the tank's interior, and then rinse with plain water. Once rinsed, use a mixture of ¼ cup household bleach and 2 to 3 gallons of water to fill the tank. This mixture should sit for at least 15 minutes to kill any microorganisms. Rinse the

reservoir once more, then replace the brine grid, refill with water, and replenish it with salt. Keep your water softener maintained to improve the water quality in the home and prevent any drops in water pressure due to mineral buildup.

Subscribe to Energy Saver Updates

Subscribe to receive updates from Energy Saver, including new blogs, updated content, and seasonal energy saving tips for consumers and homeowners.

Enter Email Address

GO

Understanding and Dealing With Hard Water

Learn more

Office of

Energy Saver

Office of Energy Efficiency & Renewable Energy
Forrestal Building
1000 Independence Avenue, SW
Washington, DC 20585

An office of

ABOUT ENERGY SAVER

ENERGY.GOV RESOURCES

FEDERAL GOVERNMENT

Web Policies • Privacy • No Fear Act • Whistleblower Protection •

Notice of EEO Findings of Discrimination • Information Quality •

Open Gov • Accessibility • Vulnerability Disclosure Program

Drinking Water Treatment:Water Softening (Ion Exchange)

The presence of calcium (Ca) and/or magnesium (Mg) in water results in water being considered "hard." Calcium and magnesium ions in water react with heat, metallic plumbing, and chemical agents such as detergents to decrease the effectiveness of nearly any cleaning task. Hard water can be softened using an ion exchange softening process. This guide discusses the ion exchange water softening process and related equipment used for household water treatment.

Sharon O. Skipton, Extension Water Quality Educator Bruce I. Dvorak, Extension Environmental Engineering Specialist

- Contaminants removed by the water softening (ion exchange) process
- Contaminants not removed by the water softening (ion exchange) process
- Water Testing
- Treatment Principles
- Equipment
- Types of Salt
- Maintenance
- Selection Requirements
- Summary
- Acknowledgment

An ion is an atom or molecule that has a positive or negative electrical charge. Calcium and magnesium ions are released into water as it dissolves rocks and minerals. These mineral ions in the water can cause scale buildup in plumbing, fixtures and appliances and affect their performance. In the hot water heater, heat removes some calcium carbonate and magnesium carbonate from the water, resulting in scale buildup, which can then slow the heating process and increase energy usage. Cleaning agents used with hard water are not able to completely remove dirt and grime. Clothes may become dingy and gray with time and feel harsh or scratchy. Glassware may become spotted as it dries. Films may be left on shower doors or curtains, walls, and tubs, and hair washed in hard water may look dull and not feel clean. Hard water is considered a nuisance problem, but removing hardness ions isn't necessary for health reasons.

A variety of techniques are marketed to manage hardness minerals. This NebGuide focuses on the ion exchange softening process which remains the most commonly used technique for managing hard water in residential settings.

Contaminants removed by the water softening (ion exchange) process

The ion exchange water softening process can remove nearly all calcium and magnesium from source water. Softeners may also remove as much as 5-10 ppm (parts per million; ppm is equal to milligrams per liter, or mg/L) of iron and manganese. Consumers can check the water softener's manufacturer's rating for removal of these contaminants. Concentrations of iron and manganese greater than the softener's removal rating may require pretreatment such as greensand filters (see NebGuide G1280 <u>Drinking Water: Iron and Manganese</u>) to increase the lifespan of the softener.

Contaminants not removed by the water softening (ion exchange) process

No one piece of treatment equipment manages all contaminants. All treatment methods have limitations and often water quality situations require a combination of treatment processes. Water softening does not remove bacteria, hydrogen sulfide, silt or sand, lead, nitrate, pesticides, and many other organic and inorganic compounds. Refer to Extension Circular EC703, *Drinking Water Treatment: An Overview* for a discussion of possible water quality problems and appropriate treatments for these contaminants. Further information can be obtained from the appropriate treatment guide in the Drinking Water Treatment series.

Water Testing

Regardless of which water treatment system is considered, the water first should be tested to determine which contaminants are present. Public water systems routinely are tested for contaminants. Water utilities are required to publish Consumer Confidence Reports (CCRs), which inform consumers on the source of the water, concentration of contaminants present, potential health effects of those contaminants, and methods of treatment used by the utility. Depending on the population served by the water utility, CCRs may be mailed, published in newspapers, or posted on the Internet, but a copy of it can be obtained by contacting the local water utility. Public supplies must conform to federal standards established by the Safe Drinking Water Act. If contaminants exceed the Maximum Contaminant Level (MCL), the water must be treated by the water supplier to correct the problem and/or another source of potable water must be provided.

In contrast, monitoring private water systems is the consumer's responsibility. Therefore, contamination is more likely to go undetected in a private water supply. Knowing which contaminants may be present should guide the testing, since it's not economically feasible to test for all possible contaminants. Know which contaminants are present, their concentrations, and reasons for removal (i.e., health risks, tastes or odors, etc.) prior to selecting treatment methods or equipment. Refer to NebGuide G907 <u>Drinking Water: Testing for Quality</u> for testing information.

Testing laboratories, some city-county health departments, and some water treatment equipment dealers can test water for hardness. In addition, a variety of test kits and dip strips are available for hardness testing outside of a laboratory environment. When using these tests, users should understand the nature of the test and the accuracy of the test results. While some may provide accurate and reliable measurements from which decisions can be made, others may not. Greater reliability and accuracy can be expected with laboratory testing. In situations where considerable investment is necessary to correct a problem, verification of the severity of the problem by an approved laboratory is advisable.

It is also important to periodically re-test after installation of treatment devices to evaluate the effectiveness of the treatment equipment.

Water hardness is often expressed as grains of hardness per gallon of water (gpg) or milligrams of hardness per liter of water (mg/L). *Table I*, adapted from the Water Quality Association (WQA), shows hardness classifications. Hardness ions are typically combined with sulfate, chloride, carbonate, or bicarbonate ions. For consistency, concentrations are generally converted to the equivalent concentration as calcium carbonate (CaCO₃) and expressed in terms of hardness as calcium carbonate.

Table I. Classification of water hardness (hardness as calcium carbonate).		
mg/L or ppm	Grains per gallon, gpg	
0-17	0-1.0	
	mg/L or ppm	

Slightly hard	17-60	1.0-3.5
Moderately hard	60-120	3.5-7.0
Hard	120-180	7.0-10.5
Very hard	180 & over	10.5 & over

Treatment Principles

Household water softeners are ion exchange devices. Ion exchange involves removing the hardness ions calcium and magnesium and replacing them with non-hardness ions, typically sodium supplied by dissolved sodium chloride salt, or brine. The softener contains a microporous exchange resin, usually sulfonated polystyrene beads that are supersaturated with sodium to cover the bead surfaces. As water passes through this resin bed, calcium and magnesium ions attach to the resin beads and the loosely held sodium is released from the resin into the water. The softening process is illustrated in *Figure 1*.

After softening a large quantity of hard water the beads become saturated with calcium and magnesium ions. When this occurs, the exchange resin must be regenerated, or recharged. To regenerate, the ion exchange resin is flushed with a salt brine solution (*Figure 1*). The sodium ions in the salt brine solution are exchanged with the calcium and magnesium ions on the resin and excess calcium and magnesium is flushed out with wastewater.

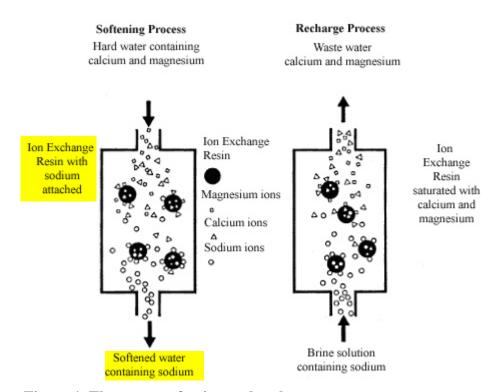


Figure 1. The water softening and recharge process.

Frequency of the regeneration or recharge cycle depends on the hardness of the water, the amount of water used, size of the softener, and capacity of the resins. Sixty to 120 minutes generally are required for the brine to pass through the unit and flush the tank before soft water is available again.

Through the softening process, sodium is added to water at a rate of about 8 mg/L for each grain per gallon (gpg) of hardness. After treatment, water that was 10 gpg of hardness will have about 80 mg/L of sodium. This means that for every liter (0.26 gallon) of water intake, there would be 80 mg of sodium intake. People on restricted sodium diets due to health reasons should account for increased intake through softened water and consult their physician. Drinking and cooking with softened water is often avoided by having a cold water line to the kitchen tap that bypasses the water softener. This provides hard water for drinking, cooking and other uses.

It is not recommended to repeatedly use softened water for plants, lawns or gardens due to the sodium content.

Equipment

Ion exchange water softeners can be classified as one of four different types:

- 1. *Semi-automatic:* These require the operator to initiate the regeneration cycle. The necessary steps to complete regeneration and return to service are done automatically by the softener controls.
- 2. Automatic: Fully automatic softeners are typically equipped with a timer that automatically initiates the regeneration cycle and the required steps in that process. The operator only sets the timer and adds salt as needed. Regeneration is generally done during periods of low water usage, such as between midnight and 4 a.m.
- 3. Demand-initiated regeneration (DIR): Demand-initiated regeneration units initiate and handle regeneration operations automatically in response to the demand for treated water. Need for regeneration is determined by measuring gallons of water used or the change in electrical conductivity of the resin bed, or by sensing a change in water hardness. DIR units may have two softening tanks and a brine tank so that one tank can be softening while the other is recharging. DIR units may lead to less overall usage of salt and water since regeneration is only done when necessary.
- 4. Off-site regeneration: Rental units are available in which the resin tank is exchanged in the home and then recharged at a central location.

All types of softeners must be correctly installed and monitored for proper operation. If an automatic or DIR unit appears to use more salt than expected or water is not softened, have a service provider check the unit settings. The amount of salt used for softening depends on the number of people in the household, daily water usage, softener capacity, and water hardness. The appropriate size of water softener depends on several factors including the water hardness level, daily water use and water flow rate.

Types of Salt

There are different types of salt available for water softeners. The choice depends upon the type of water softener and manufacturer design. Softeners are designed to use specific types of salt so it is important to follow manufacturer's recommendations regarding the salt type.

Compressed salt has undergone an evaporation and compression process that yields small particles referred to as pellets, nuggets, or beads. A variety of grades and formulations are available on the market. Products designed to manage iron (rust) may contain food-grade additives, such as citric acid. Compressed salt is sized according to manufacturer's specifications. The majority of softeners are designed for this type of salt.

Salt blocks for use in some softener brine tanks look similar to those used for livestock feeding. Blocks for livestock feeding, however, may contain additives incompatible with water softener units. Block salt should be used only in those units specifically designed for this form of salt. It should be high-grade evaporated salt without additives.

Rock salt may have high levels of soluble or insoluble impurities. If the impurities are calcium or magnesium salts, they may significantly reduce the effectiveness of the regeneration process and plug valves. Rock salt is only an option if suggested by the manufacturer and only those averaging less than 1 percent impurities should be used.

In certain situations, potassium chloride may be used for softener regeneration instead of sodium chloride. Potassium chloride can be more costly and more difficult to obtain than sodium chloride, however. Potassium chloride also adheres more strongly to the resin. This can reduce the exchange efficiency compared to sodium chloride and require more potassium chloride. Substituting potassium chloride for sodium chloride may be appropriate if health or environmental reasons necessitate restricting sodium; a water treatment professional should be consulted regarding this option.

Maintenance

Maintenance of water softening equipment is somewhat dependent on the type of softener. Some degree of monitoring or managing the regeneration process is generally required. The softener must be kept regenerated to avoid hard water flowing into pipes and appliances. Regeneration does place additional load on a septic system. Approximately 50 gallons of water (roughly equal to that required for a load of laundry using an older washing machine, or two loads using a newer high-efficiency washing machine) is used to regenerate a water softener. Also, certain situations such as high concentrations of iron or manganese in the water can affect the exchange capacity of the resin. In this case the resin may eventually need to be cleaned or replaced. A water treatment professional should be consulted for guidance on cleaning or replacing the resin.

The brine tank requires periodic checking and cleaning. How frequently you clean it depends on the type and amount of salt and characteristics of the water being treated. Inspect the tank for scale build-up. The brine valve and float assembly, if used, should also be cleaned and inspected at least once a year.

Adequate backwashing of the resin bed is important to ensure efficient regeneration of the unit. If backwashing is to be done manually or is semiautomatic, the backwash should be continued until the water runs clear. If the unit is fully automatic and backwash time is adjustable, adjust the time so the backwash is long enough to produce clear water in the drain.

Excess iron (above 5 ppm) or hydrogen sulfide in the water can reduce the effectiveness of the water softener. The water should be tested for these contaminants and proper pre-softening equipment installed if required. NebGuides G1280 <u>Drinking Water: Iron and Manganese</u> and G1275 <u>Drinking Water: Sulfur (Sulfate and Hydrogen Sulfide)</u> discuss these contaminants. Sediment in the water can also reduce the effectiveness of the softener. The NebGuide G1492 <u>Drinking Water Treatment: Sediment Filtration</u> discusses options for sediment removal.

Selection Requirements

Federal, state, or local laws do not regulate water softening home systems. The industry is self-regulated. The NSF (formerly the National Sanitation Foundation) and the Water Quality Association (WQA) evaluate performance, construction, advertising, and operation manual information. The NSF program establishes performance standards that must be met for endorsement and certification. The WQA program uses the same NSF standards and provides equivalent American National Standards Institute (ANSI) accredited product certifications. WQA certified products carry the Water Quality Association Gold Seal. Though these certifications and validations should not be the only criteria for choosing a water softening system, they are helpful to ensure effectiveness of the system.

Other important guidelines are discussed in NebGuide G1488 <u>Drinking Water Treatment: What You Need to Know When Selecting Water Treatment Equipment</u>. The NebGuide series on drinking water treatment focuses on contaminants most likely to be encountered in Nebraska drinking water supplies. Some water supplies may

contain contaminants not addressed in this series, such as cryptosporidium, giardia, hexavalent chromium and others.

Summary

Drinking water treatment by water softening (ion exchange) is one option for the homeowner in treating water problems. Calcium and magnesium ions in water decrease the effectiveness of most cleaning tasks and can cause film and scale buildup in and on plumbing and fixtures. Water softening is an effective method for reducing the calcium and magnesium mineral ions from the water. It can also reduce iron and manganese concentrations. Selection of an ion exchange water softening unit should be based on water analysis and assessment of the individual homeowner's needs and situation. Regular maintenance of the unit is a critical factor in maintaining effectiveness of the unit. NSF and the WQA test and certify products and this certification can help guide selection.

Acknowledgment

The authors wish to acknowledge the contribution of former UNL Extension Engineers Jodi Kocher and DeLynn Hay, and former UNL Extension Specialist Shirley Niemeyer who collaborated with them in previous versions of this NebGuide.

This publication has been peer reviewed.

Visit the University of Nebraska–Lincoln <u>Extension Publications</u> Web site for more publications. Index: Water Resource Management Drinking Water 2003-2008, Revised September 2014

Home (/) > DIY Repair Guides (/diy_repair_guides) > How A Water Softener Works (/how_a_water_softener_works)

How A Water Softener Works

Average Salt Amount - Normal
 Water Level

(salt_water_levels)

• Frequency of Regeneration - How Often?

(frequency_of_regeneration)

 Soft Water - Why does it feel slimy

(Soft-Water--Why-does-it-feel-slimy_c_388.html)

Water Softener Basics

Used for decades, this equipment is still a mystery to some.

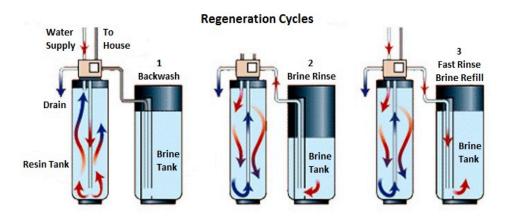
Removing unwanted minerals from water may be easier than removing the mystery from water softeners even though the devices have been used for more than 60 years.

Water softeners remove unwanted calcium and magnesium. These minerals, commonly referred to as lime, form scale in plumbing and soap curd on objects cleaned with hard water. Mineral particles even become deposited between cloth fibers, leaving laundry dingy while deteriorating the fabric.

Hardness is found most frequently in ground water though amounts vary geographically. It's measured in grains per gallon (GPG). There are 7,000 grains to a pound, yet water with as little as one GPG of calcium can cause severe scaling in commercial applications like boiler treatment. Water containing less than seven GPG is generally considered acceptable for home use.

Softening Up

In water softening - also called ion exchange softening - an ion, an electrically charged particle, is attracted to ions of the opposite charge. A strongly charged ion will bump a weaker ion away from its "mate" and leave it unattached.


Both calcium and magnesium have strong positive charges, as does water-borne iron. The positive ions, called cations, are attracted to the strong negative ions, or anions, of the ion exchange resin found in water softeners. The resin looks like amber sand, but is actually a plastic bead-like material, coated temporarily with weakly bound sodium ions.

In addition to the resin, there are other important parts to water softeners. There is the resin tank, which is usually a fiberglass pressure vessel. Threaded into the top of the resin tank is the control valve, which directs water through the tank and makes regeneration possible. The last component is the brine tank, a storage area for salt and a few gallons of salt brine.

How It Works

Hard water enters the softener through the control valve and passes down through the resin bed. Calcium and magnesium have a strong attraction to the negatively-charged resin beads and become attached to them. Resin particles trade the weaker sodium cations for the magnesium and calcium particles in the water.

Eventually, the majority of the resin particles will pair with the strongly-charged magnesium and calcium particles. At that point, hard water bearing more of these elements passes through the softener unaffected. It's therefore necessary to periodically replenish the sodium originally present on the resin beads and dispose of the hardness-causing minerals removed from the water. This is usually a four-step process called regeneration.

Backwash is often the first step. Water flows through the unit in reverse, cleansing the resin of turbidity and precipitated iron. This short cycle is followed by the brine rinse cycle, where salt-laden water slowly passes through the resin to replace hardness-causing ions with sodium ions. The resin's preference for calcium and magnesium must be overcome by the strength of the brine solution, which bombards resin beads with millions of sodium ions. The over whelmed hardness ions are driven off and washed down the drain.

Next, the fast rinse cycle flushes the bed with raw water to remove the chlorides (salt brine and sodium chloride) and excess sodium. The last cycle is for brine tank refilling. Three pounds of salt are dissolved in every gallon of brine tank water for use during the next regeneration. The control valve then returns to the service position, making softened water available on demand.

Cargill Salt list of Salt related Questions and their Answers!

(http://www.cargillsalt.com/dc_salt_about_faqs_water_cond.htm#P2_2988) - A must READ to better understand the Salt usage in your Softener System.

More Benefits of Conditioned Water (/manuals/Soft_Water_Benefits.pdf)

Written by Rudy Wilfong

JANUARY 1991 GROUNDWATERAGE

NOTE: The Brine Rinse cycle typically lasts for 50 minutes.

All the water is sucked out in 15 - 20 minutes.

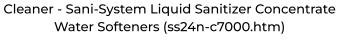
The "Rinse" continues to slowly move / remove the salt water down through the Resin beads.

For more guidance on how much salt to use and how often to Recharge / Regenerate, see:

Average Salt Amount Needed and Normal Water Level In Brine Tank (/salt_water_levels)

Frequency of Regeneration - How Often Should Softener Recharge? plus Average Salt Amount Needed and Normal Water Level In Brine Tank (/frequency_of_regeneration)

Short Video showing / explaining How A Water Softener Operates


(https://youtu.be/F7u0zFr1srQ)And this video by Pentair Water referencing the Fleck 5600 (https://www.youtube.com/watch?v=eQ8pLDUHc_8)

Products [3]

\$4.00

Hardness Drops with Iron and pH levels - Test Kit Professional Method (test2401.htm) \$175.00

ADD TO CART (ADD_CART.ASP?QUICK=1&ITEM_ID=2250&CAT_IADD470 CART (ADD_CART.ASP?QUICK=1&ITEM_ID=2263&C/

Manual for Fleck 9000 Softener (fpm9000.htm)

\$10.00

 ${\it Copyright~2021~Softener parts.com.~All~Rights~Reserved.}$

Q Search

Home (/) > DIY Repair Guides (/diy_repair_guides) > How A Water Softener Works (/how_a_water_softener_works) > Average Salt Amount - Normal Water Level (/salt_water_levels)

Average Salt Amount - Normal Water Level

The amount of salt needed to properly recharge a water softener is mostly based on the amount of resins being recharged. 3/4 cu.ft. resin = 6 - 9 lbs.

1 cu.ft. resin = 8 - 10 lbs.

1.5 cu.ft resin = 12 - 15 lbs.

Typically,

8 lbs. of salt for 8" x 44" tanks,

9 lbs salt for 9" x 48" tanks,

and

12 lbs. salt for 10" x 54" tanks is average.

If there is a lot of iron (over 2 ppm)

or if the water is really hard (over 30 grains),

then 2 - 4 lbs. extra should be used.

So, an average residential system will use 6 - 12 lbs of salt per regeneration at least once a week.

Very hard water, or water high in iron, may require regenerating every 2 or 3 days.

The result is you will be using at least 30 - 40 lbs. of salt per month if hardness is not too high, or amount of water used low.

Well water (usually very hard and often containing iron) will commonly require using 80 - 120 lbs. of salt per month.

Simply multiply the pounds of salt per regeneration times the number of regenerations in a month to calculate your monthly average usage.

P.S. If you run out of Salt, don't expect to have soft water after a few days. And it may take more than one regeneration to get the water feeling soft again once you've added salt.

I recommend keeping the salt level above the water level in your Brine Tank.

When you start seeing the water level (normally between 6 - 12 inches) then it's time to think about adding more salt (40 - 120 lbs.).

QUESTION:

Does it matter which type of salt is used? Pellets or solar salt crystals? Is one better than the other?

ANSWER:

Either will work.

Recommend the solar salt crystals as they dissolve 100%, as opposed to the Pellets that leave an un-dissolved residue in the bottom of the brine tank. And this residue builds up until it clogs the flow of the brine water in and especially, out of the salt tank, requiring that the tank be dumped, emptied, and re-filled with new salt (plus 4 gallons new water) every 1 - 2 years on average.

Below is a photo of a "Starved" softener

-- These "crums" under the water are not going to DISSOLVE enough (or at all if "old") to make a strong "brine solution" to Recharge the RESINS (the **KEY to Soft Water (/how_a_water_softener_works)**).

In simplest terms:

The Control Valve should be adding 3 - 4 gallons of water at the end of regeneration process (Brine Refill). A level of 6 - 12 inches, depending on the amount of salt in the brine tank, and the shape of the brine tank (square or round).

During Brine Rinse (long 50 minute cycle), the valve should suck out the 3 - 4 gallons of water in about 20 minutes (less than 1/4 gpm), and once water level drops to the last couple of inches of the salt tank, the "air check" will close off, to prevent any "air" from getting sucked into the Valve. The Brine Rinse (slow suction and slow rinse) will continue for another 30 minutes, as it slowly rinses the salt water through the Resin Tank, allowing it to Recharge the Resin beads.

How Much Water Should be in Salt Tank Video

(https://www.youtube.com/watch?v=DmJhc8dMP0U)What type of Salt to Use Video (https://www.youtube.com/watch?v=ZkgGVCwHc2I)

How A Water Softener Works (/how_a_water_softener_works)

Sodium Levels in Water when Softened (/sodium_in_water)

NOTE: Have the names for System Saver II, Rust Remover, and Solar Salt changed?

Yes, System Saver II has been renamed Clean and Protect and Solar Salt has been renamed Pure and Natural. Rust Remover has been renamed Clean and Protect plus Rust Remover and has been reformulated to not only remove 15 time more iron then plain salt but also extend appliance life. Also, the artwork has been updated for all of the products.

Products [3]

(Cleaner--Rus

_p_2405.html)

Cleaner - Rust Out Resin Cleaner (Cleaner--Rust-Out-Resin-Cleaner_p_2405.html) \$3.59 Cleaner - Sani-System Liquid Sanitizer Concentrate Water Softeners (ss24n-c7000.htm) \$4.00

ADD TO CART (ADD_CART.ASP?QUICK=1&ITEM_ID=2405&CAT_ID=2699) TO CART (ADD_CART.ASP?QUICK=1&ITEM_ID=2250&C/

(Cleaner--Soften

er_p_2406.html)

Cleaner - Softener Mate Resin Cleaner (Cleaner-Softener-Mate-Resin-Cleaner_p_2406.html) \$3.50

ADD TO CART (ADD_CART.ASP?QUICK=1&ITEM_ID=2406&CAT_ID=269)

ACCREDITED Since Nov 2008
As of 200/2024
Citch for Profile
Rating: A+ Rating:

Copyright 2021 Softenerparts.com. All Rights Reserved.

Q Search

Home (/) > DIY Repair Guides (/diy_repair_guides) > How A Water Softener Works (/how_a_water_softener_works) > Frequency of Regeneration - How Often? (/frequency_of_regeneration)

Frequency of Regeneration - How Often?

There is no simple formula, as there are many "variables" that must be considered when "setting" a water softener valve regeneration frequency.

First is the "quality" of the water you are treating, and then amount of water to be used (number of people in household),

What is the **hardness level** of your water before any filters? (grains per gallon or ppm) What is the **iron level (if any)** of your water before any filters? (ppm = Parts Per Million) What is the **pH level** of your water from the source (before any filters)?

How many people use the water in your home?

And the **last variable is the CAPACITY or Amount of RESINS** in the media tank. Common Tank Sizes and Amount of Resins Inside

8" x 35" 0.64 cu. ft. (20,480 grains)

8" x 44" 0.75 cu. ft. (24,000 grains)

9" x 35" 0.75 cu. ft. (24,000 grains)

9" x 40" 1.00 cu.ft. (32,000 grains)

9" x 48" 1.00 cu. ft. (32,000 grains)

10" x 35" 1.00 cu. ft.(32,000 grains)

10" x 40" 1.00 cu .ft. (32,000 grains)

10" x 44" 1.25 cu. ft. (40,000 grains)

10" x 54" 1.50 cu. ft. (48,000 grains)

12" x 52" 2.00 cu. ft. (64,000 grains)

13" x 54" 2.50 cu. ft. (80,000 grains)

Then, it's a question of whether your valve is a simple "day timer" (operating on the days you "SET"), or a metered "demand" timer, that counts and tracks the amount of water used.

For an example of the "math" or calculations of "capacity" between regenerations, I'd refer you to this article about how to figure the gallons setting on the mechanical FLECK Metered valves, see:

How to Set Meter Program Gallons (/setting_econominder_program_meter_wheel)

And the last thing that matters somewhat is the amount of SALT used with each Regeneration,

****The amount of salt needed is mostly based on the amount of resins being recharged.

3/4 cu.ft. resin = 6 - 9 lbs. 1 cu.ft. resin = 8 - 10 lbs. 1.5 cu.ft resin = 12 - 15 lbs.

Typically,

9 lbs for 8 - 9 inch diameter resin tanks, and 12 lbs. of salt for 10" tanks is average. If there is a lot of iron (over 2 ppm) or if the water is really hard (over 30 grains), then an extra 2 - 4 lbs. of salt per regeneration should be used.

COMMON Frequency of Regeneration

A typical residential system will use 6 - 12 lbs of salt per regeneration at least once a week. Very hard water (over 30 grains), or water high in iron (over 1 ppm), may require regenerating every 2 or 3 days.

The result is you will be using at least 30 - 40 lbs. of salt, and more common you will be using 60 - 100 lbs. of salt per month.

P.S. If you run out of Salt, don't expect to have soft water after a few days.

And it may take more than one regeneration to get the water feeling soft again once you've added salt.

I recommend keeping the salt level above the water level in your Brine Tank.

When you start seeing the water level (normally between 8 - 12 inches) then it's time to think about adding more salt (40 - 120 lbs.).

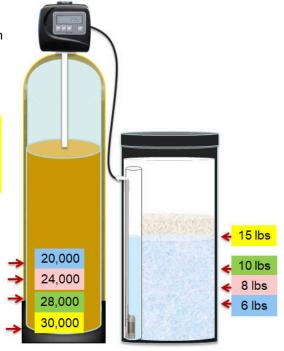
Here is a photo of a "Starved" Brine tank (only a few Pellet "crums" under lots of water). You want the water to be covered by the salt, not the other way around.

Understanding Water Softener Capacity

A Brief Excerpt from our Clack Seminar

Cation Exchange Water Softeners have a Maximum Hardness
Removal Capacity, depending on the amount of Softening Resin which
has been loaded into the Mineral Tank, and the amount of SALT used
during each **Regeneration**.

Increasing the amount of **Salt (Brine)** used to Regenerate the Resin Bed, will increase the amount of **Capacity Recovered**, per cubic foot of Resin, but will **Decrease** the **Efficiency** of the Water Softener.


Variable (Brine) Dosages for a 9X48 - One Cubic Foot Water Softener

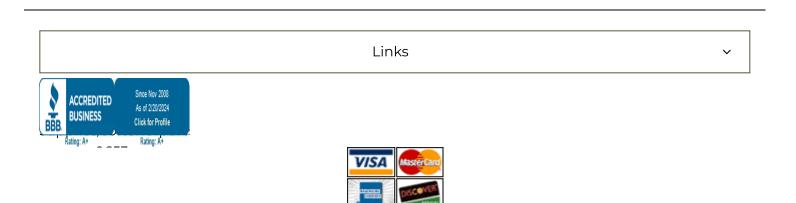
- 3 Lbs. of salt will dissolve into 1 gallon of water.
- Regenerating @ 15 lbs. SALT per Cubic Foot of Resin will yield 30,000 grains capacity.
 - 15 Lbs. of salt will require the softener control valve to fill the brine tank with 5 gallons of water.
 - Equal to 2133 grains per lb. of SALT
- Regenerating @ 10 lbs. SALT per Cubic Foot of Resin will yield 27,000 grains capacity.
 - 10 Lbs. of salt will require the softener control valve to fill the brine tank with 3-1/3 Gallons Of Water.
 - · Equal to 2700 grains per lb. of SALT
- Regenerating @ 8 lbs. SALT per Cubic Foot of Resin will yield 24,000 grains capacity.
 - 8 Lbs. of salt will require the softener control valve to fill the brine tank with 2-2/3 gallons of water.
 - Equal to 3000 grains per lb. of SALT
- Regenerating @ 6 lbs. SALT per Cubic Foot of Resin will yield 20,000 grains capacity.
 - o 6 Lbs. of salt will require the softener control valve to fill the brine tank with 2 gallons of water.
 - Equal to 3333 grains per lb. of SALT

****MOST EFFICIENT****

In the programming of the control valve you can check the **Brine Tank Refill** time setting or the **LBS of Salt** setting, to be sure you have the proper **Salt Dosage** programmed into the control valve.

Be sure the proper **Injector** is installed in the control valve. To verify the correct injector for the system size, refer to the attached Clack Valve Injector Chart. (https://nelsencorp.us9.list-manage.com/track/click? u=c010013afc1b663fba36a7b25&id=d9246dd60e&e=fbf46dc7bf)

Be sure the proper **Drain Line Flow Control Button** (DLFC) is installed in the control valve and that the button is installed in the correct orientation, the rounded bevel edge is facing the water flow from the control valve to the drain.



Products [1]

Cleaner - Sani-System Liquid Sanitizer Concentrate Water Softeners (ss24n-\$4.00

ADD TO CART (ADD_CART.ASP?QUICK=1&ITEM_ID=2250&CAT_ID=268)

G.4 CORROSIVE WATER

Corrosion and Soft Water

By Joseph F. Harrison, PE, CWS-VI; Duane Nowlin, PhD, St. Paul Minnesota

Excerpted from WQA's Corrosion QuickCourse™

CORROSION

The metals used in plumbing systems are rarely found in nature in forms that are directly useful, by humans. Instead, they exist as ores, stable mineral compounds with chemical and physical properties quite different from those of the pure metals. To make these minerals useful, they must be processed using the electrochemical methods to reduce the ores to elemental metals.

This reduction of ores is necessary because elemental plumbing metals are not inherently stable. With time and exposure to the natural environment, the elemental metals are converted to the more stable mineral compounds. This action - corrosion - changes the chemical and physical properties of the metals, frequently destroys the usefulness of a metallic article or structure, and is a completely natural process.

Thus, corrosion has been defined as the natural reversion of a metal to an ore.

CORROSION CHEMISTRY

Although the corrosion chemistry of each metal differs in details, the general principles apply to most of the commonly used metals. Thus, the reactions of iron in the following examples illustrate these basic principles.

Water is widely recognized as a solvent for virtually all materials. When water and iron are in contact, a few molecules of iron go into solution with a reaction which leaves a few electrons behind in the mass of metal. If no other factors are involved, however, this reaction would stop, for the charge of electrons developed in the metal would inhibit further reaction. The loss of metal into the water can be discharged.

Free hydrogen ions found in all water, to at least some extent, provide a means of removing the excess electrons from the mass of metal. The electrons and the hydrogen ions react to first form atomic hydrogen, and then molecular hydrogen gas. As the hydrogen forms, it too tends to inhibit further corrosion by forming a very thin gaseous film at the surface of the metal. This "polarizing" film can be effective in reducing water to metal contact and, thus, in reducing corrosion. Yet, it is clear that anything which breaks down this barrier film tends to increase the rate of corrosion.

Dissolved oxygen in the water will react with the hydrogen, converting it to water, and destroying the film. High water velocities tend to sweep the film away, exposing fresh metal to the water. Similarly, solid particles in the water can brush the hydrogen film from the metal.

Other corrosion accelerating forces include high concentration of free hydrogen ions (acid water) which speed the release of the electrons, and high water temperatures that increase virtually all chemical reaction rates. Thus, a variety of natural and environmental factors can have significant effects on the corrosion rate of iron, even when no other metals or special conditions are involved.

ELECTROLYTIC CELLS

It is rare that a plumbing system contains nothing but simple, pure iron. Electrolytic cells of various types are common in most systems.

The galvanic cell, set up when dissimilar metals are in contact with each other and with conductive water, generates electricity. The flow of electrons created by such a cell accelerates the corrosion of iron in contact with copper or brass, for example, by stimulating the flow of electrons away from the iron.

Clearly, it is difficult to eliminate all dissimilar metals in a plumbing system. Yet, even if this were possible, minor impurities in the iron could create galvanic cells. Such impurities are present in all commercial grades of plumbing materials, for they are difficult to remove at reasonable costs.

Differential aeration cells, created when the dissolved oxygen concentration varies between adjacent areas on iron, have similar reactions and effects. Such conditions can develop under scale or rust, at rivets, joints or crevices, or under deposits of organic matter such as slimes or iron bacteria. Thus, a partially coated surface may actually accelerate this type of corrosion.

In some circumstances, even temperature or stress variations between adjacent sections of a common metal can create electrolytic cells. Stray electric currents, sometimes caused by breakdowns of electrical systems grounded to plumbing, can cause major corrosion where the current leaves the pipe and a special form of electrolytic cell is created.

Corrosion and Soft Water

continued from page 18

CORROSION ACCELERATORS

As indicated above, at least some corrosion will occur whenever a metal is exposed to water, and a number of factors will accelerate corrosion. These include:

- Low pH Acid waters clearly accelerate corrosion by providing a plentiful supply of hydrogen ions. Although even absolutely pure water contains some free hydrogen ions, free carbon dioxide in the water can multiply the hydrogen ion concentration many times. When carbon dioxide dissolves in water, it reacts with the water to form carbonic acid, a so-called weak acid, but an effective source of acidity. Even more acidity is sometimes encountered in acid mine waters, or in those contaminated with industrial wastes.
- Dissolved oxygen This gas works to destroy the
 protective hydrogen film and to oxidize dissolved iron to
 an insoluble form. Deposits of rust in a plumbing
 system can form differential aeration cells and accelerate corrosion.
- High mineral concentrations The electrical conductivity of water increases with its dissolved mineral concentration. Thus, highly mineralized waters readily conduct the electrical currents of electrolytic cells and accelerate this type of corrosion.
- 4. Water temperatures High water temperatures not only accelerate the chemical reaction of corrosion, but also may reverse normally protective systems. For example, zinc galvanizing protects iron or steel at normal temperatures by "plating" a protective deposit over exposed iron at a pit or break in the zinc coating. However, at temperatures above 160° F., the iron will attempt to deposit on the zinc, thus creating a deep pit or hole where the iron is exposed.
- 5. Other physical factors, including high flow velocities; solid particles in the water, and deposits on metal surfaces may cause or accelerate corrosion.

CORROSION IN HARD AND SOFT WATER

From the above, it is clear why many natural waters have strong corrosive activities. In sections of New England and the far Northwest, much of the underground strata is granite which has very low solubility, does not neutralize natural carbon dioxide concentration, and has little on dissolved oxygen. Thus, groundwaters in these areas are corrosive because of the acidity due to carbon dioxide and the dissolved oxygen present.

Sections of the southeastern states, where much of the underground structure is organic matter, have waters, which are low in minerals and oxygen, but high in carbonic acid derived from decaying organic matter. The corrosive nature of these low hardness waters is well established.

At the other end of the range are many waters found in the Southwest, where extremely high hardness and mineral concentrations are common. Although usually alkaline in nature, these waters have high electrical conductivities, and in arid regions, may have high dissolved oxygen concentrations. Thus, these highly mineralized waters are known to be extremely corrosive, but for different reasons than the naturally soft, acid waters.

The lowest rates of corrosion are usually found with well waters of moderate mineral concentrations in limestone regions. Such waters have little dissolved oxygen, and the natural carbon dioxide has been largely neutralized by the alkalinity dissolved from the underground minerals. The conductivity is relatively low, so galvanic corrosion is not serious under usual circumstances. This water is found in wells over most of the Midwest.

Surface water supplies frequently follow the trends of water quality of groundwaters in a region, but usually have lower mineral concentrations because of the dilution effects of rain and snow. However, surface waters are almost always saturated with dissolved oxygen from the air, and this element often produces serious corrosion.

Thus, it is evident that all water is corrosive to the metals in plumbing systems to at least some degree, and that both naturally soft and naturally very hard waters can produce high corrosion rates.

CORROSION IN SOFTENED WATER

The removal of hardness with an ion exchange water softener does not affect the factors which cause or accelerate corrosion. Softening does not change the pH or carbon dioxide concentration, the dissolved oxygen concentration, or the total chemical concentration of minerals. A softener may reduce the amounts of solid particles in the water, but obviously cannot change other physical factors such as temperature, flow rates through pipes, or volumes of water used. Thus, ion exchange softening neither causes nor controls corrosion.

Unfortunately, certain methods of calculating the probable corrosive potential of natural waters have been misapplied to softened waters, with misleading results. The Langelier Index, and some of its modifications, may be used to indicate whether or not particular water will precipitate calcium carbonate scale at a given temperature. This information certainly is useful to those responsible for operating many systems.

Corrosion and Soft Water

continued from page 19

Further, when applied to natural waters, these methods of calculation may indicate that when such an excess of carbon dioxide over alkalinity exists in the water, the precipitation of calcium carbonate would be impossible. Such excesses of carbon dioxide clearly make waters strongly corrosive, as demonstrated by the low pH waters found in New England and the Northwest.

These methods, however, should not be applied to water softened by ion exchange since there is no real chemical similarity with the naturally soft acid water. The removal of calcium by a softener obviously prevents scale formation. Yet, as indicated above, it does not change either the carbon dioxide content of the water or the natural alkalinity which tends to neutralize the carbon dioxide. Thus, softening will not make a water more acid or affect the other corrosion accelerating factors.

Some persons argue that the precipitation of calcium carbonate scale will protect the metals from corrosion. While some scales are capable of such protection, other scales are porous or soft, and thus, nonprotective. Further, it is rare that scale formation is uniform, for the heaviest scale usually forms at points of heat transfer and at low points in a system. In a water heater, for example, most scale forms at the bottom where heat is applied, while the top of the heater tank may show little or no scale. Thus, even in hard, scale-forming waters, thousands of water heaters fail every year due to corrosion. Examinations of these heaters usually show that corrosion has occurred under or through the scale or in locations where protective scale has not formed. Thus, it is clear that corrosion protection is not assured simply because a water will precipitate calcium carbonate, as indicated by various calculations or test methods. Further, none of these methods take into account the effects of dissolved oxygen, water flow velocities, the presence or absence of solid particles, the volume of water through the system, or other environmental factors which affect the rate of corrosion.

As stated by Schneider and Stumm of Harvard University; 1

"It is a commonly accepted belief that the corrosive behavior of a natural water is influenced predominantly by pH and calcium carbonate saturation (frequently expressed by the Langelier Saturation Index). The results of extensive studies involving both field and laboratory investigations indicate that this concept presents an oversimplified picture of the problem. As corrosion in natural waters depends on so many interdependent variables, no simple equation or index is capable of describing adequately the corrosive potential of a water, and no generally applicable recipe for appropriate corrective treatment can be given."

CORROSION CONTROL PROCEDURES

When corrosion does occur in a water supply, several corrective treatments are useful in reducing the corrosion rate. Clearly, the best method is to prevent water to metal contact, and a number of coating and plating procedures are used for this purpose. Yet, these methods are not always possible or economically feasible, and a number of chemical treatments have been developed to condition the water to reduce the corrosion rates to reasonable levels.

In industrial systems or where the water will not be used for human consumption, oxygen scavengers are frequently used to reduce this corrosive gas in the water. High concentrations of "passivating" chemicals are common in reticulating systems because of the inhibiting effects. Yet, neither of these approaches are applied to water used in households because of the possible toxic effects of the chemicals, and because some make the water unsuitable for general household use producing heavy stains or discolorations.

Thus, corrosion control methods for municipal and household water systems are currently limited to two approaches; neutralization of acidity with alkaline materials, and the feeding of small amounts of chemicals, which tend to line the water system with protective films.

Calcite (calcium carbonate) and magnesia (magnesium oxide) filters have long been used to neutralize household acid waters. As water flows through beds of these minerals, the acidity dissolves enough of the filter media to produce essentially neutral water. Other installations use chemical solution feeders to introduce solutions of soda ash (sodium carbonate) or caustic soda (sodium hydroxide) to the water in proportion to the acidity, producing a neutral or slightly alkaline water. Some municipal systems use lime (calcium hydroxide) to increase alkalinity and pH. Several types of polyphosphates and silicates may be fed into water systems for corrosion control. In some cases, slowly soluble forms are fed with "pot"type feeders, while in others solutions are fed with chemical solution pumps. Both the silicates and polyphosphates tend to form thin films on the interior surfaces of the plumbing, thus reducing the water to metal contact. Feeds should be essentially continuous, however, to form and maintain the protective films.

References:

¹ Schneider, Carl R. and Stumm, Werner: "Evaluation of Corrosion in Distribution Systems." Journal AWWA May 1964, pp. 621-631.

No! The removal of hardness does not effect corrosion.

Water is an essential resource that we rely on for various purposes, including drinking, cooking and cleaning. However, the quality of water can vary depending on its source, and in some cases, it may contain minerals that can cause problems like limescale buildup in pipes and appliances. To combat this issue, many people turn to water softeners, which remove the mineral content to create softened water. While softened water has its benefits, there has been ongoing debate about whether it can potentially be corrosive.

How does a water softener work?

Water softening involves the removal of "hardness minerals" such as calcium and magnesium ions, which are responsible for limescale formation. The process typically uses an ion exchange resin, which traps the calcium and magnesium ions and replaces them with sodium ions, resulting in softened water.

Doesn't salty water cause corrosion?

Some people express concerns that softened water may be corrosive due to the increased sodium content. The idea is that the higher levels of these ions in softened water could lead to accelerated corrosion of metal pipes, fixtures, and appliances, potentially causing damage and increased maintenance costs.

What do studies actually show?

- pH Levels: Softened water generally has a slightly elevated pH level due to the presence of sodium ions. This mildly alkaline will actually lessen corrosion to some extent as it creates a protective layer on the metal surfaces, hindering the progression of corrosion.
- Reduced Hardness Minerals: By removing hardness minerals, water softeners also eliminate one of the primary catalysts for corrosion. The absence of calcium and magnesium ions decreases the potential for limescale buildup and reduces the likelihood of corrosion caused by these minerals.
- Sodium Content: Although the increased sodium content in softened water may raise concerns, it is important to consider the concentration levels. In most cases, the amount of sodium added during water softening is not significant enough to cause significant corrosion issues.

So is softened water corrosive?

After looking at all of the evidence above, it can be concluded that softened water, when properly treated, does not pose a significant risk of corrosion. While the slightly alkaline nature of softened water can provide a protective layer on metal surfaces, the absence of hardness minerals and the relatively low levels of sodium make it unlikely to cause extensive corrosion damage. However, as with any water treatment method, it is crucial to consider individual circumstances and consult professionals, such as your local AIWSE member when necessary.

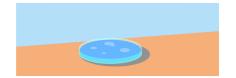
Remember, if you have concerns about water quality or potential corrosion, it is best to consult with your local AIWSE member who can assess your species situation and provide appropriate recommendations.

CLICK LINK FOR FILE.

Paul Webb

HAS WORKED IN WATER TREATMENT, PLUMBING AND CONSTRUCTION THROUGHOUT HIS CAREER.

3 Ways Not To Waste Money on Water Softeners What Water
Softener Is The
Best?


Can I Drink
Softened Water?

Testing the Waters

Our Experts Have You Covered

North West North East Yorkshire and the Humber East Midlends West Midlands London South West South East

Contact the AIWSE

Copyright © 2020 AIWSE. All rights reserved.

Greg Reyneke

Water Quality Improvement Professional

Soft Water Not For Drinking? – Is Softened Water Corrosive?

An end-user forwarded a link to me last week and she had lots of concerns...

She saw it on a website for a company touting a "salt-free" softener/scale control system. Naturally the salt-free company was using the material to "bash" softened water and ion exchange softening systems in general...This is a common tactic employed by uneducated and sometimes even unethical people. She is in the process of purchasing a <u>Crusader Twin Analyst Softener</u> from her plumber and she wants to make sure that her buying decision is a wise one; the concerns raised by the article caused her to rethink even wanting to soften her water at all.

Hard water contains calcium and/or magnesium ions. These ions make soap hard to lather, giving hard water its name. For water to be called "soft", it must be devoid of these hardness ions. There is a significant difference between "naturally soft" water and "ion exchange softened" water.

Naturally soft water is water that generally tends to be aggressive, since it has no significant buffering mineral content to begin with. Naturally soft water usually contains carbonic acid (derived from carbon dioxide), tending to lower the pH of the water, which contributes to corrosive conditions and

can cause significant problems in homes, business, and industry. Since naturally soft water is so potentially detrimental, many people will recommend adding calcium/magnesium hardness to water to protect from corrosion. When water is acidic, it makes logical sense to add hardness to balance the pH and raise the total alkalinity to protect from corrosion. This is the essence of the <u>Langlier Saturation Index (LSI)</u>, which essentially draws a correlation between calcium hardness, and water's tendency to be "corrosive" or scaling".

Some well-intentioned, but uneducated people feel that keeping water "hard" is the safest for building operations and possibly even for human consumption. This is a counter-intuitive approach, since hardness can cause issues like scaling and soap interference; and water hardness is comprised of inorganic minerals, not the organic minerals that the human body requires for proper nutrition. Scaling can be addressed in a number of ways, including novel technologies like Next ScaleStop without actually removing it from the water. The calcium/magnesium hardness will still interfere with soap though and still be present to cause issues when evaporated.

Hard water scale used to only be considered an aesthetic issue, but in today's climate of energy efficiency and environmental sensitivity, one would be foolish to overlook all the benefits of softened water.

Softened water can:

- Reduce the energy costs to heat water
- Reduce the amount of soap/detergent required to clean clothing
- Reduce or eliminate the use of dishwasher rinse-aids
- Reduce or eliminate the use of harsh chemical cleansers
- Minimize bacterial growth in washing machines
- Prolong the working life of faucets and fixtures
- Prolong the working life of appliances like dishwashers, steam irons, humidifiers, washing machines and ice makers
- Prolong the working life of water heaters and boilers
- Lower the overall carbon footprint of a home or business

There are a number of ways for hardness to be removed/isolated from interfering with soap:

- Evaporation/distillation (potentially corrosive)
- Sequestration (generally not corrosive)
- Membrane Separation (potentially corrosive)
- CDI/EDI (potentially corrosive)

• Ion exchange softening (generally not corrosive)

A water quality improvement process can only be called "softening" if it physically removes of completely sequestrates the hardness ions to a level at or below 1 grain per gallon (17.1ppm). All methods of softening (except sequestration and ion exchange) will remove both the hardness ions as well as the buffering carbonates attached to them, and that is where the potential for corrosion can begin. Without buffering alkalinity, softened water can become corrosive, especially if it contains dissolved carbon dioxide.

The most cost-effective method currently is simple ion exchange, where calcium and/or magnesium ions are exchange with sodium or potassium ions to form relatively benign byproducts like sodium carbonate and sodium bicarbonate which contribute to the taste and feel of ion-exchange softened water. Langlier's hypothesis is accurate until one brings ion exchange softening into the equation. Ion exchange softening doesn't remove the carbonates and bicarbonates from the water, thereby not making the water more acidic or corrosive. Once this principle is understood, you can see the significant difference between "naturally soft" and "ion-exchange softened" water.

Ion exchange softened water is not generally corrosive. Why do I say "generally"? – In certain conditions, if the conductivity of the water is already high, such as water with 30 gpg (grains per gallon) of hardness or higher, the softening process will contribute enough sodium/potassium to the water that is becomes very conductive which can indeed accelerate galvanic corrosion reactions.

So what does this mean? – Softened water is safe, softened water is generally good for the environment, softened water is good for your home, softened water is good for your business, and softened water is very good for your pocketbook.

An article was published back in 2006 by the Nashville Water district. It is obvious the the city of Nashville didn't have all the facts and the article was probably posted by an over-zealous employee who was missing some information. The WQA acted swiftly to address the issue and published the following:

http://wqa.org/sitelogic.cfm?ID=850#2000anchor

"Each year, WQA communicates with cities, regulators, newspapers, and other media to correct misinformation about our industry's products and services. In January 2006, the focus turned to Nashville, Tennessee. Their Metro Water Services department posted false and misleading information about consumption of softened water on its Web site. WQA contacted the agency in writing, refuted the article's claims, and requested the misinformation be removed from the Web site. After receiving no response, an article was published in the January 2006 issue of WQA Industry Update. That WQA article was later picked up by another publication, which further directed the spotlight on Nashville's Metro Water Services. As a result, the public information officer for the water agency pulled the article. She has since asked her staff to work WQA to clear up any misleading or inaccurate information about softened water. WQA members: If you are dealing with a municipality unat is

making false or misleading statements about water softeners or other technologies, contact WQA immediately, and we will work to correct the information."

This is just another good reason to join the WQA if you haven't already done so.

Here's the original article for your entertainment:

"Soft water is neither healthy nor desirable for drinking! If you were a steam iron or a washing machine it would be great, but we are neither! There are good reasons you should not be drinking soft water!

Water is a universal solvent. Most materials, especially metals, are partially soluble in water. If that water is heated or softened it becomes much more aggressive at leaching metals from water lines. Lead in soldered joints and copper in pipe are particularly vulnerable and these are two of the heavy metals which shouldn't be present in significant amounts in your drinking water.

WATER HARDNESS

Calcium and magnesium are two minerals which make water "hard." Both of these minerals are classed as "contaminants," but that's a poor choice in terminology, for calcium is essential in our diet! A softener merely exchanges one group of non-toxic elements for another group of non-toxic elements. Water hardness is measured either in grains per gallon (GPG) or as calcium hardness in milligrams per liter (mg/l) or parts per million (ppm). GPG is based on calcium hardness. To convert from calcium hardness ppm, just divide by a factor of 17.2 and this gives you hardness in GPG. A soft or slightly hard water has up to 3.5 GPG; moderately hard water runs from 3.5 to 10.5 GPG; and very hard water is greater than 10.5 GPG. If your water is over 7 GPG, you might want to consider a softener just for the laundry.

Metro water is on the low side of moderately hard at 4.1 GPG (that is 70 mg/l of calcium hardness. This is an excellent value and highly desirable! Cities which have soft water are having difficulty meeting the new lead standards in tap water. Metro has had none of these difficulties in meeting the new standards!

SOFT WATER

A soft water is aggressive at leaching metals (like lead) from your lines and faucets. Most faucets are solid brass (with a relatively high lead content) and are chrome plated. This means that if you have soft water, there is a great chance that your initial drawing of cold water will have a higher lead content than normal. Hot or warm water from the tap should never be used for cooking, shortcuts, drinking water, beverages, or infant formula as it could be higher in heavy metals like lead!

WATER SOFTENERS

Besides making the water more corrosive and aggressive at leaching metals from your lines and fixtures, the zeolite beads from water softening systems may back-siphon into your toilet tanks, and the soft water may attack vital plumbing parts. While supposedly solving one set of problems, the softener could possibly introduce other problems which you may or may not be aware of! A water softener, besides leaching lead and other metals from your plumbing, can increase your sodium intake. In a water softening device hard water flows through synthetic resin beads. Sodium ions (salt) are loosely attached to each bead and the water exchanges hardness ions (calcium and magnesium) for the soft sodium ions. These devices can also be costly to run since they can waste up to 120 gallons for every 1,000 delivered.

A water softener is not designed (nor is it effective) to remove lead and other metals, chlorine, taste/odor compounds, nor chlorine by-products. Its purpose is only to make a hard water soft. Water treated to remove chlorine may encourage the formation of black rings in toilet bowls!

IN CONCLUSION...

Soft water is great for laundry, bathing, steam irons, and auto batteries, but definitely not for anything else. If you are contemplating installing a softener, there are serious questions you should ask: who will test the effectiveness of the softener, how often will these tests be run, and how will my drinking water quality be affected?

Metro Water Services does not test any home water treatment device, including softeners, and does not recommend the use of particular devices!"

Crazy article, huh? – It's no small wonder that Nashville city quickly removed the article after it was brought to their attention by water industry professionals. Unfortunately, it's contents have been repeated by a few other sites and the mistruths live on...

Categories: General, Opinions, Tutorials

Tags: acid, calcium, conditioner, corrosion, distillation, nanofiltration, reverse osmosis, sequestration, utah, water, water softener, wga

NEW DELHI'S "SUPERBUGS"

COMMON PESTICIDES DISRUPT CRUCIAL HUMAN HORMONES

11 Replies to "Soft Water not for Drinking? – Is softened water corrosive?"

Missy Siegrist

November 2, 2012 at 1:58 am

Calscium is really necessary for the formation of strong bones and nails. ..

Nicky Peil

February 27, 2013 at 7:04 am

Calcium is the most abundant mineral in the body and is necessary for proper muscle contraction, blood vessel health, hormone and enzyme production and the transmission of nervous system impulses, according to the Office of Dietary Supplements. Supplements of calcium are usually in the forms of calcium carbonate and calcium citrate — the calcium salt of citric acid. Though both are well-absorbed, calcium citrate can be taken at any time, with or without food, whereas calcium carbonate needs the production of stomach acid and food intake for absorption.,

My own webpage

<.http://www.healthmedicinecentral.com/heart-skipping-beats/

Mark

November 12, 2016 at 8:24 pm

Hi Greg,

Thank you for this article! I was in the same state of mind after seeing that article from the city of Nashville. I feel confident about our decision in purchasing an ion exchange water softener. We have city water here in the Cincinnati area. Several seller's of water softening systems tell us we should have a carbon filter installed in line prior to the softener. My concern here is that a carbon filter would remove the chlorine added to the water that, in my understanding, is designed to kill/prevent bacterial growth. I'm concerned there a greater possibility of bacteria growth in the resin tank and leading to biofilm in our water lines. Is this a misguided concern?

We are planning on having a 50 micron sediment filter before the water softener. We will have a separate cold water line that will run to the kitchen cold water side of the facet and outdoor bibs. We plan to use potassium rather than salt.

Thank you for your informative site!

GregNovember 14, 2016 at 4:39 pm

Hi Mark, thank you for the kind words.

Dechlorination is a good suggestion to protect a water softener's resin from oxidative damage. You're right though in that there is a potential for bacterial growth downstream without the residual chlorine.

From reviewing <u>Cincinnati's Consumer Confidence Report</u>, it looks like their total chlorine level typically averages around 1ppm. Chlorine at this level can indeed reduce the softening resin's usage life to degree dependent on the crosslinkage of the resin (lower x-linkages will degrade faster and higher x-linkages will be slower). Their Total Trihalomethane level (TTHM) is averaging around 45 ppb as well, so I would certainly want to at least dechlorinate and remove the disinfection byproducts with Activated Carbon. Some tips for protecting yourself properly, would be:

- 1. Prefilter at 100 micron to protect the moving parts downstream.
- 2. Dechlorinate with either a high flow cartridge, or (preferably) a self-backwashing carbon filter designed with antibacterial (bacteriostatic) components like KDF-55.
- 3. Purchase a softener that includes a day override feature (most electronic controllers have this) to ensure that it will flush at least once a week to minimize the potential of bacterial growth.
- 4. Utilize an antibacterial treatment in your brine tank to protect from the growth of halophilic bacteria in the brine, as well as disinfecting the 9

when it regenerates.

5. Install an Ultraviolet (UV) sterilizer after your softener to disinfect the water as it passes downstream.

Most importantly, have your water system installer disinfect their installation as well as your downstream piping when they perform the installation to ensure that you have a clean start.

Eric

August 29, 2019 at 12:44 pm

Hi Greg,

Thank you very much for your informative article. I'm in Southern California and I'm planning to install a water softener as well and I'm wondering if I'd need to follow your advice above for Mark? I'm also planning on installing a carbon filter prior to the softener as well. I've attached the link to the city's water report from 2018, thank you very much in advance!

 $\underline{https://static1.squarespace.com/static/51c9af85e4b0ba13e3125d7c/t/5d5eca5e6e782d00015fcedf/1566493279632/2018+SSWC+CCR.pdf}$

Greg

August 29, 2019 at 7:43 pm

Hi Eric,

On your water supply, the recommendations to Mark would be applicable.

According to the CCR, the water supply has not violated any microbiological limits, so a UV certainly isn't mandatory. If you'd like extra protection, the UV will be relatively cheap peace of mind for you.

Good luck, and I hope that you enjoy your water!

Eric

September 13, 2019 at 12:35 am

Thanks Greg, can you recommend a self-backwashing carbon filter with antibacterial properties? Thank you!

Eric

June 1, 2020 at 10:24 pm

Hi Greg,

Is there a way to "reduce" Chlorine but NOT remove all of it to make sure it's still doing it's job inside the house which is to disinfect the waterline?

Right now I'm thinking of just installing a Cotton sediment filter before the water softener and NOT install a carbon filter so that I don't have to worry about bacterial growth in the waterline? What do you think?

Greg

June 11, 2020 at 6:49 am

Hi Eric,

A cotton (cellulose) sediment filter can promote bacterial growth, so definitely do not dechlorinate before it.

Yes, you could reduce the chlorine and not remove it entirely by using a blending valve around your chlorine filter.

Bear in mind that it will blend back chlorine and disinfection byproducts at the same time, so it is not ideal.

One approach that works very well is to remove the chlorine and disinfection byproducts followed-up with an Ultraviolet sterilizer to ensure protection from waterborne bacteria. If your water softener is rated for the level of incoming chlorine, then removing chlorine after the softener would help to keep the softener sanitary.

Eric

June 11, 2020 at 8:22 am

Hi Greg,

Thanks for your reply! Are you suggesting that a GAC filter in place of sediment filter may be better?

Eric

June 11, 2020 at 8:28 am

I don't want to go with an Ultraviolet sterilizer due to cost concern, thank you!

Leave a Reply

CATEGORIES

- Corrosion
- Dealer Dynamics
- General

News • Opinions • Rainwater • Tutorials **TAG CLOUD** conditioner <u>aquatech</u> <u>bacteria</u> <u>business</u> <u>calcium</u> <u>california</u> <u>cdc</u> <u>chlorine</u> corrosion <u>arcsa</u> **Dealer Dynamics** <u>lead</u> <u>legionella</u> disinfection <u>drought</u> <u>EPA</u> <u>filter</u> <u>fleck</u> <u>health</u> <u>IAPMO</u> <u>nanofiltration</u> proflow **NGWA** <u>nsf</u> <u>ozone</u> <u>pentair</u> <u>PFAS</u> **PFOS** <u>pollution</u> proguard <u>rainwater</u> reverse osmosis <u>pwqa</u> <u>salt</u> <u>sustainability</u> ultrafiltration water softener <u>well</u> wellwater <u>utah</u> wastewater <u>water</u> <u>wqa</u> <u>wcp</u> <u>wqrf</u>

LINKS

• Crusader Water

• Groundwater

- PWQA
- Utah Water
- WQA

ARCHIVES Select Month

Copyright © Greg Reyneke All Rights Reserved | Mega Blog by Theme Palace

Home » 2019 » Water Softeners and Corrosion

2019

Water Softeners and Corrosion

MARCH 15, 2019 ③ 14 MINS READ **f** Facebook

■ Twitter

in LinkedIn

By Bryanna Poczatek and Eric Yeggy

This article aims to address the common misperception that cation-exchange water softening causes corrosion. This is not the case: a properly configured water softener does not make the treated water more corrosive. Here are a few confusing facts that often lead people to this erroneous conclusion. First, naturally soft water is typically corrosive. Therefore, softened water must also be corrosive, right? This is a fallacy because naturally soft water tends to be corrosive due to low pH and low TDS, while cation-exchange softening causes neither of these conditions.

Second, calcium carbonate scale is often cited as a form of corrosion control and since softeners prevent the formation of scale by removing calcium and magnesium, they must therefore cause corrosion, right? Again, this is a fallacy. Despite a lack of scientific evidence supporting the premise that calcium carbonate scale forms a uniform protective layer that protects consumers from lead or copper corrosion, this practice continues to be referenced as a form of corrosion control.

People in Flint, MI began complaining about the water quality shortly after the city began using the Flint River as source water. Ironically, the state responded by blaming the complaints on the high level of hardness in the Flint River water.1 Obviously, the hardness did not protect anyone in Flint from lead corrosion. Below we will examine these misconceptions in more detail and review the science related to softeners and corrosion. But first let's take a closer look at corrosion.

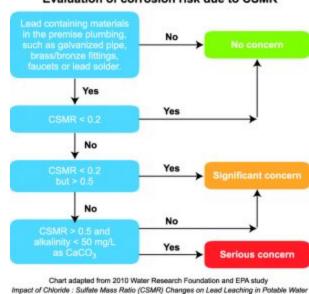
Impacts of corrosion

Corrosion is a natural process in which a material is degraded by the environment, sometimes to a more stable chemical state through oxidation or reduction reactions. This is a big problem in water distribution systems where metal pipes are continuously being corroded. Corrosion can cause many undesirable

effects in plumbing. The physical effects of corrosion include leaks, color in the water and on surfaces, sediment and particulate in the water, taste and odor issues, and physical failure of the pipes.2

Corrosion can also cause dangerous byproducts to be released into the drinking water. Two of the most common corrosion byproducts in plumbing systems are lead and copper; both have serious health implications. Lead can enter the drinking water by being corroded from lead service connections, lead solder used in copper piping or brass/bronze fixtures. Children are the most at risk for the dangers from lead as they absorb 40-50 percent of the lead they ingest, while adults only absorb around 3-10 percent. Pregnant women are also at high risk of lead poisoning. Possible health effects from ingesting lead include low birth weight, developmental delays, lower IQ, damaged hearing, reduced attention span, kidney damage and reproductive damage.2,3

Copper is another common byproduct of corrosion. Copper is essential to human health, however, too little or too much is unhealthy. Copper combines with proteins to produce enzymes that act as catalysts for various body functions. It is important that copper is consumed daily as the body is unable to synthesize copper. Yet when too much is ingested, copper poisoning can occur. Symptoms of copper poisoning include stomach distress, intestinal distress, liver and kidney damage and complications of Wilson's disease (a genetic disorder that causes copper to accumulate in the liver, brain and other organs).2


Accelerators of corrosion

Corrosion is an inevitable, natural process that occurs in all metals exposed to water with dissolved salts. There are many complex factors that accelerate corrosion; however, common corrosion accelerators include the following.2

- 1. High velocity and/or turbulence
- 2. High temperature
- 3. Low TDS
- 4. Dissimilar metal contact
- 5. Low pH
- 6. Carbon dioxide
- 7. Biofilm accumulation: microbially influenced corrosion
- 8. Chemical agents such as chlorine, chloramines and dissolved oxygen
- 9. An elevated chloride-to-sulfate mass ratio (CSMR)

High velocity and turbulence (lots of turns, or piping that is too narrow for the service flowrate) can accelerate the degradation of the pipe through mechanical erosion and cavitation. Erosion is the physical degradation of the pipe due to fast-moving turbulent water. Cavitation happens when water is moved quickly or suddenly forced in a new direction, leaving low-pressure voids that often appear as bubbles. As these low-pressure bubbles collapse, a shock wave is formed, which can damage piping and fixtures. Heat accelerates almost all chemical reactions and corrosion is no exception. Temperatures of over 70°C (158°F) especially increase the rate of corrosion. Water that has been completely demineralized (such as

Evaluation of corrosion risk due to CSMR

RO and DI water) is hungry for ions. This is what makes demineralized water—or water in which all TDS

have been removed—corrosive. For this reason, WQA recommends that common metal pipe and fittings (e.g., copper, galvanized, brass, bronze) should not be used downstream of a RO or DI treatment system. Softeners do not remove the TDS and do not cause this type of corrosion. A softener is simply capturing some cations (mostly calcium and magnesium) and releasing other cations in the process (usually sodium or sometimes potassium).

The use of dissimilar metals in the plumbing can lead to galvanic corrosion. Direct contact between dissimilar metals will initiate the formation of a galvanic cell, which is created whenever two different types of metal are conductively connected to each other, and then immersed in an electrolyte such as water. Within the galvanic cell, the more anodic metal will be corroded and an electrical current is created because of the process. A common example of this is when galvanized pipe is directly connected to copper pipe. It is also worth noting that while using a brass fitting to bridge the gap between galvanized and copper pipe will not accelerate this galvanic activity, it also will not completely prevent it.4,5,6 Dielectric couplings can be used to mitigate this direct contact between the dissimilar metals. A dielectric coupling contains an insulating material that physically separates contact between the two metals.

The deposition of scale can also create mini-galvanic cells. Scale does not exist as a homogeneous layer. Microscopic examination of scale deposits has revealed that as scale accumulates, different types of metals can be incorporated into the scale. These different types of metals that are present in the scale are conductively connected and act as galvanic cells in miniature.

Low pH also increases the corrosiveness of water. pH is the measure of hydrogen ion activity in a solution and is used to express the intensity of the acidity of a solution. Solutions with a low pH (< 7) are acids; solutions with a high pH (> 7) are bases. Acids are compounds that release hydrogen ions, which oxidize the metals in pipes, accelerating corrosion. Carbon dioxide will potentially contribute to the formation of carbonic acid, thereby making the water more corrosive. The presence of high levels of carbon dioxide tends to correlate with specific geologic conditions.

Another common accelerator of corrosion is biofilm accumulation, which causes microbially influenced corrosion (MIC), a form of localized corrosion. Bacteria attach to a surface of a pipe, colonize and grow, forming a biofilm. The biofilm is nutrient-dense and resistant to disinfectants such as chlorine. MIC is a complex phenomenon and biofilms influence corrosion in a multitude of ways. Theories on the mechanisms involved include increasing electron transfer, destroying the surface protective film layers, changing the redox potential of pipe surfaces and creating acidic corrosive substances.7

Certain chemicals (such as chlorine, chloramine and dissolved oxygen) can also make water more corrosive. For example, the presence of oxidizing agents such as dissolved oxygen can cause metals to lose electrons and lead to corrosion.

Another common cause of corrosion is removal of sulfate, and/or addition of chloride, referred to as an elevated CSMR. Increasing the CSMR will accelerate corrosion in the presence of materials that contain lead. A July 2007 paper published in the *AWWA Journal*, "Chloride-to-sulfate mass ratio and lead leaching to water," summarized this effect as follows: "While sulfates inhibit corrosion by forming passive protective film layers and reducing galvanic currents between dissimilar metals, chlorides prevent the formation of such passive layers and stimulate galvanic current."8 If the source water contains natural levels of chloride and treatment is installed to remove sulfate, this will push the CSMR up and potentially accelerate corrosion. Another way that the CSMR could be elevated is by improper configuration of a softener with inadequate rinse time. If salt remains in the softener bed after regeneration, due to inadequate rinse time, the chloride in that salt will drive up the CSMR and potentially accelerate corrosion.

The potential risk caused by the CSMR can be evaluated in this way. If there are materials in the premise plumbing that contain lead (such as galvanized pipe, brass/bronze fittings, faucets or lead solder) and the CSMR is at or above 0.2, there is a significant risk of corrosion and lead exposure for the customer. If there are materials in the premise plumbing that contain lead and the CSMR is > 0.5 with an alkalinity < 50 mg/L as CaCO3, there is a serious risk of corrosion and lead exposure.9

Common misperceptions about softened water and corrosion

One of the factors that causes people to erroneously conclude that cation-exchange softened water is more corrosive than hard water is the erroneous assumption that naturally soft water is similar to cation-exchange softened water. Naturally soft water and softened water are different in many ways. Naturally soft water is very corrosive. It is commonly found in surface waters of the Pacific northwest, New England and the southeastern US. It is corrosive because it has a low pH and low TDS. Cation-exchange softening does not lower the pH (might slightly raise it, making water less corrosive) and does not lower the TDS.10

Another common misperception is that calcium-carbonate scale is an effective form of corrosion control. There is a lack of scientific evidence supporting this claim, however. Scale does not form in uniform homogeneous layers that would protect pipe from corrosion. Scale can be porous or soft and is highly irregular. Corrosion can still occur under conditions that are favorable to the formation of hard-water scale or even when hard-water scale is already present.

Research studies on softeners and corrosion

Many research studies have investigated the effects of cation-exchange softened water on corrosion. One such study, "Leaching of Metals from Household Plumbing Materials: Impact of Home Water Softeners," was conducted by the US EPA National Risk Management Research Lab. Their objectives were to evaluate metal leaching from metallic pipes and faucets and determine any changes of the critical chemical characteristics of the water passing through the water softener that would accelerate the rate of corrosion. Two different water qualities were used in the study: lime-softened finished tap water with a hardness of 160 mg/L and groundwater with a hardness of 300 mg/L. The researchers concluded there is no evidence that ion-exchange softened water systematically produced higher metal levels than the non-softened waters under otherwise identical conditions.10

Another study done by the British Standards Institute for the UK Water Treatment Association examined the corrosivity of natural hard water versus ion-exchange softened water against a range of metals, including aluminum, mild steel, copper, brass and stainless steel. Two identical model central water-heating systems were installed and removed after one, three and six months for determination of corrosion rates, using visual inspection and chemical analysis. This study concluded there was no significant difference in the corrosion rates for brass, copper, mild steel and stainless steel between the two rigs. There was initially a higher rate of corrosion of aluminum from ion-exchange softened water, but this decreased continually over time.11

A third study done at the METALogic research institute in Belgium, "In situ corrosion investigation on the effect of hard and softened water to domestic copper and galvanized steel drinking water systems," investigated the long-term effects of ion-exchange softened water on corrosion. Four representative domestic drinking-water installations were used: two for the behavior of copper corrosion and two for the behavior of galvanized-steel corrosion. The corrosion rate was measured after six and 12 months. Analysis also included measurement of the pH, redox potential, conductivity and hardness. These researchers did not find any evidence that corrosion in copper or galvanized steel pipe is more severe when in contact with softened water compared to hard water.12

Conclusion

Corrosion is a complex phenomenon and there are many factors that accelerate corrosion in the drinking-water distribution system and premise plumbing. For years, there has been confusion surrounding cation-exchange softened water and corrosion, making it important to distinguish between naturally soft water and cation-exchange softened water. Naturally soft water is corrosive as it has a low pH and low TDS; however, cation-exchange water softening does not contribute to any factors that accelerate corrosion. Also, there is a lack of scientific evidence supporting the claim that hard-water scale is an effective form of corrosion control. Thus, considering all these factors, as well as results from research studies, WQA's position is that a properly configured cation-exchange water softener does not make water more corrosive.

References

1. "State says Flint River water meets all standards but more than twice the hardness of lake water," *Michigan Live*, January 17, 2015.

https://www.mlive.com/news/flint/index.ssf/2014/05/state_says_flint_river_water_m.html.

- 2. Reyneke, G. (2017, May 17). "Key Concepts in Corrosion Chemistry and Treatment." Lecture presented at the 2017 WQA Convention & Exposition in Orange County Convention Center, Orlando, FL.
- 3. CDC. (2007). "ToxGuide for Lead." Retrieved from https://www.atsdr.cdc.gov/toxguides/toxguide-13.pdf.
- 4. Edwards M., Clark B., Cartier C., St. Clair J. Triantafyllidou S., Prevost M. (2013). "Effect of connection type on galvanic corrosion between lead and copper pipes," *Journal AWWA*.
- 5. St Clair, J., Cartier, C., Triantafyllidou, S., Clark, B. and Edwards, M. (2016). "Long-Term Behavior of Simulated Partial Lead Service Line Replacements." *Environmental Engineering Science*, 33(1), 53-64.
- 6. Welter G., Giammar D., Wang Y., Cantor A. (2013). "Galvanic Corrosion Following Partial Lead Service Line Replacement." *Water Research Foundation*.
- 7. Sand, W. (1997). "Microbial Mechanisms of Deterioration of Inorganic Substrates A General Mechanistic Overview." *International Biodeterioration and Biodegredation*, 40(2): 183-190.
- 8. Edwards, M. and Triantafyllidou S. (2007). "Chloride-to-sulfate mass ratio and lead leaching to water," *Journal AWWA*.
- 9. Nguyen, C. K., Stone, K., Clark, B., Edwards, M., Gagnon, G. and Knowles, A. (2010). "Impact of Chloride: Sulfate Mass Ratio (CSMR) Changes on Lead Leaching in Potable Water." *Water Research Foundation*. 4088.
- 10. Sorg, T., Schock, M. and Lytle, D. (1998). "Leaching of Metals from Household Plumbing Materials: Impact of Home Water Softeners." *United States Environmental Protection Agency*.
- 11. Munn, P. (2012). "Results from testing corrosivity of hard and softened water in model central heating systems at BSI, Loughborough." Midland Corrosion Services Ltd.
- 12. Verdonckt, C. and Nijs, C. (2007). "In situ corrosion investigation on the effect of hard and softened water to domestic copper and galvanized steel drinking water systems." METALogic.

About the authors

Bryanna Poczatek is the Technical Affairs Coordinator at the Water Quality
Association. She joined the association in 2016 as an Associate Project Leader in the
Product Certification Department. In early 2017, Poczatek transferred to the
Technical Affairs department and works alongside Director Eric Yeggy on various
technical projects. Poczatek represents the industry as a voting member of the Water
Equipment & Policy Research Center Industry Advisory Board, funded through the
National Science Foundation (WEP IUCRC). She also participates in numerous industry committees and
task forces through NSF International and other organizations. Prior to joining WQA, Poczatek worked as
a Project Coordinator for Syngenta Crop Protection LLC and as a Research Assistant in the Biochemistry,

Biophysics and Molecular Biology Department at Iowa State University. She holds a Bachelor's Degree in biology from Iowa State University.

Eric Yeggy is the Technical Affairs Director for WQA; he joined WQA in 2009. Yeggy represents the industry as a voting member of the ASPE Plumbing Standards

Committee and the IAPMO We-Stand Committee, as well as participating in numerous industry committees and task forces through NSF International and other organizations. He plans and coordinates the activities of the WQA Water Sciences

Committee and the WQA Industry Research Committee. Yeggy also serves in a voluntary role as the Scientific Consultant for the Water Quality Research Foundation (the WQRF). Prior to joining WQA, he began his career in the environmental testing industry where he gained a wide range of experience in analytical chemistry and managing quality systems. Yeggy holds a Bachelor's Degree in chemistry from the University of Northern lowa.

About the organization

WQA is a not-for-profit international trade association representing the residential, commercial and industrial water treatment industries. More information is available on corrosion accelerators through WQA's educational materials. Core and Premier members can also contact the WQA Technical Affairs department and request the latest research on these corrosion accelerators. The association's position paper on this topic can be obtained by contacting the authors in the WQA Technical Affairs department.

corrosion	Water softeners			
SHARE.		f	y	in

RELATED POSTS

Total Dissolved Solids Limits for Effective Softening

FEBRUARY 1, 2024

Lead in Drinking Water: Why Home Water Filtration Is More Critical Than Ever

Delivering Safe Drinking Water in Cape Fear, North Carolina

Industry Spotlight: Five Generations and More Than a Century of Service

FEBRUARY 1, 2024

FEBRUARY 1, 2024

ADD A COMMENT

Magazine

Latest Issue

Features

Profiles

New Products

Global Spotlight

People

Classifieds

WC&P Index

Topics

Carbon Filtration

Coolers/Bottled Water

Water Reuse/Harvesting	
Reverse Osmosis	
Follow Us	
y in	

AGUALATINOAMERICA.COM

Filtration

Ozone

Ultraviolet

Search ...

Water Softening

Groundwater

Ion Exchange

© 2024 Meliora Group LLC, All rights reserved. | Privacy Policy | Website services by Route 7 Media

SEARCH

Softening Water Does Not Increase Corrosivity

Water that has been softened by ion exchange, is sometimes misrepresented to be more corrosive due to the softening process. This is usually because it is incorrectly associated with naturally soft water. Hard water which has been softened, and naturally soft water, are very different.

Softened water and naturally soft water. The main constituents of hard water are calcium and magnesium together with bicarbonate, sulphate, chloride, nitrate. When the water is passed through an ion exchange water softener, the calcium and magnesium ions are replaced by sodium ions; the anions (bicarbonate, chloride, sulphate, etc.), and hence the alkalinity, remain unchanged.

Naturally soft water, on the other hand, contains very little dissolved solids; its pH is often low and buffering capacity is negligible. Hence, naturally soft water is often very corrosive to metals.

So ion exchange softened¹ water has not undergone any change which affects the parameters which might increase corrosivity², such as dissolved oxygen, pH, temperature, conductivity, chloride level, sulphate level, etc.

Historical Evidence. Water softeners have been used for many years. The technology dates back to 1903 when Robert Gans first patented the process. Softened water was necessary to protect steam engines against scale deposition in the engine boiler tubes. Similarly, water softeners have been used domestically since 1916 (link to advert – see below). For over 100 years, no specific mention, concern or requirements relating to increase in corrosivity have been found necessary for domestic or industrial softening applications.

The water softener industry, through trade associations such as the EWTA, UAE, Aqua Belgica, UKWTA and WQA, is alert to any operational issues which water softening may incur. Throughout the world, there is not one situation, of which these associations are aware, where water softening has been the proven cause of a corrosion failure. It should be borne in mind that the WQA (Water Quality Association, USA), with more than 2,400 members, represents about 50% of the world softener market.

The Misconceptions. Some boiler manufacturers are under the misapprehension that softened water is more corrosive. Situations have been encountered where a heating system has failed and the boiler manufacturer has negated its warranty because a softener was fitted to the premises. In all of these situations that have been investigated, the failure was eventually attributed to a cause other than softened water.

In addition, indiscriminate application of somewhat ageing prediction tools such as the Langelier Saturation Index, without taking account of more recent advances in the understanding of the factors that influence corrosion, can lead to misdiagnosis of corrosive conditions. The Langelier Index was developed to determine whether a water source is potentially scale-forming or scale-dissolving (agressive). Although it was not intended to be applied to softened or naturally soft water, its hypothesis was that a thin, uniform

¹ Note that water treated by reverse osmosis (RO) is termed demineralised because virtually all of the dissolved solids are removed. RO water is therefore corrosive to plumbing fittings and, for domestic applications, should only be fitted at point of use.

² Note: corrosivity and aggressivity are often confused; they are <u>not</u> the same. A corrosive water will attack metals and cause damage to plumbing systems. An aggressive water tends to dissolve scale (calcium carbonate) but is not necessarily corrosive.

layer of scale deposition can, under carefully controlled conditions, contribute to a protective barrier. However, in normal household plumbing applications, widely variable physical and chemical conditions render a deposit that is very variable in thickness, porosity, morphology, location, etc, such that reliable prediction of a beneficial effect is not possible. Deposition is usually restricted to the hottest parts of the boiler.

But, the scale can in fact exacerbate the corrosion problem in that formation of crevices, and/or bacteriological activity, can cause accelerated localised corrosion with consequent failure and property damage.

Investigation. Expert opinion has been sought internationally. NSF (National Sanitation Foundation, USA) provides an international testing and certification service for water treatment products and food. When questioned by WRc-NSF, its joint venture company in the UK, as to their awareness or possible concern about potential for increased corrosivity of softened water, its response (link to NSF reply) was that, in their international experience, they are not aware of any such issue and it would be addressed in product standards if they were necessity.

Chemical Inhibitors. Water treatment with a corrosion inhibitor is often advisable or necessary depending upon water quality parameters which are known to affect corrosion. In such circumstances, an appropriate inhibitor should be selected. Some inhibitors may increase the corrosivity of softened water and so selection should be based, not only on whether an inhibitor is required but whether the inhibitor is suitable for the quality of the water being used.

In the UK, chemical inhibitors are tested and certified by the BuildCert scheme which is operated by WRc-NSF (link to their website). The test process involves aeration procedures which result in displacement of carbon dioxide from the water and consequent rise in pH. This is significant with respect to aluminium as most aluminium components in a heating system will begin to corrode at a pH above 9. This evolution of carbon dioxide will not occur in a closed loop heating system because the carbon dioxide gas cannot escape (even in a vented tank system, the hot water is under the pressure head below the tank and the carbon dioxide is held in solution). Arguably, this challenges the representativeness of the test, but, even if it is over-excessive, an inhibitor which passes is more than capable of meeting the real-life conditions.

Definitive Experience. The predominant cation and anion in ion exchange softened water are usually sodium and bicarbonate, respectively, and sodium bicarbonate is used in closed circuit systems to assist in corrosion control by buffering (stabilising) the pH between 8.0 and 8.5.

Moreover, pitting corrosion of copper in hot water systems can be caused by localised deposits of iron, manganese or aluminium impurities in the water³. Ion exchange water softening will effectively remove these impurities at point of entry.

The positions of European trade associations (UAE, Aqua Belgica, UKWTA) and international (WQA) are clear and based on extensive experience and expertise.

_

³ Harfst F.H., (1998). Corrosion in copper pipes can be prevented., *Water Technology*, Vol. 22 No. 3.

Click below for these national position statements:

UAE Aqua Belgica UKWTA WQA

Laboratory Evidence. Tests have been conducted which have compared the corrosivity of hard water before and after softening. A study by the USEPA (United States Environmental Protection Agency) was undertaken between 1994 and 1996 comparing the corrosion and corrosive properties of hard water with that after softening by ion exchange⁴. The results showed no pattern of higher leaching from lead, copper, brass and galvanised materials nor significant deterioration in the water quality parameters that influence corrosion rate. Similar results were obtained from tests in Belgium (click here to view report on Belgian corrosion study).

BSI Study on Corrosion in Hard and Softened Water

During 2011, a study was conducted by BSI on behalf of the UKWTA to investigate any difference in corrosion between two heating systems set up in BSI laboratory in Loughborough (click here for the full report); one system filled with hard water and the other with base exchange softened water. Each system was identical and comprised a gas fired boiler with 10 radiators and was operated on a 2 hours on and 2 off cycle over 6 months. Each system was fitted with corrosion coupons. No inhibitors were used.

The overall conclusion was that there was no significant difference in corrosion observed between the system operating on hard water and the one operating on softened water. The initial corrosion rate of aluminium was higher, over the first few weeks, in the softened water system but settled to an insignificant rate with the formation of a protective layer. The corrosion rate of steel was less in the softened water but insignificant in terms of system life (100 years for 5 mm wall thickness). The corrosion rate of copper was 3 to 5 time higher in hard water than softened – but, again, insignificant in terms of system life. Similar, although even less significant, results were observed for brass and stainless steel. Examination of the radiators and boiler by sectioning showed no significant corrosion for either system.

CONCLUSION Water softening by base exchange does not increase corrosivity.

.

⁴ Sorg T. J., Schock M.R. and Lytle D.A., (April 1998). Leaching of Metals from Household Plumbing Materials: Impact of Home Water Softeners, *USEPA*.

It pays for itself by saving 50% of Soap, 80% of Soda and 30% of Tea, and so gives you the precious boons of increased health and comfort for nothing.

UNITED WATER SOFTENERS LTD., Aldwych House, London, W.C.2

Technical Bulletin

Water Softeners

Models Affected: All

Pros of Owning a Softener:

A water softener is the most economical way of effectively dealing with very hard water. In hard-water situations, softeners will pay for themselves in several ways. In a gas water heater, a softener will prevent the buildup of scale, which can increase operating costs by as much as 29 percent. Once scale has built up, a higher temperature setting is required to keep the water at the temperature you want. Scale also can damage electric elements to short out regularly. Scale buildup can clog plumbing pipes and can cause bathroom toilets to flush sluggishly because of scale on the rim openings. Softeners also prevent calcium deposits, which can ruin the appearance of fixtures.

These are the practical reasons for buying a softener, but there are esthetic ones, too. Shampoos and soaps don't lather or clean as well with hard water. Therefore, hard water requires the use of more soap, fabric softeners and conditioners, which can add up to an estimated 20 percent of each dollar you spend at the supermarket. At that rate, it wouldn't take long to offset the \$20-a-month cost required to rent a softener and keep it in salt. Finally, you will spend less time scrubbing spots from fixtures, shower doors and tiles.

The Cons of Owning a Softener:

The reasons mentioned above are good arguments if you have very hard water. If your water tests at only 7- to 12- grains hardness, then softeners begin to appear to be a foolish investment; they are expensive pieces of machinery requiring maintenance, lots of salt and several hundred extra gallons of water per month.

Another reason not to install a softener might be personal preference. Some people simply do not like the feel of softened water. They have difficulty going from squeaky clean to slippery clean.

Softened water for drinking is another concern, especially for people on low-sodium diets, although the issue is a controversial one. Softened water is said to be low in chloride, and some tests suggest it is not the sodium that threatens health, but the chloride side of the sodium-chloride compound. A spokesperson for the American Heart Association reported that test results have been too conflicting to take an official stand in this matter.

One way around the problem is to isolate the hard-water lines connecting to the cold sides of the kitchen and bath faucets, since it is the cold water being used for cooking and drinking. If your home is not plumbed in this way, retrofit piping can be difficult and expensive to install. As a result, many softeners are connected to existing systems.

Technical Bulletin

A much greater health concern than sodium in he water is the presence of metals stripped from piping. Soft water is naturally more corrosive than hard water. The Environmental Protection Agency (EPA) noted this fact in a recent ruling banning lead-based solders in residential plumbing systems. EPA tests showed that soft water is likely to leach lead from lead pipes and lead-soldered joints, thus posing a threat of low-level lead poisoning.

Study by the Gas Institute

Another study, conducted by the Gas Institute, found that softened water accelerates the depletion of anode rods in water heaters. Anode rods ordinarily keep heater tanks from rusting for five years. When the life of an anode is shortened, the life of the heater is as well.

Finally, there is the problem of brine disposal. Some sanitation officials are worried about the effects of salt on sewage treatment. For instance, certain counties in California and Michigan, plus the entire state of Connecticut, have banned the purge of softener brine into public sewers.

Softener owners in these areas must contract to have their brine collected periodically. The problem is that affordable collection is likely to be too infrequent. With softener resin becoming depleted every three to six days, a collection every two weeks, for example, would leave softener effectiveness severely impaired at least one week out of the two.

Choosing a Softener

If you decide to buy a softener, do lots of comparison shopping, and do not overlook the idea of buying a used softener. Softeners last 15 years on average, and used models offer up to 50 percent in savings. Many used models come with warranties.

The two types of softeners prevailing on the market today are those with demand regulating valves and those having nondemand valves. Nondemand water softeners are controlled by timers and are naturally less efficient because they automatically purge the resin tank with brine at a set time, whether you have processed enough water to warrant a purge or not.

Demand softeners feature more efficient control valves that use flow meters, resistance sensors or hardness sensing probes within the resin. Flow meters are more efficient than timers, however models with sensing probes are best.

Sensing probes are able to detect an ion or resistance imbalance and trigger recharging based on actual need. These softeners accommodate the daily fluctuations in water hardness and volume. If you live in a regulated area, demandactivated models may be required in order to meet efficiency standards.

Technical Bulletin

Nondemand models are less expensive and usually start at \$500. Demand models are likely to exceed \$800 and may cost as much as \$1,600. Check the efficiency rating of each model. If you feel you would like a softener, but are not sure, consider a rental. Most rental plans offer consumers a buy-out option after six months.

Sizing the Softener

Other factors influencing price are warranty coverage and unit size. Sizing is very important and should be estimated with care. To make an estimate, start by assigning 75 gallons of daily water use to each member of your family and adding the total for one day. Then multiply this figure by the grain hardness of your water.

Finally, multiply the result by three, which gives you the minimum capacity needed. Most softeners can process 20,000 to 30,000 grains of hardness between purges. You will need to size your softener so that it can handle at least a three-day supply of water.

If you have any questions or concerns related to water softeners, contact our Product Service & Support Department immediately at:

1-800-999-9515

G.5 RECOMMENDED HARDNESS LEVEL

Water Hardness in Treated Water

Communities in Fox Valley

Н	a	r	d	n	е	S	5

Community	(GPG)	Average	Source	Notes
Kimberly	5-6	5.5		
Darboy	5-6	5.5	Lab Testing by Utility included in CCR	
Little Chute	7-8	7.5	Tested by KU personnel using testing equipment	
			Lab Testing by Utility confirmed via phone discussion with	
Wrightstown	9.1	9.1	Utility personnel	Estimates 90% of softeners were removed or bypassed
Appleton	4-5	4.5	Confirmed by WDNR personnel	Lime Softening
Freedom	7	7		Ion Exchange
			Lab Testing by Utility confirmed via phone discussion with	
Fox Crossing	1.7-3.1	2.4	Utility personnel	

Communities with RO System

Hardness

Community	(GPG)	Average	Source	Notes
			Lab Testing by Utility confirmed via phone discussion with	
Waupun, WI	4-6	5	Utility personnel	
			Lab Testing by Utility confirmed via phone discussion with	
Stanley, WI	6	6	Utility personnel	
			Lab Testing by Utility confirmed via phone discussion with	Raw water is 20 GPG, Blend 17%-20%, Gross Alpha main reason
Winneconne, WI	5	5	Utility personnel	for RO
			Lab Testing by Utility confirmed via phone discussion with	
Northfield, MN	5-6	5.5	Utility personnel	Manganese main reason for RO
			Lab Testing by Utility confirmed via phone discussion with	
St. Peter, MN	5	5	Utility personnel	Raw water is 24 GPG
			Lab Testing by Utility confirmed via phone discussion with	Raw water is 63-64 GPG, Blend 25%, 10.5 years on membranes,
Redwood Falls, MN	14-15	14.5	Utility personnel	use manufacturer specified chemicals

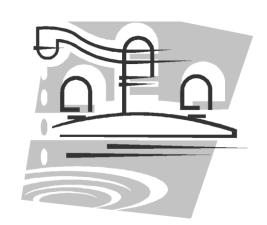
Water Hardness in Treated Water Data obtained from WDNR

Community	WDNR Data	Average	
Algoma	7	7	
Brillion	5.2-8.5	6.85	
Chilton	6.7	6.7	
Darboy	6-7	6.5	
Fox Crossing	2-4.8	3.4	
Freedom	2	2	
Kimberly	5-8.4	6.7	
Little Chute	6-13.5	9.75	
			Miscellaneous Water Systems
Bloomington, MN		5.2	
Waukesha		8	
Milwaukee		8	
Average	Hardness	6.4	

Homeowner's Package

Interpreting Drinking Water Quality Results

Identifying Problems and Solutions


INDIVIDUAL TESTS:

Bacteria - Coliform	1
Hardness - Total	2
Alkalinity	3
Conductivity	3
рН	3
Saturation Index	4
Nitrogen - Nitrate	4
Chloride	5

Using this fact sheet

This fact sheet is intended to help you interpret the results of commonly recommended analyses for drinking water from private wells in Wisconsin.

Some of these tests are important because they deal with health related contaminants; the other tests will tell you about important characteristics of your well water, such as how hard or corrosive it is.

Bacteria - Coliform

Coliform bacteria are microorganisms that are found in surface water and soil. This test is used as an indicator of the sanitary condition of your well. It is the most important test to perform on a well. A sanitary well should not contain any coliform bacteria.

While coliform bacteria do not usually cause disease, their presence in a water sample indicates a potential pathway for fecal wastes and other disease causing organisms to enter your well. If human or animal wastes are

Your result is either:

ABSENT = No coliform bacteria are present. Your water supply is bacteriologically safe. No further action is needed at this time. Consider testing your well again in a year for bacteria or sooner if you notice a sudden change in taste, color or odor.

or

PRESENT = Coliform bacteria are present; water supply is considered bacteriologically **unsafe**. *Until the* source of the problem is identified and corrected, we recommend using an alternative source of drinking water or boiling water for 5 minutes before using for drinking or cooking

contaminating the water, gastrointestinal diseases, hepatitis, or other diseases may result. If coliform bacteria is present, many laboratories will also test for *E.coli*, a type of fecal coliform. The presence

of *E. coli* in a water sample is more conclusive evidence of fecal contamination which represents an even greater health risk than the presence of coliform bacteria. (Continued on p. 2.)

Additional information about bacteria in wells:

In areas where fractured bedrock aquifers are overlain by thin soils, bacteria in a well may be the result of geologic conditions which do not allow for adequate filtration of water before reaching a well. You may suspect this if water suddenly changes color or odor following large rain events. For wells that are consistently contaminated with bacteria, disinfection may not solve the problem. In this case the best solution may be to drill a new well.

Bacteria – Coliform continued...

What should you do if coliform bacteria are present?

If coliform bacteria are present in a water sample we recommend carefully resampling to rule out sampling error.

If a second test confirms the original test, take corrective action outlined here:

- **1.** Check well for sanitary defects. Some common examples include:
- Well cap is loose or missing (well cap should be a vermin proof cap).
- Casing is cracked or rusted through, or casing does not extend 12 inches above grade.
- Inadequate grout (seal or fill around well casing).
- 2. After correcting any visible defects, disinfect with a dilute bleach solution using the procedure outlined by the Department of Natural Resources brochure entitled "Bacteriological Contamination of Drinking Water Wells".
- **3.** Test again after bleach dissipates to ensure that the procedure was effective.

Hardness - Total

Hardness measures the amount of calcium and magnesium in water.
Hardness is primarily caused by water slowly dissolving rocks that contain calcium and magnesium.

There are no health concerns associated with drinking hard water, however it is often undesirable because it can cause lime buildup (scaling) in pipes and water heaters. Hard water reacts with soap which can decrease its cleaning ability and hard water also causes build up of soap scum and/or graying of white laundry over time.

Some people that use hard water for showering may notice problems with dry skin.

Calcium and magnesium are essential nutrients, however drinking hard water is generally not a significant source of calcium and magnesium dietary needs.

Water that is naturally low in total hardness (referred to as soft water) may be corrosive.

Note the water softening industry measures hardness in grains per gallon. 1 grain per gallon = 17.1 mg/L CaCO₃.

Acceptable Results:

Total hardness is a test for overall water quality; there are no health concerns related to total hardness. Values near 150 mg/L are generally ideal from an aesthetic viewpoint. Water less than 150 mg/L are considered soft water while values greater than 200 mg/L are considered hard water.

Sources:

Primarily dissolved carbonate minerals from soil and rock materials. When carbonate minerals dissolve they increase the amount of calcium and magnesium ions in water.

Corrective Action for Hard or Corrosive Water

If you are experiencing problems with hard water:

• Consider softening water using a water softener. Softened water removes calcium and magnesium and replaces it with another cation (usually sodium). Many people choose not to soften the cold water tap used for drinking and cooking.

If you are experiencing problems with corrosion of household plumbing:

- Install a water treatment device (neutralizer) designed to make water less corrosive.
- Install plastic plumbing which will not develop pinhole leaks or leach metals.
- If you have a shallow well, drilling deeper may produce less corrosive water.
- Water allowed to contact unprotected metal plumbing for extended periods can dissolve unsafe levels of copper and/or lead. If levels of copper or lead in drinking water are a concern, run water for a few minutes before using for drinking or cooking.

Alkalinity

Alkalinity is a measure of water's ability to neutralize acids. It results primarily from dissolving limestone or dolomite minerals in the aquifer.

Alkalinity and total hardness are usually nearly equal in concentration (when they are both reported in mg/L CaCO₃ (calcium carbonate) because they form from the same minerals. If alkalinity is

much greater than total hardness, it may indicate that your water has passed through a water softener.

If alkalinity is much less than total hardness it may signify elevated levels of chloride, nitrate or sulfate.

Water with low levels of alkalinity (less than 150 mg/L) is more likely to be corrosive. High alkalinity water (greater than 150 mg/L) may contribute to

scaling.

Acceptable results:

This is a test for overall water quality. There are no health concerns related to alkalinity. The value should be roughly 75% to 100% of the total hardness value in an unsoftened sample.

Sources:

Primarily dissolved carbonate from soil or rock materials.

Did you know that your well water is actually groundwater?

Groundwater is water that occupies void spaces between soil particles or cracks in rock below the land surface. It is a local resource that originates as precipitation which infiltrates into the ground. The type of soil and bedrock that a well is drilled into often determines water's pH, saturation index, or the amount of hardness or alkalinity in water. The type of soil and bedrock in a region also determines how quickly contaminants can reach groundwater. Human activities are often responsible for elevated levels of contaminants such as nitrate and chloride.

Conductivity

Conductivity is a measure of the ability of water to conduct an electrical current. It is related to the amount of dissolved substances (or ions) in water, but does not give an indication of which minerals are present.

Conductivity (measured in umhos/cm at 25° C) is about twice the total hardness value (mg/L CaCO₃) in most uncontaminated waters.

Changes in conductivity over time may indicate changes in your overall water quality.

Acceptable results:

This is a test for overall water quality, there is no health standard associated with conductivity.

A normal conductivity value is roughly twice the total hardness in unsoftened water samples. If

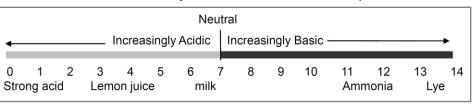
conductivity is much greater than two times the hardness, it may indicate the presence of other ions such as chloride, nitrate, or sulfate which may be human-influenced or naturally occurring.

Sources:

Natural or human-related dissolved substances in water.

рН

The pH test measures the concentration of hydrogen ions in a solution. The concentration of hydrogen determines if a solution is acidic or basic. A change of 1 pH unit is a 10-fold change in acid level. The lower the pH, the more corrosive water will be.

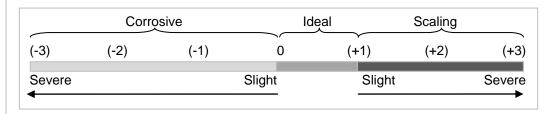

pH values are often slightly higher in the laboratory than at your well, because carbon dioxide gas leaves water when it is exposed to air.

Acceptable results:

There is no health standard for pH; however corrosive water (pH less than 7) is more likely to contain elevated levels of copper or lead if these materials are in your household plumbing.

Typical groundwater pH values in Wisconsin range from 6.5 to 8.5.

Sources: Low values are most often caused by lack of carbonate minerals in the aquifer.


Saturation Index

The saturation index is a measure of water's ability to corrode or form scale. It is calculated using values from pH, alkalinity, total hardness and conductivity tests.

A negative value indicates that water is likely to be corrosive, while a positive value indicates a tendency for scale (calcium carbonate) to precipitate (form a solid and settle out) from water.

Water is a good solvent and will attack unprotected metal plumbing. Corrosive water can sometimes have health implications if it causes elements like lead and copper from pipes and solder to dissolve into drinking water. Symptoms of corrosive water may include pinhole leaks in pipes or green stains in sinks.

Lime precipitate (scale) is a natural protection against corrosion. Too much scale, however, will plug pipes and water heaters thereby decreasing their efficiency. Water softeners are an effective form of treatment to prevent scale buildup but may also decrease protection from corrosion that natural water may have provided.

Acceptable results:

This is a test for overall water quality, there is no health standard associated with the saturation index.

Values between 0 and 1 are considered desirable. However the relationship between saturation index

and corrosivity/scaling is imperfect.

Because copper and lead are health related concerns you may still need to test your water to determine whether corrosion of these metals is occurring.

Sources:

Low values may be caused by lack of natural carbonate minerals in the aguifer. Low values also occur when hardness is removed with a water softener. High values relate to high water hardness and alkalinity.

Nutrient management is an important strategy to minimize nitrogen losses in areas where fertilizer use is the primary source of nitrate in groundwater.

Not only does it help improve our groundwater, it also improves fertilizer use efficiency.

Nitrogen-Nitrate

Nitrate is a chemical commonly found in agricultural and lawn fertilizer. It is also formed when waste materials such as manure or septic effluent a condition in infants which decompose.

Infants less than 6 months of age should not drink water (or formula made with water) that contains more than 10 mg/L of

nitrate-nitrogen. This is because of concerns related to methemoglobinemia (also called blue-baby disease), inhibits the bloods ability to carry oxygen. If not caught early and treated, this condition can be fatal.

Some studies suggest that high nitrate water may be

linked to birth defects and miscarriages, so pregnant women should also avoid drinking water over 10 mg/L.

The natural level of nitrate in Wisconsin's groundwater is less than 1 mg/L. Elevated nitrate levels can be an indicator of other

(continued on p. 5)

Nitrogen-Nitrate continued...

potential contaminants. If nitrate levels are elevated you may want to consider testing for pesticides if you know that they are used nearby.


Acceptable results:

The drinking water standard for nitratenitrogen is 10 mg/L. Water greater than 10 mg/L should <u>not</u> be consumed by infants less than 6 months of age or pregnant women. The WI Dept. of Public Health recommends people of all ages avoid long-term consumption of water with nitrate concentrations greater than 10 mg/L.

Less than 2 mg/L is preferred. If feed is also high in nitrate, problems for livestock may occur if the concentration of nitrate in well water is between 20-40 mg/L.

Sources:

Fertilizers, septic systems, animal wastes, land spreading of bio-solids.

Corrective Action for Nitrate

If possible, eliminate the contamination source. Unfortunately it may take years to observe any reduction in nitrate levels. As a result an alternative solution is usually necessary. Below are some actions that may reduce nitrate levels.

- Extending the casing depth, lowering the depth of the existing well, or drilling a new well *may* result in water with lower nitrate concentrations.
- Use bottled water for drinking and cooking.
- Connect to a public water supply if possible.
- Use a water treatment device designed to reduce nitrate levels.*
 *Only reverse osmosis (RO), distillation and anion exchange are treatment methods capable of reducing nitrate levels. When purchasing a water treatment device, only purchase those that have been approved by the WI Dept. of Commerce. Ask them to provide a copy of the product approval letter if you are unsure.

Chloride

In most areas of Wisconsin, chloride concentrations are naturally low. Higher concentrations usually indicate contamination from septic systems, road salt, fertilizer, animal waste or other wastes.

Chloride is not toxic, but some people can detect a salty taste when high levels of chloride are present. Water with high chloride may also have elevated sodium content. High chloride may also speed up corrosion in plumbing (just as road salt does to your car).

Acceptable results:

Chloride has no health standard. Levels less than 10 mg/L are desirable. Levels more than 250 mg/L

may cause a salty taste or corrosion of some metals. Sodium (which is sometimes found with chloride) may be a concern for individuals on physician prescribed "no salt diets".

Sources:

Septic systems, road salt, fertilizer, animal waste, landfills, or naturally occurring mineral deposits.

Water testing and units of measure:

Many minerals and contaminants in water are reported as concentration. When comparing test results to water quality standards it is important to check that you are comparing values with the same unit of measure. Some labs report nitrate concentrations as parts per million (ppm) while some use the term milligram per liter (mg/L).

1 mg/L = 1 ppm

Center for Watershed Science and Education

Trainer Natural Resources Building 800 Reserve St. Stevens Point, WI 54481

Phone 715-346-4270 Fax 715-346-2965 E-mail gndwater@uwsp.edu

Original Authors: Byron Shaw, Christine Mechenich and Jim Peterson

Revised July 2009 by Kevin Masarik

www.uwsp.edu/cnr/watersheds

Additional Information

The following websites contain more information on private wells and water testing:

Central Wisconsin Groundwater Center

www.uwsp.edu/cnr/gndwater/privatewells/index.htm

Wisconsin Department of Natural Resources

http://dnr.wi.gov/org/water/dwg/prih2o.htm

Other Useful Publications

Answers to Your Questions About Groundwater. DNR. PUB DG-049 2003

Bacteriological Contamination of Private Wells. DNR. PUB DG-003-2005

Better Homes and Groundwater. DNR. PUB-DG-070 2004

Choosing a Water Treatment Device. UWEX. G3558-5

Do Deeper Wells Mean Better Water? UWEX. G3652

Improving Your Private Well Water Quality. UWEX. G3826

Tests for Drinking Water from Private Wells. DNR. PUB DG-023-04REV

You and Your Well. DNR. PUB-DG-002 2003

For copies of **WI Department of Natural Resources (DNR)** publications please call (608)266-0821 or visit http://www.dnr.state.wi.us/org/water/dwg/pubbro.htm

For copies of **UW-Extension (UWEX)** publications visit http://learningstore.uwex.edu or call (877)947-7827.

The Wisconsin Geological and Natural History Survey has many excellent geology and groundwater resources including maps available from their office. If interested in what resources are available call (608)263-7389 or for a complete listing visit their website at: http://www.uwex.edu/wgnhs/pubs.htm

ENERGY SAVER

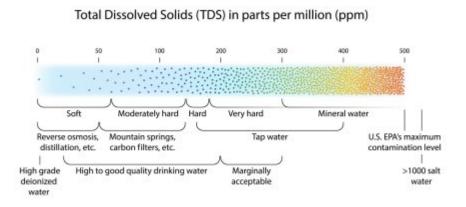
WATER

Understanding and Dealing With Hard Water

Energy Saver

Energy Saver » Water » Water Heating » Water Softeners » Understanding and Dealing With Hard Water

Hard water is a common phenomenon. While it poses no health risks, it affects the day-to-day life of the household in any number of ways. Dishes might emerge from the dishwasher polka-dotted with hazy white spots, fresh laundry can feel like sandpaper to the touch, and plumbing fixtures like faucets develop a chalky film.



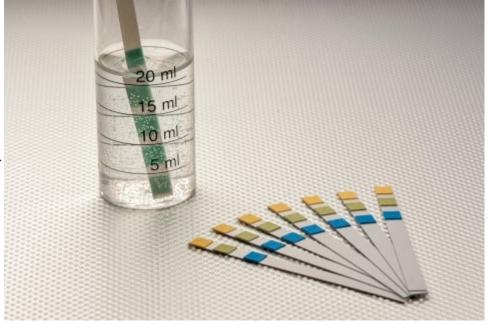
What Is Hard Water?

Before reaching the municipal supply, water absorbs mineral content from rocks and soil. Some of this content, like calcium and magnesium, are hard minerals that not only make soap less effective. They also gradually lead to limescale buildup, which, when it occurs within pipes, reduces water pressure and flow, and only gets worse over time. Hard water also negatively impacts the efficiency and lifespan of any appliance that requires water for operation. This might not be such a big deal for a coffeemaker, but it has the same effect on water heaters and refrigerators.

Water hardness or softness is measured using grains per gallon (gpg), where one grain is equal to 0.002 ounces of calcium carbonate dissolved in 1 gallon of water.

- 0–3 gpg is considered soft water.
- 3.5–7 gpg is considered moderate and ideal.
- >7.5 gpg is regarded as hard water and should be treated with a water softener.

Hard Water Solutions


With hard water, it pays to be proactive. Correcting a hard water problem can eliminate a slew of inconveniences as well as help prevent a variety of plumbing headaches that cost a bundle to resolve. Keep an eye out for the telltale signs of hard water, of course, but even better is to conduct a little research. Start by contacting the local municipality or water utility; many provide a free report detailing what's in the local water. Alternatively, purchase a water test kit at a local home center,

hardware store, or online retailer. If it turns out the water is hard, **purchasing a** water softener will correct the situation.

Water Testing

Different testing methods measure water hardness on different scales, either grains per gallon (GPG) or parts per million (PPM).

The question isn't whether or not water contains any calcium or magnesium, but whether concentrations of those minerals are high enough to affect the home's

plumbing. While trace amounts are to be expected, water with calcium or magnesium levels at or above 7 GPG or 120 PPM officially qualifies as hard. If it turns out that water tests as hard, follow the lead of other homeowners in the same situation and consider installing a water softener.

Subscribe to Energy Saver Updates

Subscribe to receive updates from Energy Saver, including new blogs, updated content, and seasonal energy saving tips for consumers and homeowners.

Enter Email Address

GO

Learn more

Office of Energy Saver

Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585

An office of

ABOUT ENERGY SAVER

ENERGY.GOV RESOURCES

FEDERAL GOVERNMENT

Web Policies • Privacy • No Fear Act • Whistleblower Protection • Notice of EEO Findings of Discrimination • Information Quality • Open Gov • Accessibility • Vulnerability Disclosure Program

What is the Ideal Water Hardness Level?

Water hardness is an important aspect of water quality that affects various aspects of our daily lives, from household chores to personal health. Understanding the ideal water hardness level can help you maintain the right balance in your water supply, providing numerous benefits for your home and family.

While there is no "perfect" water hardness level, soft water is generally considered to have a GPG (grains per gallon) of 0 to 3, or a PPM of 0 – 51. Anything that is higher than this is considered hard water, and you might need to use a water softener to help you.

If you want to remove dissolved minerals, such as dissolved calcium or dissolved magnesium, from your drinking water, you need to understand the water hardness scale and find the right water softener to help you.

Understanding Water Hardness and Dissolved Minerals

Water hardness refers to the concentration of dissolved minerals, primarily calcium and magnesium, in the water. These minerals are naturally present in the earth's crust and dissolve into groundwater over time. Hard water has a high mineral content, while soft water has a low mineral content. Water hardness is typically measured in grains per gallon (gpg) or parts per million (ppm) of calcium carbonate (CaCO3).

Effects of Water Hardness

Water hardness can have both positive and negative effects on your household and personal health. Excess calcium, magnesium, and other dissolved minerals may exert the following effects:

Positive Effects

Take the Quiz

- **Mineral Intake**: Hard water can contribute to your daily intake of essential minerals, such as calcium and magnesium, which are vital for bone health and overall well-being.
- **Taste**: Many people find that hard water has a better taste due to the presence of minerals.

Negative Effects

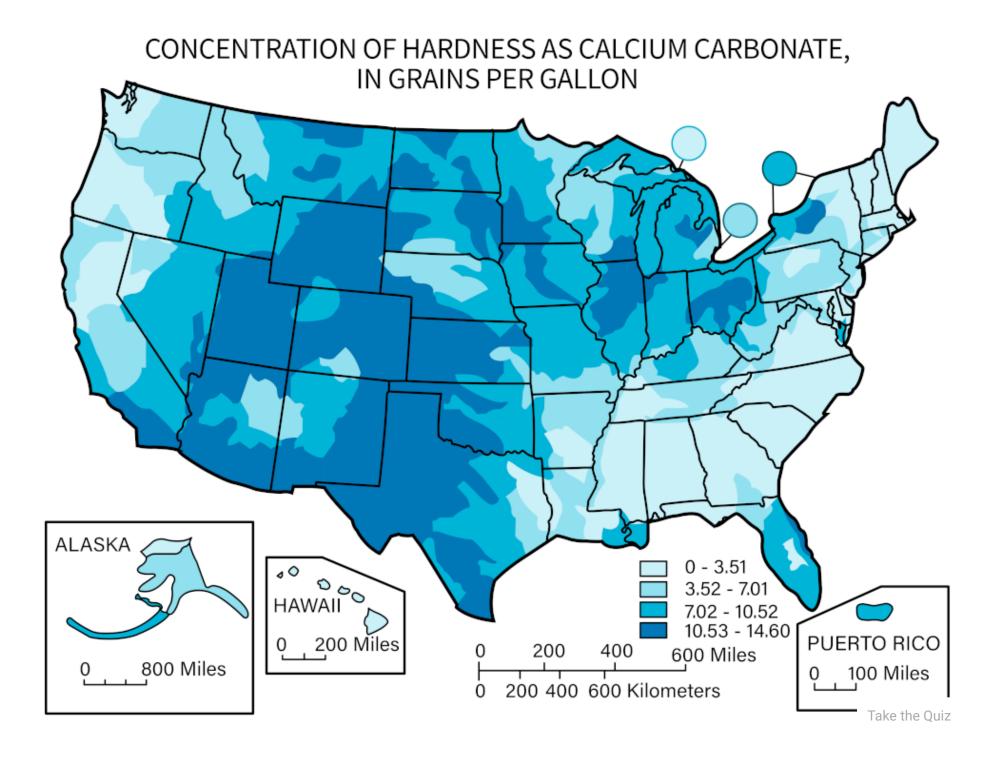
- **Scale Buildup**: The minerals in hard water can accumulate on surfaces and form scale deposits, which can cause damage to appliances, plumbing fixtures, and heating systems.
- Reduced Soap and Detergent Effectiveness: Hard water can react with soap and detergents, forming a residue that is difficult to rinse off. This can lead to dingy laundry, spots on dishes, and reduced cleaning efficiency.
- Skin and Hair Issues: Hard water can leave a residue on your skin and hair, potentially causing dryness, irritation, and dullness.

It is critical to understand the benefits and drawbacks to make sure you have the right water hardness level in your home.

Determining the Ideal Water Hardness Level: Measure Water Hardness

There is no universally agreed-upon ideal water hardness level, as different households and individuals may have different preferences and needs. You need to think about your overall water quality, alongside your hardness level, when you consider the health and efficiency of your plumbing appliances as well.

At the same time, a general guideline can be followed to determine a suitable water hardness level for most households:


Water Hardness Level	Grains per Gallon (gpg)	Parts per Million (ppm)
Soft Water	0-3	0-51
Moderately Hard Water	3-7	51-120
Hard Water	7-10	120-171
Very Hard Water	10+	171+

Water hardness levels

Most experts recommend aiming for a water hardness level between 3-7 gpg (51-120 ppm) for a balance of mineral intake and minimal negative effects. It is important to note that excessively soft water can be corrosive, potentially damaging your plumbing system and leaching metals, such as lead and copper, into your water supply.

For these reasons, you need to keep a close eye on your water hardness level and think about the health of your overall water supply.

Testing Your Water Hardness Level

So, what do you need to do if you want to figure out your overall water hardness level? There are a few key points to consider:

To determine the hardness level of your water, you can:

- Check Your Local Water Report: Many municipalities provide water quality reports that include information on water hardness. You can usually find these reports online or request a copy from your local water provider.
- Use a Test Kit: You can purchase a water hardness test kit online or at a local home improvement store. These kits typically include test strips or liquid reagents that can measure the mineral content in your water.
- **Hire a Professional**: For a more comprehensive water analysis, consider hiring a professional water testing service. They can provide detailed information on water hardness and other water quality parameters.

Remember that you can also reach out to an expert at DROP if you need help getting figuring out your overall water supply's hardness level.

Adjusting Your Water Hardness Level

If your water hardness level is outside the recommended range, you can take steps to improve it and maintain the ideal balance:

Water Softeners

Water softeners are a popular and effective solution for reducing water hardness. They work by using a process called ion exchange, which replaces the calcium and magnesium ions in the water with sodium or potassium ions.

This reduces the mineral content and prevents scale buildup, soap scum, and other issues associated with hard water. Depending on your household, you will need the right size.

On your water softener, you can adjust the water hardness levels by changing your settings.

Water Filters

In some cases, water filters can help improve water hardness levels by removing specific minerals or impurities.

Reverse osmosis (RO) systems, for example, can effectively reduce water hardness by removing a significant portion of the dissolved minerals. However, these systems can also remove beneficial minerals and may produce water that is too soft, so it is essential to find the right balance based on your specific needs.

Water Conditioners

Water conditioners, also known as descalers or anti-scale systems, are another option for managing water hardness. These devices do not remove the minerals from the water but instead alter their crystalline structure, preventing them from forming scale deposits.

Water conditioners can be an attractive option for those who wish to maintain some mineral content in their water while minimizing the negative effects of water hardness.

Maintaining the Ideal Water Hardness Level: Soft Water

Once you have achieved the desired water hardness level, it is important to monitor and maintain it to ensure optimal water quality:

- **Regular Testing**: Periodically test your water hardness level to ensure it remains within the recommended range. This can help you identify any changes in water quality and address them promptly.
- Water Softener and Filter Maintenance: Regularly maintain and service your water treatment equipment, such as water softeners and filters, to ensure they continue to operate effectively. This may include replacing filter cartridges, cleaning the brine tank, and adding salt to salt-based water softeners.
- **Professional Consultation**: If you are unsure about the best approach to managing your water hardness level or need assistance with water treatment equipment, consult a professional. They can provide expert guidance and recommendations tailored to your specific needs.

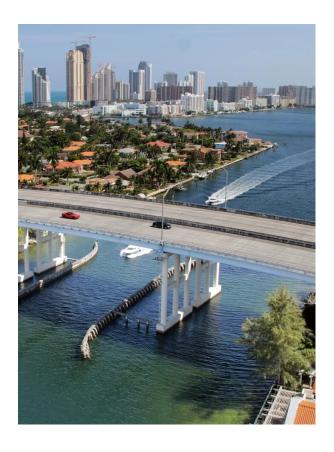
Keep in mind that you never have to go through this process on your own. You may want to reach out to an expert who can help you not only measure your water hardness level but also find the right water softener to help you.

Check Out a Water Softener or Water Filter From DROP Today

Achieving and maintaining the ideal water hardness level can significantly improve the quality of your water, benefiting your household chores, appliances, and personal health. By understanding the concept of water hardness and taking the necessary steps to adjust and maintain it, you can enjoy the many advantages of well-balanced water.

Check out DROP's range of water softeners and water filters today to find the perfect solution for your water hardness needs. With DROP's innovative water treatment products, you can ensure clean, safe, and high-quality water for you and your family. Take the Quiz

today to speak to a member of our team, and get the right water hardness level!


By William Chandler III

William Chandler III has been working in the water industry for over 20 years. Since 2016 he has been the Vice President of Chandler Systems Inc., owner of CSI Water Treatment, WaterSoft Inc., Clearion Water, and DROP.

See all posts by William Chandler III \rightarrow

January 25, 2024
Water Hardness in Florida Cities

January 18, 2024

Water Hardness in Arizona Cities

HOME

ABOUT

Our CompanyTake the Quiz

1.833.BUY.DROP

1.833.289.3767

220 Ohio St, Ashland, OH 44805

CUSTOMER CARE

- Customer Order Login
- Shipping & Delivery
- Returns
- Warranty
- Privacy Policy
- Contact Us

SIGN-UP FOR UPDATES

PRODUCTS

- Water Softeners
- Water Filters
- Home Protection
- Accessories
- Commercial Products
- The DROP App

BUILD YOUR SYSTEM

INSTALLERS

LEARN

- Articles
- Resources

Email	SUBSCRIBE
-------	-----------

Recent News

Whole House Water Filtration Solutions in Dallas, Texas: Why the Puragain Filtersorb System is the Best Choice

Do You Need Both a Water Filtration System and a Water Softener?

How to Choose Between a Water Softener and Water Conditioner

Can Water Softeners Improve Your Family's Health?

Where Should a Water Softener Be Installed?

What Is the Ideal Water Hardness for Drinking?

The average person should drink at least 2.5 liters of water a day for optimum health. And roughly, 71% drink from the tap occasionally. Given such numbers, it's important to ensure that the water flowing from the tap is safe to drink.

But what if your tap water is hard water? A lot of people find hard water not palatable. Moreover, as hard water leaves behind residue and stains, many take caution and avoid drinking it altogether.

Learn more about **alkaline water systems** and water hardness to determine what the ideal drinking water is for you.

What Is Water Hardness?

Water hardness refers to the amount of minerals, particularly, of Calcium and Magnesium, found in water. Minerals are naturally found in water; however, when they exceed 120mg/L, the high level of minerals begins to have negative effects. This is also when water is called hard, as opposed to being soft water, with only up to 60mg/L of minerals, or moderately hard water, with 60mg/L and 120mg/L amount of minerals.

What Is the Ideal Water Hardness For Drinking?

Though water hardness has been proven to negatively impact pipes, tiles, and other household fixtures, as well as cause skin and hair dryness, it has not been proven to harm health. In fact, the high amounts of calcium and magnesium may even positively impact health.

Still, it is highly advisable to take things in moderation and both soft water and hard water have their respective benefits and drawbacks. On the one hand, having too little minerals in the water may contribute to mineral deficiency, whereas too much may result in overdose, though such cases are incredibly rare in healthy individuals.

The general rule of thumb is to drink clean water, with hardness being somewhere in the middle of soft and hard, 60 mg/L to 120 mg/L. Some also advise to not go beyond 170 mg/L, which indicates very high levels of calcium and magnesium.

But according to health authorities, there is no general health advice on restricting hardness in drinking water for health and safety reasons.

How to Tell Water Hardness?

If you drink from the tap and use your water to clean your home, bath, and use with your appliances, you're probably wondering how to tell whether you have soft or hard water. To determine this, you can choose to purchase a test kit, send your water to get tested in a lab, or you can simply observe your water or conduct a quick soap test at home.

Test Kit

There are test kits that allow you to measure water hardness. An inorganic chemical test (Kit C), for example, can be bought from labs and used at home. Another option is to bottle up some water and send it to a certified drinking water lab to test for hardness.

Observation

Even without using test kits, one can tell whether water is hard or soft depending on the feel, smell, and usage of the water.

Unlike soft water which is odorless and leaves no residue behind, hard water smells sulfuric and tastes metallic; it also leaves behind residue when dry, which can easily be spotted on surfaces as discoloration or stains.

the water will cloud up. As soap doesn't react well with hard water, lots of bubbles in your solution means you have soft water, while lack of bubbles means you have hard water.

For the same reason that hard water reduces the usefulness of soaps, it is not advisable to use hard water for cleaning, bathing, and other similar uses.

How to Make Hard Water Safe For Drinking?

One of the cautions against hard water is that they are often sourced from wells, and are likely to have metals besides the minerals. Though minerals are safe to consume, metals, and other substances are not.

As such, the best way to protect your health when drinking hard water is to make sure it is filtered thoroughly and rid of any harmful chemicals, pests, and metals, leaving behind only minerals which can have positive health benefits.

Still, many prefer to not drink hard water, not because they pose a danger to one's health but rather because it has a metallic taste and sulfuric smell. In such cases, it is advisable to install a water softener to reduce calcium and magnesium levels in the water to make it tasteless and odorless for more enjoyable drinking.

How to Have Ideal Drinking Water?

So you've got hard water that you want to soften for a better drinking experience? Then you need a water softener to lessen the high levels of calcium and magnesium in your water.

When it comes to water softeners, there are 2 main types you can choose from; one uses salts, sodium chloride, and replaces the calcium and magnesium ions with sodium ions; meanwhile, the other uses potassium to neutralize or cure the water.

While using salts is the most common method to soften water, it does get rid of a lot of water during the ion exchange process. Not to mention, it leaves behind high levels of sodium chloride, which may be harmful for some people with specific dietary restrictions. For these reasons, many opt for the salt free water softener system.

Such systems involve the use of water conditioners which, when applied to hard water, crystallizes the minerals, making them easy to remove.

Make Your Water Ideal For Drinking

Are you ready to improve your tap water and make it ideal for drinking? Reach out to Pur Again Water and have us install a water softening system that will transform your water from hard to soft, removing any smell or taste from your water. We also offer various water filtration systems as well as alkaline water systems which are guaranteed to make your water ideal for drinking.

Call PurAgain Water today to schedule an appointment or get a free quote!

Explore Our Site

Water Filtration Systems ➤

Lifetime Servicing

Is My Tap Water Safe

Water Testing

News

Contact Us

Leave us a review

Locations

San Diego 1249 Simpson Way Escondido, CA 92029

Los Angeles

727 S Brea Canyon Rd Suite 5 & 6 Walnut, CA 91789

Oxnard CA

2401 Eastman Ave Suite 31 Oxnard CA 93030

Las Vegas

6380 S Valley View Blvd Suite 422 Las Vegas, NV 89118

Phoenix AZ 23309 N 17th Dr

Suite 112 Phoenix AZ 85027

Tucson AZ

1870 W Prince Rd Suite 55

Tucson, AZ 85705

Houston TX

5353 W Sam Houston Pkwy N Suite 140 Houston TX 77041

Dallas TX

Suite 102

2290 Springlake Rd Farmers Branch TX 75234

Contact Us

24/7 Live Support

Sales & Inquiries: 855-40-WATER

Service & Maintenance: 855-409-0084

© 2022 Puragain Water. All rights reserved. | Privacy Policy | Sitemap

About Partners Professionals Projects Press Contact

Home Indoor Outdoor Blog Site Search

Home > Indoor > Get Informed > Contaminants > No Standards Contaminants > Inorganics > Hardness

Indoor

Get Informed

Introduction

Public/City or Private/Well

Contaminants

Introduction

- + Primary Contaminants
- + Secondary Contaminants
- No Standards
 Contaminants

Introduction

This is a newly redesigned Water-Research.net page

Page Archive

f Share

in Share

Share

Get Informed | Hardness

Water described as "hard" is high in dissolved minerals, specifically calcium and magnesium. Hard water is not a health risk, but a nuisance because of mineral buildup on fixtures and poor soap and/or detergent performance.

+	Microbiological
_	Inorganics
	Introduction
	Alkalinity
	Boron
	Bromide

What is Hardness?

When explaining hardness to the public, in some ways it is easier to say what hardness is not than what it is. Having hardness in your water is not bad, not toxic, does not mean you have elevated levels of <code>Lead</code>, <code>Arsenic</code>, or other dangerous minerals. It does not mean that your water will clog your piping with scale. The total hardness of the water is typically expressed or reported as the equivalent of concentration of calcium carbonate in water as mg CaCO3/L or reported as "grains per gallon" (gpg). (Note: 1 grain per gallon is 17.12 mg CaCO3/L). The only problem is that with this expression some individuals think that hardness is just the amount of calcium carbonate in the water. Calcium carbonate is composed of a cation (Ca++) (positive 2) and an anion (CO3--) (negative 2). The hardness of the water is related to the cation concentration and not the anion and it is not just "Calcium".

Cations have a charge that is positive and the charge can be +1 or higher. The total hardness of the water is actually the measure of the cations with a charge of 2 or more, i.e., "multivalent positively charged cations. This would include cations such as: calcium, magnesium, <u>Iron</u>, <u>Manganese</u>, <u>Barium</u>, <u>Strontium</u>, <u>Aluminum</u>, etc, but would not include the cations with a positive charge of 1 like <u>Sodium</u>, potassium, and <u>Lithium</u>.

The total hardness of the water can be described as the combination of temporary (carbonate hardness) and permanent hardness (non-carbonate hardness). Temporary hardness is the hardness that is associated with anions like carbonate, bicarbonate, and hydroxide (OH-) because when the water is heated and ultimately boiled the water will lose some of the carbonate as CO2 and the solution will become supersaturated with multivalent cations which will begin to form particles and precipitate from the water as a carbonate scale. This scale is typically white or gray, but may have other colors depending on the cation and can easily be removed by dissolving them in vinegar (a weak acid). Permanent hardness is the hardness that is associated with non-carbonate anions, like **Chloride**, **Sulfate**, and **Nitrate**.

The primary source of hardness in most drinking water is from natural sources. Water is a good solvent and picks up impurities easily. Pure water -- tasteless, colorless, and odorless -- is often called the universal solvent (not really true but it does dissolve many things). When water is combined with carbon dioxide from our atmosphere it forms a very weak carbonic acid, which is an even better solvent. As this water moves through soil and rock, it dissolves very small amounts of minerals and holds them in solution. Typically, it is calcium and magnesium dissolved in water that make water "hard." The degree of hardness becomes greater as the amount of divalent or multivalent cations dissolved in the water increases.

How Does Hardness Become a problem?

Hardness can pose a potential problem if it is too low or too high. If the water hardness is too low, such as < 50 mg/L, the water may be corrosive to metal piping, fixtures, and appliances. If the hardness is high, it is possible for the multivalent cations to react with the carbonates in the water to produce chemical precipitates or "soap scum".

The amount of hardness minerals in water affects the amount of soap and detergent necessary for cleaning. Soap used in hard water combines with the minerals to form a sticky soap curd. Some synthetic detergents are less effective in hard water because the active ingredient is partially inactivated by hardness, even though it stays dissolved. Bathing with soap in hard water can leave a film on the skin that may prevent or inhibit the removal of "dirt", dead skin cells, oils, and bacteria. This film can also prevent the skin from returning to a more typical slightly acidic condition, i.e., pH 4 to about 6.5, and therefore result in irritation or possibly eczema. This film can also make hair look dull, lifeless, difficult to manage, and even make it feel dirty.

When doing laundry in hard water, soap curds lodge in fabric during washing to make fabric stiff and rough. Incomplete soil removal from laundry causes graying of white fabric and the loss of brightness in colors. Because of incomplete cleaning, the clothes may get a sour odor and continuous laundering in hard water can shorten the life of

clothes. The soap curds can deposit on dishes, bathtubs and showers, and all water fixtures, contributing to nuisances.

What are the Health Risks for Hardness?

Hard water is not a health hazard. The National Academy of Sciences states that drinking hard water contributes to the dietary need for calcium and magnesium. Researchers have studied water hardness and cardiovascular disease mortality. Such studies have been "epidemiological studies," which are statistical relationship studies. While some studies suggest a correlation between hard water and lower cardiovascular disease mortality, other studies do not suggest such a correlation. The National Research Council states that results at this time are inconclusive and recommends that further studies should be conducted.

Solid Report on this Issue - Suggested reading (<u>Source</u>) - a few quotes:

"The impact of water hardness of urinary stone formation remains unclear, despite a weak correlation between water hardness and urinary calcium, magnesium, and citrate excretion. Several studies have shown no association between water hardness and the incidence of urinary stone formation."

"Although, there is some evidence from epidemiological studies for a protective effect of magnesium or hardness on cardiovascular mortality, the evidence is being debated and does not prove causality."

Atopic dermatitis (or eczema) is an inflammatory, chronically relapsing, non-contagious and pruritic skin disorder. The environment plays an important part in the etiology of atopic eczema, but the specific causes are unknown. Exposure to hard water is thought to be a risk factor for eczema."

It is my professional experience that having some water hardness is good as long as the cations composing the hardness are not above a drinking water standard, the water is not creating nuisance, or the water is causing a premature failure of a heat exchange system or appliance or violates a manufacturers warranty. In general, individuals do not report aesthetic problems with their water until the hardness concentration typically exceeds 160 to 180 mg CaCO3/L. I am more concerned about water with very low hardness that may be associated with corrosion of fixtures and piping. If I had to have a preference, I would probably choose "moderately hard" water.

What are the Standards for Hardness?

There is no specific drinking water standard for water hardness, but the associated secondary drinking water standards may include the total dissolved solids of the water, potential for corrosion or scale formation, or the elevated presence of some iron and manganese and other similar metals. The classification of hardness:

Total Hardness Levels (mg CaCO3/L)

Soft	0 to 17.1
Slightly Hard	> 17.1 to 60
Moderately Hard	> 60 to 120
Hard	>120 to 180
Very Hard	> 180

(Source: Lehr, J. et. al., 1980. Domestic Water Treatment, New York, NY: McGraw-Hill Book Company - Note: This is a great desk reference if you can find it.)

can occur when the hardness is too low or too high, but these issues can be controlled by changing both the cationic and the anionic concentrations in your water. Problems associated with hardness are not normally associated with an odor problem, but more typically an aesthetic problem, such as a coating, film, scale, hard water spots, and poor sudsing. Since hardness is a general term that covers a group of cations, it is normally necessary to conduct a comprehensive water test and not just test the hardness of the water. Your best course of action is to get your water tested and compile as much information as possible about your water supply source, well construction, surrounding land-use, and local geology.

Level 1 | Observational Self-Testing

Level 1 Testing is done with simple observations that an individual can make with their own senses such as sight, smell, and taste. These observations can be readily apparent or can be observed as they change over time. In addition, accessible related information about the home can also be used to narrow down the cause of your water issues.

Notes on Level 1 Testing for Hardness

Hard water interferes with almost every cleaning task from laundering and dish washing to bathing and personal grooming. Clothes laundered in hard water may look dingy and feel harsh and scratchy. Dishes and glasses may be spotted when dry. Hard water may cause a film on glass shower doors, shower walls, bathtubs, sinks, faucets, etc. Hair washed in hard water may feel sticky and look dull. Water flow may be reduced by deposits in pipes and aeration devices may have a chemical coating that appears white or gray.

Observations for Hardness

Water hardness problems can be an issue if the hardness is too low or high. Very low hardness may be associated with chemical **corrosion** of the water and a metallic or acidic taste and elevated hardness can be associated with chemical coatings, films, coatings, clogged piping, and dingy clothing.

Try Our Level 1 Drinking Water Self-Diagnostic Tool

Have water issues? Answer our self-diagnosis questionnaire from your observations to get an initial diagnosis. Then follow our recommended steps to remediate your issue.

Self-Diagnostic Tool

Level 2 | Do-It-Yourself Water Testing

Level 2 Testing is Do-It-Yourself testing that can be done in your own home using a Testing Kit. After you've done Level 1 Testing, Level 2 Testing can confirm if your observations are correct. If your test results reveal the presence of a contaminant

that is cause for concern, you can either proceed to determine the best treatment (see below) or continue to Level 3 Testing.

Notes on Level 2 Testing for Hardness

There are a number of low cost ways to measure the total hardness of your water at home. In most cases these at-home tests are very easy to use, but do not provide a very accurate or precise measure of the water hardness, but can provide a value to help you to determine if the water is soft, slightly hard, moderately hard, hard, or very hard.

Recommended Level 2 Tests

L2-AMAZ-H-13 Amazon

Health Metric Drinking Water Test Kit for Municipal Tap and Well Water

View

L2-AMAZ-H-06 Amazon

Hanna Instruments HI 9813-6N Waterproof pH/EC/TDS Temperature Meter Clean and Calibration Check

View

Drinking Water Test

Health Metric Drinking Water Test Kit for Municipal Tap and Well Water -Simple Testing Strips for Lead Copper Bacteria, Nitrates, Chlorine and More.

Level 3 | Informational Water Testing

Level 3 Testing is done through an accredited Water Testing Laboratory. With Level 3 Testing, you can order a testing kit that is used to prepare your sample and submit it to the lab. By utilizing a lab, you have the assurance that a certified water expert had analyzed your water sample. If your test results reveal the presence of a contaminant that is cause for concern, you can either proceed to determine the best treatment options (see below) or continue to Level 4 Testing - Certified Testing.

Notes on Level 3 Testing for Hardness

Most informational water tests provide testing for the total hardness and some test kits provide additional insight into the other cations and anions that are contained within the water. These comprehensive water testing kit results are needed to determine whether the water needs treatment and, if so, to help design the treatment system.

Recommended Level 3 Tests	
L3-NATE-C-1 National Testing Labs City Water Basic	View
L3-NATE-C-2 National Testing Labs City Water Deluxe	View
L3-NATE-C-4 National Testing Labs Corrosion Check	View
L3-NATE-W-2 National Testing Labs Water Check Deluxe	View
L3-TASC-E-07 Tap Score Extended Well Water	View
L3-TASC-E-05 Tap Score Extended City Water Test	View

Extended Well Water Test

Learn More

Recommended as the most comprehensive water quality testing panel for any home, building, or facility served by a private well or spring.

182 Analytes Tested See Full List

Level 4 | Certified Water Testing

A Level 4 Certified Test Test uses chain-of-custody with a water professional coming to your home to prepare the water sample and then works with an accredited laboratory in order to certify your test results. This type of testing not only gives you the highest level of assurance in the accuracy of your test results, but can also be used as a document in legal cases. For **Baseline Testing**, we recommend that you use Certified Testing.

Notes on Level 4 Testing for Hardness

If you require certified testing for total hardness or a hardness-related issue, we strongly recommend completing the diagnostic analysis to ensure that the water does not show signs of having a bacteria problem or a problem related to the presence of a specific cation like <u>Aluminum</u>, <u>Iron</u>, and <u>Manganese</u> or elevated anions like <u>Chloride</u>, carbonates, bicarbonate, or <u>Sulfate</u>. If you need assistance, please <u>Contact</u> our team.

D ×

Scatter charcoal throughout your home and watch what happens overnight.

Get Treatment | Hardness

In most cases pretreatment will not be necessary, but if you have a **Bacterial** problem or have high settleable solids or **Turbidity**, it may be necessary to install a whole-house pretreatment system that may include a disinfection system or a back washable/ disposable **Particle Filter**. The most common means to soften a water or to reduce the total hardness is the use of a water softener ion exchange system (using salt) or a non-precipitating water softener (no salt) that helps to sequester (bind the multivalent cations into complexes that keep them in solution) the multivalent cations. The "salt" based units will exchange sodium or potassium ions for the multivalent cations such as calcium and magnesium whereas, the "no salt or salt free" will typically sequester the multivalent cations by complexing them with additives such as NUVO (citric acid) and Aquios (polyphosphate). Another type of "no salt" system contains an active media, i.e., catalytic media, that removes the hardness cations by causing them to precipitate or crystalize. Typically, the NUVO and Aquios units are needed when we are only looking to slightly reduce the water hardness.

Short-Term Treatment

In the short term and assuming you do not have a problem with any trace metals, you can boil the water and then filter the water. The process of boiling will cause some of the carbonate to be converted to CO2 and the cations causing "temporary hardness" will form a precipitate that can be filtered from the water. You could also install a faucet-mounted or under-the-counter filtration system that contains a catalytic medium. If you use one of the Aquios or Nuvo units, you may want to consider adding a point-of-use **Reverse Osmosis** unit.

Recommended Short-Term Water Treatments

ST-AMAZ-A-02 | Amazon
Aquios AQFS220 Full-House Salt-Free Water-Softener and Filter System

ST-AMAZ-N-01 | Amazon
Nuvo H2O Dphb - a Home Water-Softener System

ST-CRYS-W-02 | Crystal Quest

DIY Water Softener and Whole-House Dual System

Contact a KnowYourH2O Recommended Professional

Not Up for A DIY or you have a series of issues: Need Help Identifying a Local KnowYourH20 Team Professional? **Contact Us**

Long-Term Treatment

In the long term, the choice of options depends on the situation and degree of your problem. If you are only looking to slightly reduce the hardness of the water and you have limited space, you may want to consider the NUVO or Aquios units which will require that you change one or more filter cartridges every 6 months. There are also no-salt systems that contain a catalytic medium which would have to be rebedded every 750,000 gallons or more depending on the degree of hardness. For very hard water, we suggest the standard "salt" based water softening systems. These systems will have an automatic backwash cycle and have a "salt" tank to create the brine that is used to regenerate the system. Do note, however, that such ion exchange systems add sodium to the water which could be a problem for people with high blood pressure.

Recommended Long-Term Water Treatments

LT-CRYS-S-02 Crystal Quest Salt-Free Water Softener Anti-Scale System	View
UT-FILT-W-02 Filter Water Water Softener and Whole-House Dual System (Code A27AC)	View
Ukoke RO75GP 6 Stages Reverse Osmosis Water Filtration System, NSF/ANSI 58 & IAPMO Platinum Seal Certified	View

Contact a KnowYourH2O Recommended Professional

Not Up for A DIY or you have a series of issues: Need Help Identifying a Local Know Your H20 Team Professional? **Contact Us**

Recommended Reading

Amazon

Water Treatment Grade 1 WSO: AWWA Water System Operations WSO

Amazon

Water Treatment Grade 2 WSO: AWWA Water System Operations WSO

Amazon

Water Treatment Grades 3 and 4 WSO: AWWA Water System Operations WSO

Archive Page Reference

This is a newly redesigned Water-Research.net page. To reference related archived Water-Research.net page(s) click the link(s) below:

Water Research Center - Drinking Water Hardwater Hardness Calcium Magnesium Scale Stained Laundry

Home Indoor Outdoor Blog Site Search About Join Email List Partners Projects Contact

APPENDIX G

Risk and Benefit Table for Main Filter Plant Alternatives

Kaukauna Utilities Water Study 3/6/2024

Risk Level	Benefit Level
High - Yes	Low - No
Medium	Medium
Low No	∐igh Voc

Water Treatment Options

Option 1 Keep Existing Filtration Treatment Process

Option 2 Ion Exchange Treatment Process

Option 3 Reverse Osmosis/ Nanofiltration Treatment Process

Option 4 Pellet Softening

Option 5 Change from Ground Water Source to Surface Water Source

Risks and Benefits for Main Filter Plant Alternatives and Water Treatment Options

		I Della						•				
	!	!	Replace Filter Tank				Na Matama	Frankrank Dlank	_			
	Diale an	!		Dahild \\/at	au Tuaatus aut D	lant Duilding o	ad Dagamiana	New Water Treatment Plant at New Site				Switch to Surface Water
Description	Risk or	No Chara	at Existing	Rebuild Wat		lant Building a	na Reserviors					
·	Benefit	No Change Location at Current Location							Ali di			
		Alternative 1	Alternative 2	-		ative 3	0 1	0 .: 4	Alternative 4		l a	0 5
		Option 1	Option 1	Option 1	Option 2	Option 3	Option 4	Option 1	Option 2	Option 3	Option 4	Option 5
Main Water Filter Plant	<u></u> '											
Boil Water Notice	Risk	High	Low	Low	Low	Low	Low	Low	Low	Low	Low	Low
Potential for River Flooding	Risk	Medium	Medium	Medium	Medium	Medium	Medium	Low	Low	Low	Low	Low
Year Round Dry Land Access	Benefit	No -Medium	No -Medium	No -Medium	No -Medium		No -Medium	Yes	Yes	Yes	Yes	Yes
Facility Operates During Power Outage	Benefit	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Ground Storage Reservoirs												
Boil Water Notice	Risk	High	High	Low	Low	Low	Low	Low	Low	Low	Low	Low
Groundwater Infiltration	Risk	High	High	Low	Low	Low	Low	Low	Low	Low	Low	Low
Potential for River Flooding	Risk	Medium	Medium	Medium	Medium	Medium	Medium	Low	Low	Low	Low	Low
Year Round Dry Land Access	Benefit	No -Medium	No -Medium	No -Medium	No -Medium	No -Medium	No -Medium	Yes	Yes	Yes	Yes	Yes
Facility Operates During Power Outage	Benefit	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Main Booster Pump Station												
Boil Water Notice	Risk	High	High	Low	Low	Low	Low	Low	Low	Low	Low	Low
Draining Water Tower Fast	Risk	High	High	Low	Low	Low	Low	Low	Low	Low	Low	Low
Potential for River Flooding	Risk	Medium	Medium	Medium	Medium	Medium	Medium	Low	Low	Low	Low	Low
Year Round Dry Land Access	Benefit	No -Medium	No -Medium	No -Medium	No -Medium	No -Medium	No -Medium	Yes	Yes	Yes	Yes	Yes
Solves Pump Priming Issue	Benefit	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Facility Operates During Power Outage	Benefit	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Well 4 Site												
Potential for River Flooding	Risk	Medium	Medium	Low	Low	Low	Low	Low	Low	Low	Low	Low
Year Round Dry Land Access	Benefit	No -Medium	No -Medium	No -Medium		No -Medium	No -Medium	Yes	Yes	Yes	Yes	Yes
Facility Operates During Power Outage	Benefit	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Well 5 Site												
Facility Operates During Power Outage	Benefit	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Well 8 Water Filter Plant				. 50			. 33	. 55	. 55			
Build Raw Water Transmission Main to Well 9	Risk	No	No	No	Yes	Yes	Yes	No	Yes	Yes	Yes	No
Facility Operates During Power Outage	Benefit	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Well 9 Water Filter Plant	Benefic	110	110	103	103	103	103	103	103	103	103	103
Add Building to Well Site	Risk	No	No	No	Yes	Yes	Yes	No	Yes	Yes	Yes	No
Replace Media in Existing Pressure Filter	Benefit	No	Yes	No	Yes	Yes	Yes	No	Yes	Yes	Yes	No
Facility Operates During Power Outage	Benefit	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
I acility Operates During Power Outage	Denent	162	162	162	162	162	162	162	162	162	162	162

Kaukauna Utilities Water Study 3/6/2024

Risk Level	Benefit Level
High - Yes	Low - No
Medium	Medium
Low - No	High - Vos

Water Treatment Options

Option 1 Keep Existing Filtration Treatment Process

Option 2 Ion Exchange Treatment Process

Option 3 Reverse Osmosis/ Nanofiltration Treatment Process

Option 4 Pellet Softening

Option 5 Change from Ground Water Source to Surface Water Source

Risks and Benefits for Main Filter Plant Alternatives and Water Treatment Options

Description	Risk or Benefit	No Change Alternative 1	Replace Filter Tank at Existing Location Alternative 2	Rebuild Water Treatment Plant Building and Reserviors at Current Location Alternative 3				New Water Treatment Plant at New Site Alternative 4				Switch to Surface Water
		Option 1	Option 1	Option 1	Option 2	Option 3	Option 4	Option 1	Option 2	Option 3	Option 4	Option 5
Well 10 Site												
Facility Operates During Power Outage	Benefit	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Water Treatment Process												
Capital Costs	Risk	None	Low	Medium	Medium	High	High	Low	Medium	High	High	Medium
Operating Costs	Risk	Low	Low	Low	Medium	High	Medium	Low	Medium	High	Medium	High
Discharges Chlorides to the WWTP	Risk	No	No	No	Yes	No	No	No	Yes	No	No	No
							Yes - Caustic,				Yes - Caustic,	
Adds Sodium to the Water	Risk	No	No	No	Yes	No	No - Lime	No	Yes	No	No - Lime	No
Treatment Process Uses Excess Water	Risk	No	No	No	No	Yes	No	No	No	Yes	No	No
Uses Chemicals to remove Radium	Risk	Yes	Yes	Yes	No	No	Yes	Yes	No	No	Yes	No
Uses Chemicals for AntiScaling	Risk	No	No	No	No	Yes	No	No	No	Yes	No	No
Use Chemicals for pH Adjustment	Risk	No	No	No	Yes	No	Yes	No	Yes	No	Yes	No
New Treatment Process For Operators	Risk	No	No	No	Yes	Yes	Yes	No	Yes	Yes	Yes	No
Operator Input	Risk	Low	Low	Low	Medium	Low	High	Low	Medium	Low	High	Low
Requires Centralized Treatment Plant	Risk	No	No	No	No	No	No	No	No	No	No	No
Requires 24-hour Well Run Time	Risk	No	No	No	No	No	No	No	No	No	No	No
Requires 8-hour Minimum Well Run Time	Risk	No	No	No	No	No	Yes	No	No	No	Yes	No
Liquid Waste	Risk	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	No	No
Liquid Waste Required to go to WWTP	Risk	Yes	Yes	Yes	Yes	Maybe	No	Yes	Yes	Maybe	No	No
Amount of Liquid Waste Produced	Risk	6%	6%	6%	6%	17%	Minimal	6%	6%	17%	Minimal	No
Removes Iron	Benefit	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Removes Manganese	Benefit	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Removes Calcium	Benefit	No	No	No	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes
Removes Magnesium	Benefit	No	No	No	Yes	Yes	No	No	Yes	Yes	No	Yes
Removes Radium	Benefit	Yes	Yes	Yes	Yes	Yes	50-80%	Yes	Yes	Yes	50-80%	Yes
Removes Hardness	Benefit	No	No	No	Yes	Yes	80-90%	No	Yes	Yes	80-90%	Yes
Removes Sulfate	Benefit	No	No	No	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes
Removes Total Dissolved Solids	Benefit	No	No	No	Yes	Yes	80-90%	No	100%	100%	80-90%	Yes
Removes Strontium	Benefit	No	No	No	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes
Removes PFAS	Benefit	No	No	No	No	Yes	No	No	No	Yes	No	Yes
Reduces existing Salt Usage by Customers	Benefit	No	No	No	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes
Extends life of customer water heaters	Benefit	No	No	No	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes

Kaukauna Utilities Water Study 3/6/2024

Risk Level	Benefit Level
High - Yes	Low - No
Medium	Medium
Low - No	High - Ves

Water Treatment Options

Option 1 Keep Existing Filtration Treatment Process

Option 2 Ion Exchange Treatment Process

Option 3 Reverse Osmosis/ Nanofiltration Treatment Process

Option 4 Pellet Softening

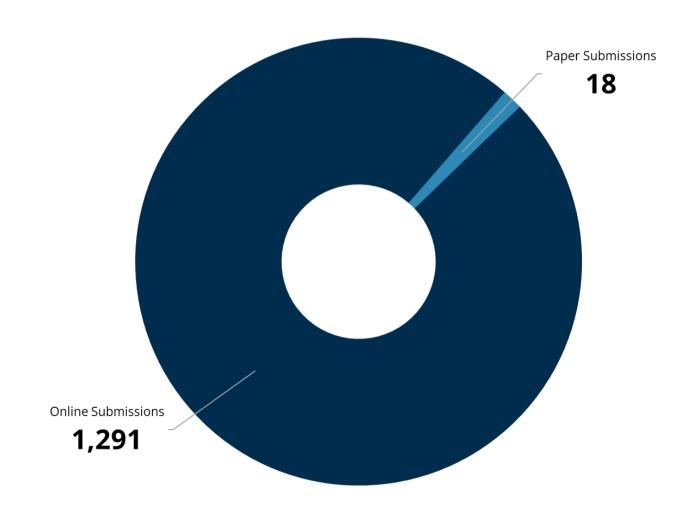
Option 5 Change from Ground Water Source to Surface Water Source

Risks and Benefits for Main Filter Plant Alternatives and Water Treatment Options

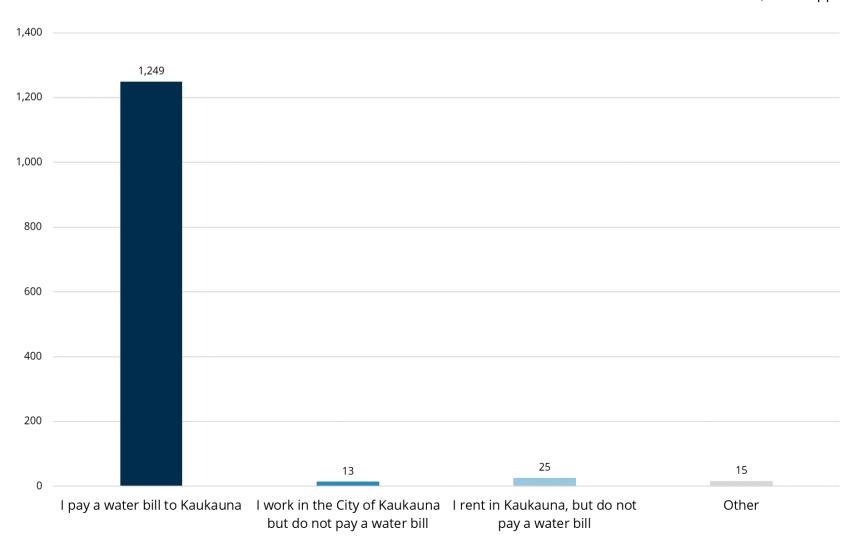
Description	Risk or Benefit	No Change	Replace Filter Tank at Existing Location	Rebuild Wat	er Treatment P at Curren	lant Building a t Location	nd Reserviors			reatment Plant ew Site	:	Switch to Surface Water
		Alternative 1	Alternative 2		Alternative 3				Alter	native 4]
		Option 1	Option 1	Option 1	Option 2	Option 3	Option 4	Option 1	Option 2	Option 3	Option 4	Option 5
Water Age Longer than 7 days	Risk	No	No	No	No	No	No	No	No	No	No	Yes
Maintain Wells as Backup & Pump to Waste	Risk	No	No	No	No	No	No	No	No	No	No	Yes
Single Source Water Supply Main	Risk	No	No	No	No	No	No	No	No	No	No	Yes
Raises Water Rates	Risk	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Kaukauna Utilities in Control of Water Rates	Benefit	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
Potential to Save Customer Softening Costs	Benefit	No	No	No	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes
Grants Available	Benefit	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

APPENDIX H

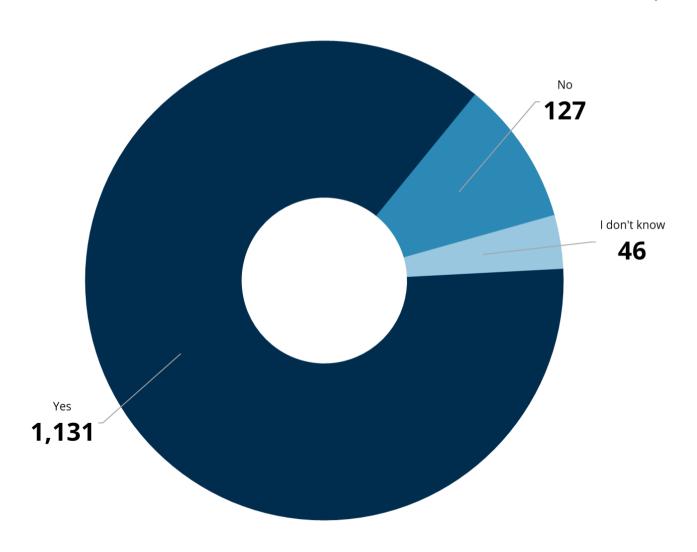
Surveys and Water Softener Costs Details



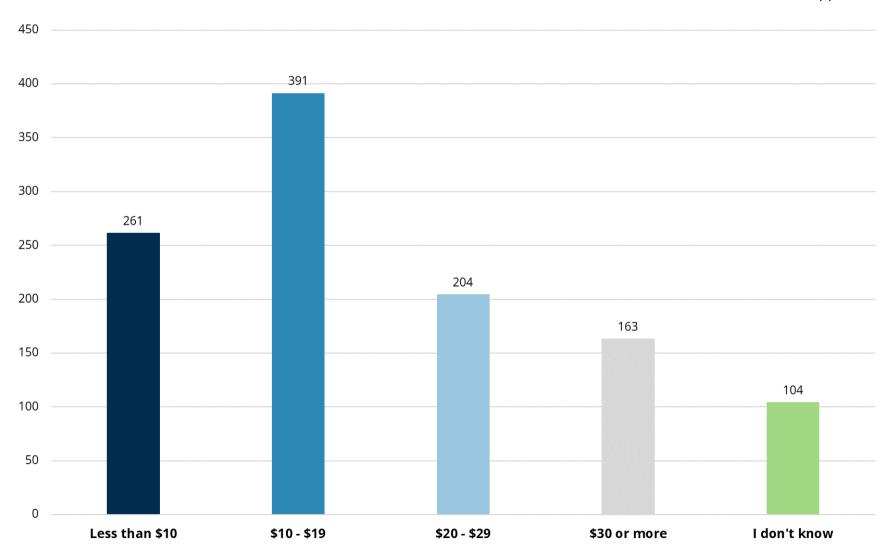
WATER QUALITY & CUSTOMER SATISFACTION


Survey Analysis

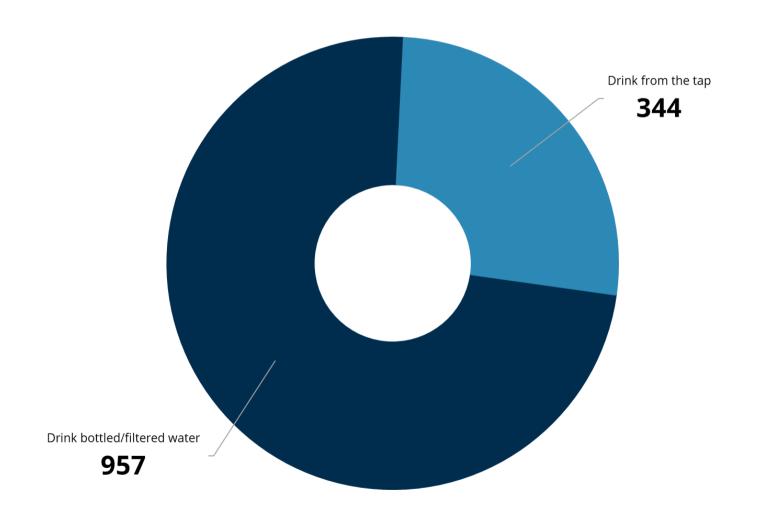
Total responses:


Q1: Please select the option below that best describes you:

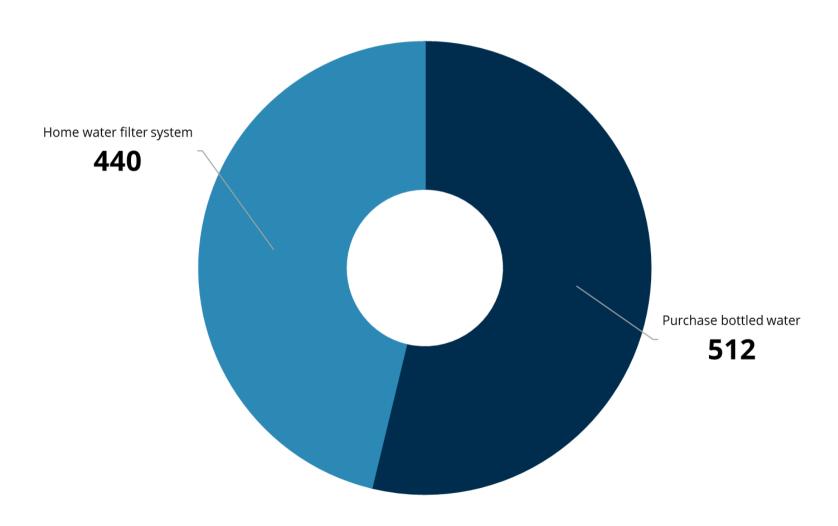
Answered: 1,302 Skipped: 7


Q2: Does your home or business have a water softener?

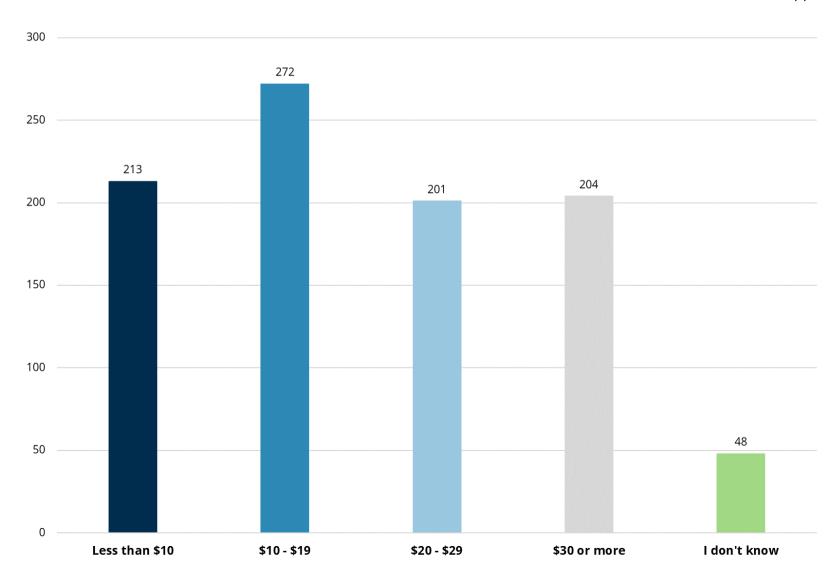
Answered: 1,304 Skipped: 5


Q3: About how much do you spend per month on your softening system (including salt and maintenance)?

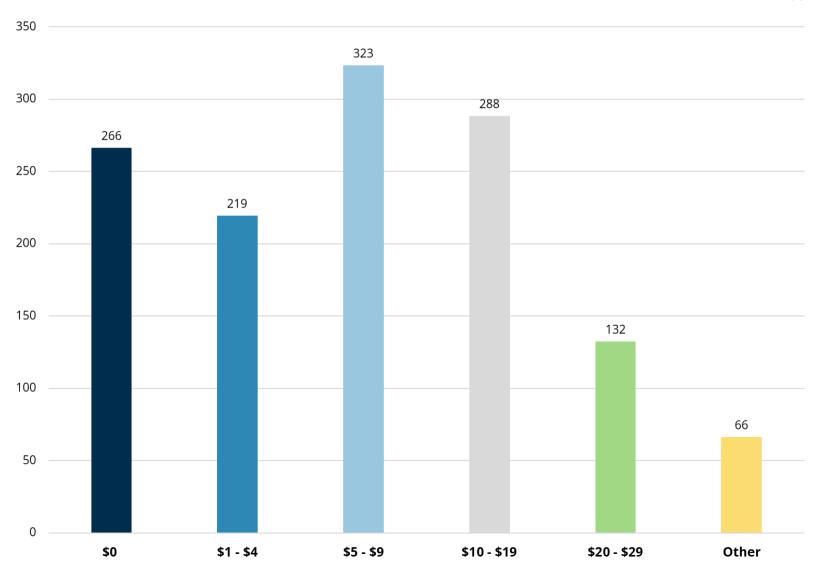
Answered: 1,123 Skipped: 186


Q4: Do you drink water from the tap or drink bottled/filtered water?

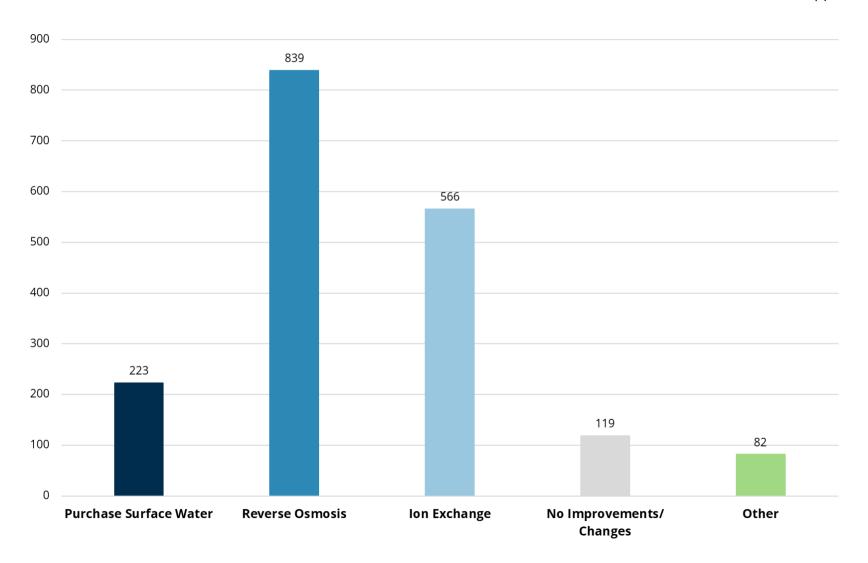
Answered: 1,301 Skipped: 8


Q5: If bottled/filtered water, do you purchase bottled water or have a home water filter system?

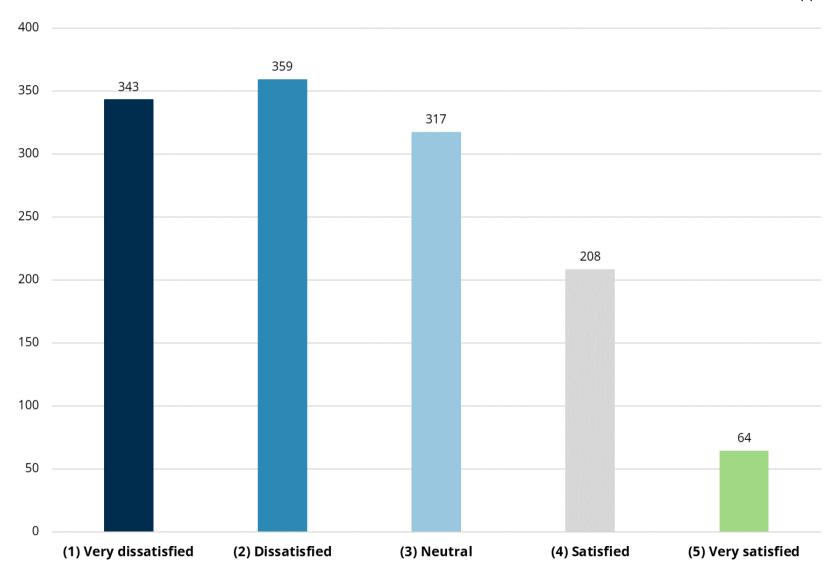
Answered: 952 Skipped: 357


Q6: If bottled/filtered water, about how much do you spend per month purchasing bottled water or maintaining your home water filter system?

Answered: 938 Skipped: 371


Q7: How much would you be willing to pay, per month, for the utility to soften the water so you would no longer have to soften the water at your home or business?

Answered: 1,294 Skipped: 15


Q8: What improvements or changes would you like to see to Kaukauna Utilities' water quality? *Please select all that apply.*

Answered: 1,281 Skipped: 28

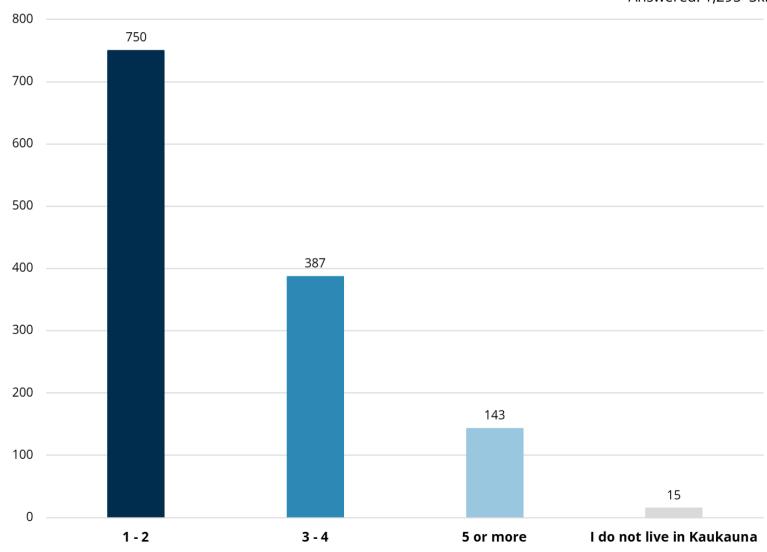
Q9: On a scale of 1 (very dissatisfied) to 5 (very satisfied), how satisfied are you with your water quality from Kaukauna Utilities?

Answered: 1,291 Skipped: 18

Q10: What is/are the reason/s for your answer?

Key themes presented below:

Wear on appliances (faucets, fixtures, softeners, water heaters, etc)


Poor quality Hard water

Tastes bad Won't drink it

Q11: How many people reside at your address?

Plumber Survey - Compiled Answers

	Lifespan Questions (years)													
Contractor	% of work in Kaukauna	Total Years of Service in Area	Water Softener - Kaukauna	Water Softener - Elsewhere	Water Heater - Kaukauna	Water Heater - Elsewhere	- Kaukauna	Dishwasher - Elsewhere	Clothes Washer - Kaukauna	Clothes Washer - Elsewhere	Fixtures - Kaukauna		Salt Usage (lb/month)	Cost for Electric Water Heater
Plumber 1	15	32	10 - 15	10 - 15	6	10 - 15	-	-	-	-	-	-	-	\$ 950.00
Plumber 2	10	20	10 - 12	15 - 20	7 - 8	10 - 15	5 - 15	10 - 15	5 - 10	10 - 15	5 - 10	20+	-	\$ 1,350.00
Plumber 3	35	50	15	15	10	10	3	10	-	-	5	15	90	\$ 1,000.00
Plumber 4	10	41	-	-	6 - 8	10 - 12	6 - 8	10 - 12	-	-	-	-	-	\$ 900.00
Plumber 5	15	7	8 - 10	-	6 - 7	10 - 15	6 - 8	10 - 15	-	-	5 - 10	20+	60	\$ 1,000.00
Plumber 6	50	25	15	15	8 - 12	-	-	-	-	-	-	-	50 - 100	\$ 1,000.00
Plumber 7	50	42	10 - 20	10 - 20	1 - 7	20	10 - 12	10 - 12	-	-	-	-	93	\$ 1,400.00

Softening Company Survey - Compiled Answers

Company			Average Water Softener Age	Average Water Softener Cost	Cost for Water Softener - Commercial or Apartments	_	Est. % of Homes/Businesses in Kaukauna with Water Softeners
Company 1	45	50	15 - 20 years	\$ 1,550.00	\$5,000 - \$20,000	100	99

Current Water Softening Costs for Kaukauna Customers

Note - all cost estimates below are done for the 0.75" water meter. These costs are then scaled for larger meters. See below for scaling explanation.

Salt Costs

Cost of Salt \$0.18 per pound
100 pounds per month for Kaukauna average residential customer*
\$18.00 per month
\$216.00 per year

Water Softener Regeneration Costs

*Based on plumber survey, see Appendix G.

1. Water Cost

50 gallons per regeneration cycle

High estimate: regeneration cycle every 2 days

2 days

9,125 gallons for regeneration per year

1,220 cubic feet for regeneration per year

\$ 11.61 per 100 cubic feet total rate (water \$2.86 + wastewater \$8.75)

\$ 141.61 per year high estimate

Low estimate: regeneration cycle every 7 days

7 days

2,607 gallons for regeneration per year

349 cubic feet for regeneration per year

\$ 11.61 per 100 cubic feet total rate (water \$2.86 + wastewater \$8.75)

\$ 40.46 per year low estimate

Total annual water regeneration costs \$ 40.46 - \$ 141.61

Average water cost for regeneration per year \$ 91.04

Water Softener Replacement Costs

Average Water Softener Installed Cost*	\$ 1,000.00
Lifespan of Water Softener in Kaukauna*	10 Year
*Based on plumber survey, see Appendix G.	
Cost per year	\$ 100.00

Water Heater Replacement Costs

Average Water Heater Installed Cost*	\$ 1,100.00
Lifespan of Water Heater in Kaukauna*	7 Ye
*Based on plumber survey, see Appendix G.	\$ 157.14

Appliance Replacement Costs

I I I I I I I I I I I I I I I I I I I	
Dishwasher Cost	\$ 650.00
Dishwasher Installation Cost	\$ 200.00
Lifespan*	7 Year
Cost per year	\$ 121.43
Clothes Washer Cost	\$ 800.00
Clothes Washer Installation Cost	\$ 150.00
Lifespan*	7 Year
Cost per year	\$ 135.71
Total appliance replacement cost per year	\$ 257.14
*Based on plumber survey, see Appendix G.	

Customer Costs with Hardness Reduction Treatment

Note - all cost estimates below are done for the 0.75 inch water meter. These costs are then scaled for larger meters. See below for scaling explanation.

Salt Costs

635 mg/L Kaukauna Avg Current Hardness **Target Hardness** 120 mg/L Ratio Avg: Target 0.19

Cost of Salt \$0.18 per pound

100 pounds per month for Kaukauna residential customer for current hardness*

19 pounds per month for target hardness

\$3.40 per month \$40.82 per year

Water Softener Regeneration Costs

1. Water Cost

50 gallons per regeneration

High Estimate

- 2 current average days between regeneration
- 0.19 ratio between target and current hardness
- 10.6 days between regeneration with target hardness levels
- 1,724 gallons for regeneration per year
 - 231 cubic feet for regeneration per year
- \$ 11.61 per 100 cubic feet total rate (water \$2.86 + wastewater \$8.75)
- \$ 26.76 per year high estimate

Low Estimate

- 7 current average days between regeneration
- 0.19 ratio between target and current hardness
 - 37 days between regeneration with target hardness levels
- 493 gallons for regeneration per year
- 66 cubic feet for regeneration per year
- \$ 11.61 per 100 cubic feet total rate (water \$2.86 + wastewater \$8.75)
- \$ 7.65 high estimate per year

Total annual water regeneration costs \$ 7.65 \$ 26.76 \$ 17.20

Average cost for regeneration per year

^{*}Based on plumber survey, see Appendix G.

Water Softener Replacement Costs

water softener kepiacement costs		
Average Water Softener Cost*	\$ 1,000.00	
Lifespan of Water Softener w Soft Water*	15 Year	
*Based on plumber survey, see Appendix G.		
Cost per year	\$ 66.67	
Water Heater Replacement Costs		
Average Water Heater Cost*	\$ 1,100.00	
Lifespan of Water Heater w Soft Water*	12.5 Year	
*Based on plumber survey, see Appendix G.		
Cost per year	\$ 88.00	
Appliance Replacement Costs		
Dishwasher Cost	\$ 650.00	
Dishwasher Install	\$ 200.00	
Lifespan*	12.5 Year	
Cost per year	\$ 68.00	
Clothes Washer Cost	\$ 800.00	
Clothes Washer Install	\$ 150.00	
Lifespan*	12.5 Year	
Cost per year	\$ 76.00	
Total appliance replacement cost per year	\$ 144.00	
*Based on plumber survey, see Appendix G.		

Scaling the above cost estimates for larger meters -

Meter Size (inch)	Cross Sectional Area of Service (Square inches)	Area Ratio to 0.75 inch Meter
0.75	0.44	1.00
1.0	0.79	1.78
1.5	1.77	4.00
2.0	3.14	7.11
3.0	7.07	16.00
4.0	12.57	28.44

Use the ratio of the cross sectional areas as a multiplying factor for the average cost for each water service size. Note that there is no difference between appliance replacement for 0.75 inch and 1.0 inch residential customers.

PLUMBER 1 11/28/2023

- 1. Do you do plumbing work in the City of Kaukauna?
 - a. YES 15 % OF THEIR WORK IS IN KAUKAUNA.
- 2. How long have you been doing business in the area?
 - a. 32 YEARS.
- 3. Do you notice a water quality difference in Kaukauna vs other communities in the area?
 - a. YES KAUKAUNA IS WORSE.
- 4. What is the lifespan for X in Kaukauna? Is there a difference between Kaukauna and other communities?
 - a. Softener brand preference? HE DOESN'T DO MUCH WITH SOFTENERS, BUT WOULD SAY THEY GENERALLY LAST 10-15 YEARS.
 - b. Water Heater brand preference? IN KAUKAUNA, 5-6 YEARS. IN OTHER COMMUNITIES 10-15 YEARS.
 - c. Dishwasher NO INPUT.
 - d. Clothes Washer NO INPUT.
 - e. Plumbing Fixtures NO INPUT.
- 5. Do you know how much salt a typical Kaukauna customer goes through per month? NO INPUT.
- 6. What is the typical cost for a water heater at a residence? Installation cost?
 - a. \$1300 STANDARD INSTALLED
 - b. \$2200 POWER VENT INSTALLED
 - c. \$900-\$1000 ELECTRIC. THIS IS MOST COMMON IN KAUKAUNA.
- 7. Have you noticed if Kaukauna has more emergency plumbing calls/requests vs other communities?
 - a. NO
- 8. Please share any additional comments or suggestions regarding Kaukauna Utilities' water

WRIGHTSTOWN USED TO HAVE SIMILAR WATER QUALITY BEFORE SWITCHING TO SURFACE WATER. MANY IN THAT COMMUNITY HAVE GOTTEN RID OF WATER SOFTENERS.

PLUMBER 2 12/7/2023

- 1. Do you do plumbing work in the City of Kaukauna?
 - a. YES 5-10% OF THEIR WORK IS IN KAUKAUNA.
- 2. How long have you been doing business in the area?
 - a. 20+ YEARS.
- 3. Do you notice a water quality difference in Kaukauna vs other communities in the area? a. YES KAUKAUNA WATER IS MUCH HARDER.
- 4. What is the lifespan for X in Kaukauna? Is there a difference between Kaukauna and other communities?
 - a. Softener brand preference? 10-12 YEARS IN KAUKAUNA VS. 15-20 YEARS ELSEWHERE. THEY PREFER CLACK VALVES, FROM CAPITAL WATER CONDITIONING IN MADISON.
 - b. Water Heater brand preference? 7-8 YEARS IN KAUKAUNA VS. 10-15 YEARS ELSEWHERE.
 - c. Dishwasher 10-15 YEARS WITH WATER SOFTENER VS. 5-10 YEARS WITHOUT WATER SOFTENER (DEPENDS ON WATER SOFTENING AT RESIDENCE IN KAUKAUNA).
 - d. Clothes Washer 10-15 YEARS WITH WATER SOFTENER VS. 5-10 YEARS WITHOUT WATER SOFTENER (DEPENDS ON WATER SOFTENING AT RESIDENCE IN KAUKAUNA).
 - e. Plumbing Fixtures 5-10 YEARS IN KAUKAUNA VS. 20+ YEARS ELSEWHERE.
- 5. Do you know how much salt a typical Kaukauna customer goes through per month? NO.
- 6. What is the typical cost for a water heater at a residence? Installation cost?
 - a. \$2000+ POWER VENTED GAS
 - b. \$1500 STANDARD VENTED GAS
 - c. \$1300-1400 ELECTRIC
- 7. Have you noticed if Kaukauna has more emergency plumbing calls/requests vs other communities?
 - a. NO
- 8. Please share any additional comments or suggestions regarding Kaukauna Utilities' water.

PLUMBER 3 11/28/2023

- 1. Do you do plumbing work in the City of Kaukauna?
 - a. YES 30-40% OF THEIR WORK IS DONE IN KAUKAUNA.
- 2. How long have you been doing business in the area?
 - a. 50 YEARS
- 3. Do you notice a water quality difference in Kaukauna vs other communities in the area? a. YES HE SEES HIGH HARDNESS, HIGH TDS, RADIUM HIGH.
- 4. What is the lifespan for X in Kaukauna? Is there a difference between Kaukauna and other communities?
 - a. Softener brand preference? 15 YR, ABOUT THE SAME
 - b. Water Heater brand preference? 10 YRS, ABOUT THE SAME
 - c. Dishwasher NO WATER SOFTENER 3 YR, W WATER SOFTENER 10 YR
 - d. Clothes Washer
 - e. Plumbing Fixtures 5 YR NO WATER S, 15 YR W WATER S
- 5. Do you know how much salt a typical Kaukauna customer goes through per month? 1 LB/DAY/PERSON KAKAUNA
- 6. What is the typical cost for a water heater at a residence? Installation cost? \$1,000 W INSTALL
- 7. Have you noticed if Kaukauna has more emergency plumbing calls/requests vs other communities?
 - a. NO
- 8. Please share any additional comments or suggestions regarding Kaukauna Utilities' water.

PLUMBER 4 12/7/2023

- 1. Do you do plumbing work in the City of Kaukauna?
 - a. YES 10% OF WORK IS IN KAUKAUMNA
- 2. How long have you been doing business in the area?
 - a. 41 YEARS
- 3. Do you notice a water quality difference in Kaukauna vs other communities in the area?
 - a. YES WATER IS HARDER AND IS HARDER ON FIXTURES AND APPLIANCES.
- 4. What is the lifespan for X in Kaukauna? Is there a difference between Kaukauna and other communities?
 - a. Softener brand preference? N/A
 - b. Water Heater brand preference? 6-8 YEARS IN KAUKAUNA, 10-12 YEARS ELSEWHERE
 - c. Dishwasher 6-8 YEARS IN KAUKAUNA, 10-12 YEARS ELSEWHERE
 - d. Clothes Washer N/A
 - e. Plumbing Fixtures N/A
- 5. Do you know how much salt a typical Kaukauna customer goes through per month? N/A
- 6. What is the typical cost for a water heater at a residence? Installation cost? \$900 ELECTRIC
- 7. Have you noticed if Kaukauna has more emergency plumbing calls/requests vs other communities?
 - a. NO
- 8. Please share any additional comments or suggestions regarding Kaukauna Utilities' water.

PLUMBER 5 12/4/2023

- 1. Do you do plumbing work in the City of Kaukauna?
 - a. YES ABOUT 15% OF THEIR WORK IS IN KAUKAUNA.
- 2. How long have you been doing business in the area?
 - a. 7 YEARS
- 3. Do you notice a water quality difference in Kaukauna vs other communities in the area?
 - a. Yes WORST WATER IN THE AREA DUE TO HIGH HARDNESS.
- 4. What is the lifespan for X in Kaukauna? Is there a difference between Kaukauna and other communities?
 - a. Softener brand preference? 8-10 YEARS KAUKAUNA, NOT NEEDED ELSEWHERE. BRAND PREFERENCE IS WATER RIGHT.
 - b. Water Heater brand preference? 6-7 YEARS WITH HARD WATER IN KAUKAUNA, 10-15 YEARS WITH SOFT WATER.
 - c. Dishwasher 6-8 YEARS WITH HARD WATER, 10-15 WITH SOFTENED WATER.
 - d. Clothes Washer N/A
 - e. Plumbing Fixtures HALF THE LIFESPAN WITH HARD WATER.
- 5. Do you know how much salt a typical Kaukauna customer goes through per month? 60 LB/ MONTH, DEPENDING ON SIZE OF HOUSEHOLD.
- 6. What is the typical cost for a water heater at a residence? Installation cost? \$900-1100 ELECTRIC INSTALLED.
- 7. Have you noticed if Kaukauna has more emergency plumbing calls/requests vs other communities?
 - a. NO
- 8. Please share any additional comments or suggestions regarding Kaukauna Utilities' water. N/A

PLUMBER 6 11/28/2023

- 1. Do you do plumbing work in the City of Kaukauna?
 - a. Yes 50% OF THEIR WORK IS IN KAUKAUNA.
- 2. How long have you been doing business in the area?
 - a. 25 YEARS
- 3. Do you notice a water quality difference in Kaukauna vs other communities in the area?
 - a. Yes
 - i. If yes, what are the major differences? YES MOSTLY DUE TO HARDNESS AND POSSIBLY AN ADDITIVE THAT'S PUT IN FOR TREATMENT. 75% OF THE HOUSES HAVE WATER SOFTENERS AND THEY ARE NEEDED. WATER THAT GOES THROUGH WATER HEATERS AND APPLIANCES SHOULD BE SOFTENED WATER AS LONG AS PEOPLE TAKE CARE OF THE SOFTENER. HE HAS SEEN THAT PEOPLE DON'T KEEP ENOUGH SALT IN THE WATER SOFTENER.
- 4. What is the lifespan for X in Kaukauna? Is there a difference between Kaukauna and other communities?
 - a. Softener brand preference? KAUKAUA WATER SOFTENERS WORK TWICE AS HARD. CAN REBED SYSTEM, AND THEN THEY'D BE GOOD TO GO. WILL BREAK DOWN TWICE AS FAST. DEPENDS ON THE SOFTENER HE MOSTLY DOES HELLENBRAND (PACKER CITY SOFT WATER IS THE SUPPLIER). 15 YEAR LIFE BUT IT DEPENDS ON THE SOFTENER I.E. BOUGHT AT MENARDS WOULDN'T HOLD UP AS WELL.
 - b. Water Heater brand preference? YES DEPENDS ON THE BRAND AND QUALITY OF WATER HEATER. IF MAINTENANCE IS KEPT UP ON THEM, FLUSH THEM OUT EVERY YEAR. WOULD STILL SAY THAT THERE IS A DIFFERENCE. HE USED TO LIVE IN KAUKAUNA AND HAD A WATER HEATER THAT LASTED 17 YEARS, BUT HE HAS SEEN 8 YEARS LIFESPAN. 10-12 YEARS OLD WOULD BE THE END OF THE LIFESPAN IN KAUKAUNA.
 - c. Dishwasher NO INPUT.
 - d. Clothes Washer NO INPUT.
 - e. Plumbing Fixtures NO INPUT.
- 5. Do you know how much salt a typical Kaukauna customer goes through per month? (1-2) 50 LB BAGS.
- 6. What is the typical cost for a water heater at a residence? Installation cost?
 - a. ELECTRIC \$1000 INSTALLED.
 - b. CONVENTIONAL NATURAL GAS \$1300-1400 INSTALLED.
 - c. POWER VENT NATURAL GAS +\$2000 INSTALLED.

- 7. Have you noticed if Kaukauna has more emergency plumbing calls/requests vs other communities?
 - a. No
- 8. Please share any additional comments or suggestions regarding Kaukauna Utilities' water.

PLUMBER 7 11/29/2023

- 1. Do you do plumbing work in the City of Kaukauna?
 - a. YES 50% OF HIS WORK IS IN KAUKAUNA.
- 2. How long have you been doing business in the area?
 - a. 42 YEARS
- 3. Do you notice a water quality difference in Kaukauna vs other communities in the area?
 - a. YES THE STATUS QUO IN KAUKAUNA IS TO HAVE A WATER SOFTENER DUE TO THE HIGH WATER HARDNESS.
- 4. What is the lifespan for X in Kaukauna? Is there a difference between Kaukauna and other communities?
 - a. Softener brand preference? 10-20 YEARS. NO DIFFERENCE BETWEEN KAUKAUNA AND OTHER COMMUNITIES. THIS PLUMBER INSTALLS WATER SOFTENERS THAT ARE BIGGER FOR KAUKAUNA. GETTING THEM AT A BIG BOX STORE WOULD NOT BE SIZED CORRECTLY FOR KAUKAUNA, TOO SMALL.
 - b. Water Heater brand preference? 3-7 YEARS IN KAUKAUNA WITH WATER SOFTENER. 1-3 YEARS IN KAUKAUNA WITHOUT WATER SOFTENER. OTHER COMMUNITIES WOULD SEE A LIFESPAN OF 20 YEARS.
 - c. Dishwasher 10-12 YEARS. NO DIFFERENCE BETWEEN KAUKAUNA AND OTHER COMMUNITIES IF WATER IS SOFTENED CORRECTLY. DEPENDS ON THE QUALITY OF DISHWASHER BOUGHT.
 - d. Clothes Washer NO INPUT.
 - e. Plumbing Fixtures NO INPUT.
- 5. Do you know how much salt a typical Kaukauna customer goes through per month? HE GOES THROUGH 7 BAGS IN THREE MONTHS. IF THE WATER SOFTENER IS OLDER, THIS WOULD BE HIGHER.
- 6. What is the typical cost for a water heater at a residence? Installation cost?
 - a. \$1400 INSTALLED FOR ELECTRIC
 - b. \$1600 INSTALLED FOR 40 GALLON GAS.
 - c. ELECTRIC IS MORE COMMON IN KAUKAUNA BECAUSE KAUKAUNA HAS ITS OWN ELECTRIC COMPANY SO IT IS CHEAPER, BUT GAS IS MORE EFFICIENT.
- 7. Have you noticed if Kaukauna has more emergency plumbing calls/requests vs other communities?
 - a. NO

8.	Please share any additional comments or suggestions regarding Kaukauna Utilities' water.

SOFTENING COMPANY SURVEY

Company 1 1/2/2024

- 1. Do you do business in the City of Kaukauna?
 - a. YES 40-50% OF BUSINESS IS DONE IN CITY OF KAUKAUNA.
- 2. How long have you been doing business in the area?
 - a. 50+ YEARS
- 3. How long does your average water softener last?
 - a. 15-20 YEARS
 - b. Do you notice any difference in Kaukauna?
 - i. HIGH HARDNESS
- 4. What brand of water softener do you sell?
 - a. CLACK
- 5. How much does an average water softener cost for a Kaukauna residence? How much does installation cost?
 - a. \$1550
- 6. How much does an average water softener cost for a commercial business or apartment complex in Kaukauna? How much does installation cost?
 - a. \$5,000 \$20,000
- 7. On average, how much salt does a Kaukauna home go through monthly?
 - a. 100 LB
- 8. What percentage of Kaukauna homes and businesses would you estimate currently have water softeners?
 - a. 99%

APPENDIX J

Water Treatment Equipment

RIDIONTM

Conventional Ion Exchange Technology

ADVANTAGES

- PLC-based regeneration controls
- Unique non-plugging, non-corroding regenerant distribution system

Proven, reliable ion exchange processes

Tonka Water, a Kurita brand's RidION™ ion exchange systems solve a broad range of water treatment issues from uranium removal, to hardness and barium reduction. RidION™ systems incorporate the newest technologies in resin regeneration, guaranteeing an efficient and effective process with custom controls for your system. Tonka Water's RidION™ systems incorporate the latest resin technology utilizing the highest quality resins furnished by well-known manufacturers. Our unique regenerant distribution system accomplishes complete and uniform regeneration of the resin. With over 200 conventional ion exchange installations in the United States alone, Tonka Water's approach is proven consistently effective.

Treatment:

- Arsenic
- Barium
- Hardness
- Nitrates/sulfate
- Organics

- Perchlorate
- Radium
- Fluoride
- Uranium

May 8, 2023

Jeff Wolford, PE CBS Squared, Inc.

RE: Kaukauna, WI

RidION™ Ion Exchange System for Softening Preliminary Proposal and Budgetary Estimate

Dear Jeff.

In accordance with our understanding of the above project, Tonka Water, a Kurita brand, is pleased to provide information concerning the following process equipment. For this project, Tonka Water is proposing:

Tonka Water RidION™ Ion Exchange System for Hardness Removal

- Each vertical pressure vessel is to be constructed of carbon steel, ASME code stamped, and will include:
 - Schedule 80 PVC header-lateral inlet distributor with upturned elbows
 - Schedule 80 PVC header-lateral brine distribution grid
 - Cation exchange resin -- NSF approved
 - Graded support gravels
 - Schedule 80 PVC header-lateral underdrain with Tonka Water non-metallic gravel retaining nozzles (concrete subfill required by installing contractor)
 - Full interior finish painting; exterior blasted and primed at factory (finish painting by others on site)
- Additional components and services are included as follows:
 - System valves, including electrically actuated Bray wafer-style butterfly valves for system regeneration, including heaters but no limit switches
 - Ductile iron vessel facepiping (shipped loose for installation by others)
 - Backwash rate of flow meter
 - Vessel effluent flow meters, one per vessel
 - Fully automated Allen-Bradley PLC control system and panel
 - Skid -mounted brine delivery and dilution components, including brine pump, brine
 meter, valves, check valves, and other components for a fully functional brine delivery
 and dilution system.
 - Brine maker/salt storage silo, FRP construction, insulated for placement outdoors
 - Freight
 - Field services consisting of installation inspection, media installation supervision, startup and operator training

Well 4, 5 and 10

Total Design Flow:1600 gpmTotal Treated Flow:1232.5 gpmTotal Bypass Flow:367.5 gpmSoftener Load Rate:2.7 gpm/sf

Number of Vessels: 4

Dimensions: 12'-0" diameter x 13'-2" approx. overall height

Working Pressure: 100 psi
Test Pressure: 130 psi
Raw Water Hardness: 653 mg/L
Design Blended Effluent: 150 mg/L
Resin - Depth: 48 inches
Gravel - Depth: 15 inches

The budgetary price for this system is: \$ 1,780,000.00

Well 8 and 9

Total Design Flow:1760 gpmTotal Treated Flow:1320.7 gpmTotal Bypass Flow:439.3 gpmSoftener Load Rate:2.9 gpm/sf

Number of Vessels: 4

Dimensions: 12'-0" diameter x 13'-2" approx. overall height

Working Pressure: 100 psi
Test Pressure: 130 psi
Raw Water Hardness: 601 mg/L
Design Blended Effluent: 150 mg/L
Resin - Depth: 48 inches
Gravel - Depth: 15 inches

The budgetary price for this system is: \$ 1,780,000.00

We look forward to working with you on this water treatment project. If you have any questions, please feel free to call me at 612.708.6517

Sincerely,

Alan Schneider

Territory Manager

cc: Jason Metz, William/Reid, Ltd.

Kurita America Inc.

6600 94th Avenue North · Minneapolis, MN 55445

www.kuritaamerica.com · 866-663-7633

Hi Jeff

From our engineering team:

Here is the rundown of wastewater and rough operational cost comparisons for the IEX vs. NF softening systems. I used the Main WTP designs for this comparison:

Assumptions:

- Waste and energy/chemical/etc costs based on per MG finished water (treated + blend) for Main WTP design (Wells 4, 5, 10)
- Softening from ~667 mg/L total hardness to 150 mg/L
- Salt costs ~ \$100/ton
- Antiscalant cost ~\$10/lbs
- Metabisulfite (dechlorination) cost ~\$2/lbs
- Energy cost ~\$0.15/kWhr
- Energy costs calc'd based on pumping through system (DP for each)
- CIP frequency every 6 months
- 1 mg/L chlorine residual to NF system
- Resin changeout every 10 years
- NF membrane changeout every 5 years

WASTEWATER

IEX: ~61,100 gallons per MG finished (6.1% waste)
NF: ~165,600 gallons per MG finished (16.5% waste)

CHEMICAL CONSUMPTION COST

IEX - Salt: ~\$440 per MG finished

NF – Anti-Scalant: ~\$56 per MG finished NF – Metabisulfite: ~\$50 per MG finished

NF – CIP: ~\$2,000 per 6 months (actual may vary by need)

OTHER CONSUMABLES

IEX - Resin changeout (every 10 years): ~\$61,000 (material and delivery cost ONLY – installation costs not included)

NF – Cartridge filters (Monthly): ~\$950 monthly (material and shipping costs ONLY)
NF – DuPont NF90 changeout (every 5 years): ~\$262,000 (material and shipping costs ONLY)

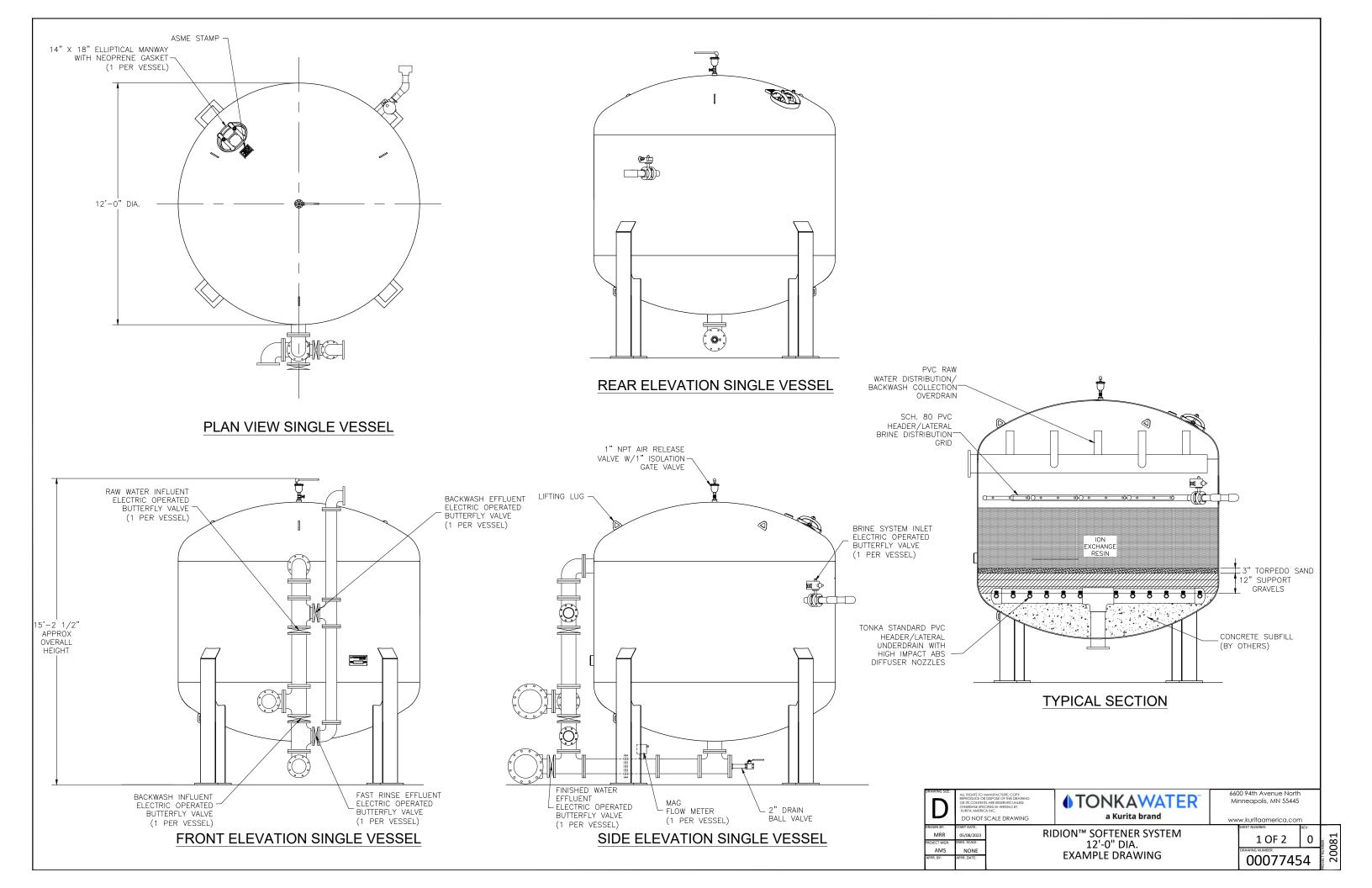
ENERGY USE

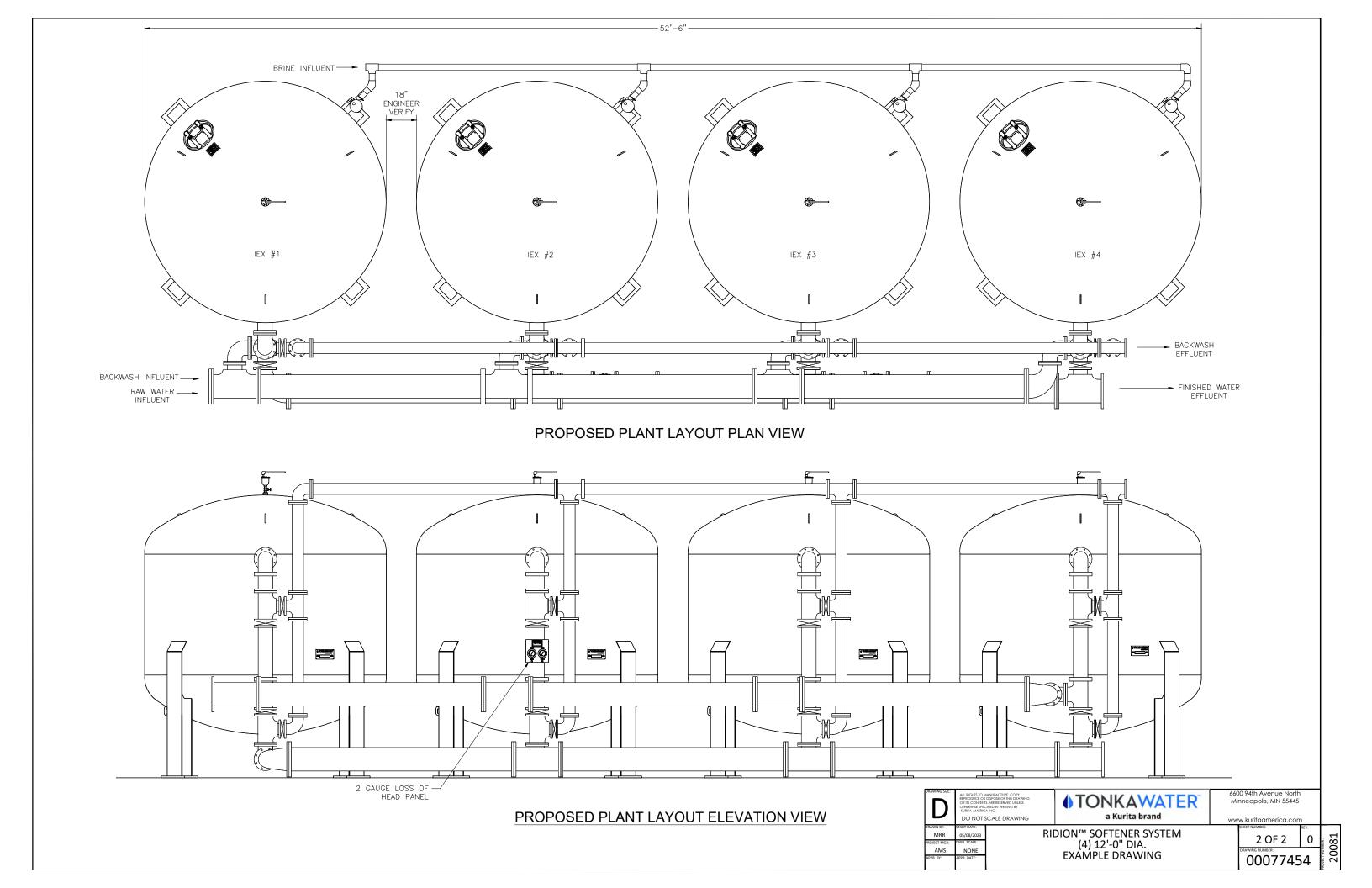
IEX - ~\$9 per MG finished

NF - ~\$160 per MG finished

Hope this helps!

Alan Schneider


Tonka Water Territory Manager


Mobile 612-708-6517 | Main 800-530-1887 | a.schneider@kurita-water.com

Kurita America Inc. | Tonka Water, a Kurita brand | www.kuritaamerica.com

How are we doing? Take our short survey!

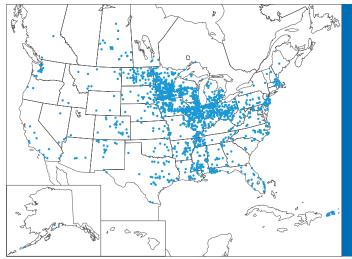
FLUXTM RO/NF

Nanofiltration and Reverse Osmosis Treatment

BENEFITS

- · Factory assembled and wired
- Shop tested and field ready
- Single responsible system supplier
- Integrated controls including pre-treatment and post-treatment
- Pilot and full-scale design capability - up to 900psi

Tonka Water, a Kurita brand's Membrane Technologies


We solve a broad range of treatment challenges with guaranteed results.

As a manufacturer of membrane systems, the Tonka Water brand brings you the latest technologies, as well as years of treatment experience. Being a single-source equipment provider, we are able to guarantee system performance of a stand alone membrane system or a membrane system combined with our other treatment equipment. Our FluxTM RO/NF membrane systems offer solutions across the full membrane filtration spectrum:

Nanofiltration for removal of nitrates, DBP precursors, dissolved organics, and softening applications.

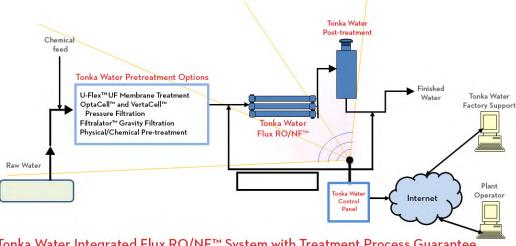
Reverse Osmosis for desalination and removal of nitrates, chloride, other inorganic compounds and softening applications.

Tonka Water Brand Guarantee

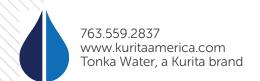
Tonka Water, a Kurita brand provides the best custom manufactured water treatment systems in the industry. Our people will deliver excellent service and support for your project from conceptual and cost-effective design, to construction and commissioning; and throughout the system warranty and operational life of the project.

Thousands of quality water treatment installations since 1956.

Features:


- · Fully automated
- State-of-the-art technology
- · Internet-based control available
- Superior fouling and chemical resistance
- Full spectrum of NF/RO membrane elements
- · Backed by Tonka Water guarantee
- Available in single- or two-pass configurations
- Softening

Treatment:


- Color removal
- TDS reduction
- TOC removal
- · Radium removal

Eliminate fragmented responsibility with full system control and integrated start-up

Tonka Water Integrated Flux RO/NF™ System with Treatment Process Guarantee

May 15, 2023

Jeff Wolford, P.E. CBS Squared, Inc.

RE: Kaukauna, WI

Flux NF™ Nanofiltration System

Preliminary Proposal and Budgetary Estimate

Dear Jeff,

In accordance with our understanding of the above project, Tonka Water, a Kurita brand, is pleased to provide information concerning the following process equipment. For this project, Tonka Water is proposing:

Main WTP (Wells 4, 5, 10):

Tonka Water Flux NF™ Nanofiltration System for Softening

Design Parameters:

Total Influent Flow:

Treated Flow, per Train (skid):

Bypass Flow, per Train (skid):

Permeate flow, per Train (skid):

Concentrate Waste Flow, per Train (skid):

Total Combined Effluent Flow:

Total System Recovery:

1,600 gpm

444 gpm

91 gpm

355 gpm

87 gpm

1,338 gpm

88.4%

Design Raw Water Hardness: 667 mg/L as CaCO₃ **Design Blended Finished Total Hardness:** 150 mg/L as CaCO₃

Number of Trains (skids): 3

Array: 9x6, 6L

Elements: DuPont/FilmTec NF90-400/34i

Total Number of Elements: 270

Approximate Skid Dimensions, Per: 7.5' wide x 25' long x 8' high

- Tonka Water membrane skids are fully skid mounted, plumbed, wired and factory tested. Each membrane skid will include the following:
 - Painted steel skid
 - Cartridge pre-filter, 1 micron
 - Fiberglass membrane housings with cross-flow membranes

- High pressure feed pump with variable frequency drive
- Piping and valves. Low pressure will be Sch. 80 PVC; high pressure will be Sch. 10 type
 316 stainless steel
- Meters and instrumentation for measuring and transmitting flow rates, pressures, pH,
 ORP, temperature, and conductivity, as required, for proper monitoring of the system
- Fully automated Allen-Bradley PLC control panel, mounted on main membrane skid
- Remote I/O panels, mounted on additional skids
- Additional components and services are included as follows:
 - One (1) Clean-In-Place (CIP) system, skid mounted, including chemical tank, heater, recirculation pump, valves, piping, and control panel.
 - Chemical feed systems for feeding sodium bisulfite and antiscalant to each skid/train.
 Each feed system consists of one (1) chemical feed pump assembly with platform for wall mounting (wall-mounting by others), one (1) chemical feed tank, and suction piping/tubing with foot valve. Feed tubing between the chemical feed pump and feed points are by others.
 - Freight
 - Field services consisting of installation inspection, start-up and operator training

Second WTP (Wells 8 & 9):

Tonka Water Flux NF™ Nanofiltration System for Softening

Design Parameters:

Total Influent Flow: 1,750 gpm
Treated Flow, per Train (skid): 467 gpm
Bypass Flow, per Train (skid): 117 gpm
Permeate flow, per Train (skid): 374 gpm
Concentrate Waste Flow, per Train (skid): 94 gpm
Total Combined Effluent Flow: 1,473 gpm
Total System Recovery: 84%

Design Raw Water Total Hardness:601 mg/L as CaCO₃Design Blended Finished Total Hardness:150 mg/L as CaCO₃

Number of Trains (skids): 3

Array: 9x6, 6L

Elements: DuPont/FilmTec NF90-400/34i

Total Number of Elements: 270

Approximate Skid Dimensions, Per: 7.5' wide x 25' long x 8' high

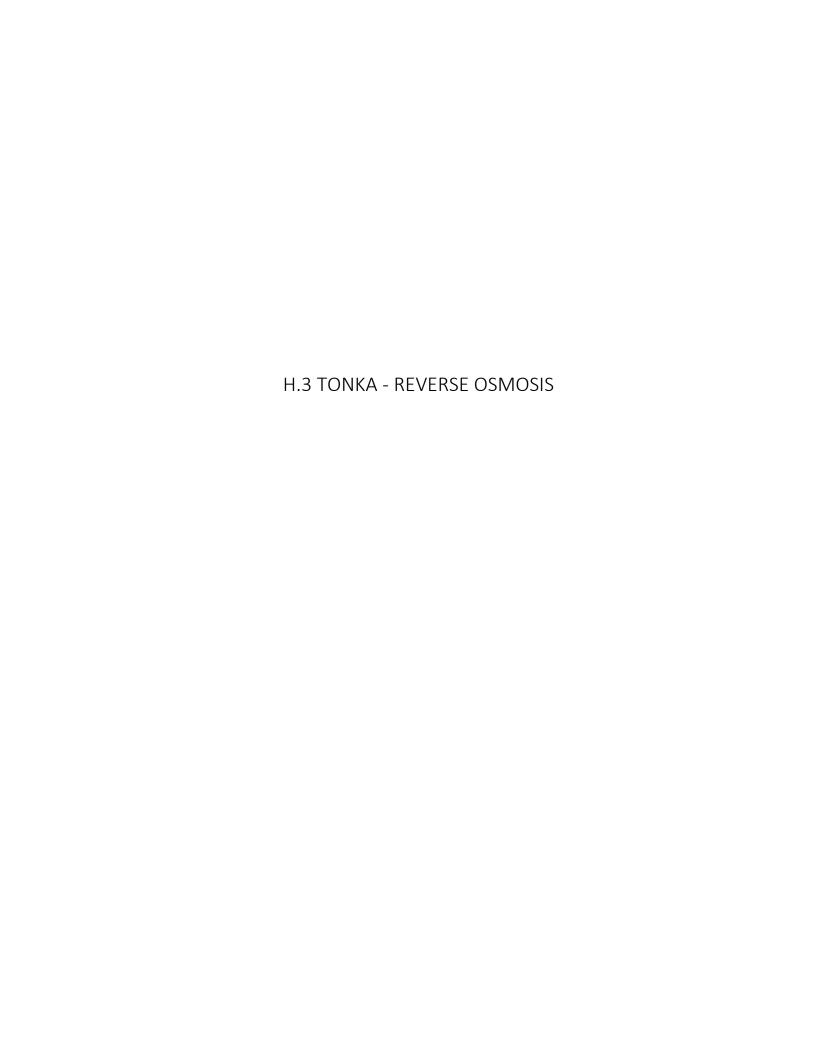
- Tonka Water membrane skids are fully skid mounted, plumbed, wired and factory tested. Each membrane skid will include the following:
 - Painted steel skid
 - Cartridge pre-filter, 1 micron

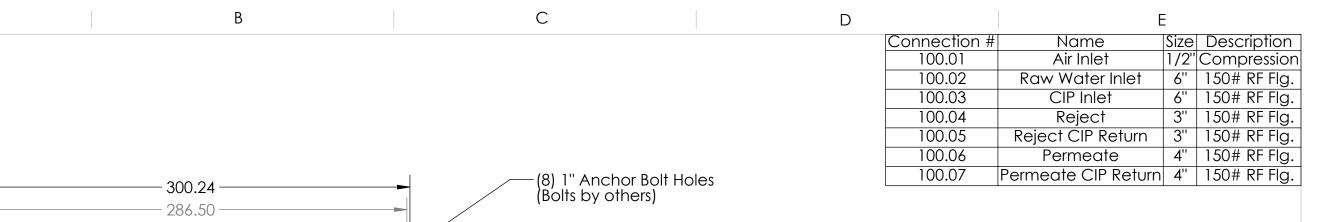
- Fiberglass membrane housings with cross-flow membranes
- High pressure feed pump with variable frequency drive
- Piping and valves. Low pressure will be Sch. 80 PVC; high pressure will be Sch. 10 type
 316 stainless steel
- Meters and instrumentation for measuring and transmitting flow rates, pressures, pH,
 ORP, temperature, and conductivity, as required, for proper monitoring of the system
- Fully automated Allen-Bradley PLC control panel, mounted on main membrane skid
- Remote I/O panels, mounted on additional skids
- Additional components and services are included as follows:
 - One (1) Clean-In-Place (CIP) system, skid mounted, including chemical tank, heater, recirculation pump, valves, piping, and control panel.
 - Chemical feed systems for feeding sodium bisulfite and antiscalant to each skid/train.
 Each feed system consists of one (1) chemical feed pump assembly with platform for wall mounting (wall-mounting by others), one (1) chemical feed tank, and suction piping/tubing with foot valve. Feed tubing between the chemical feed pump and feed points are by others.
 - Freight
 - Field services consisting of installation inspection, start-up and operator training

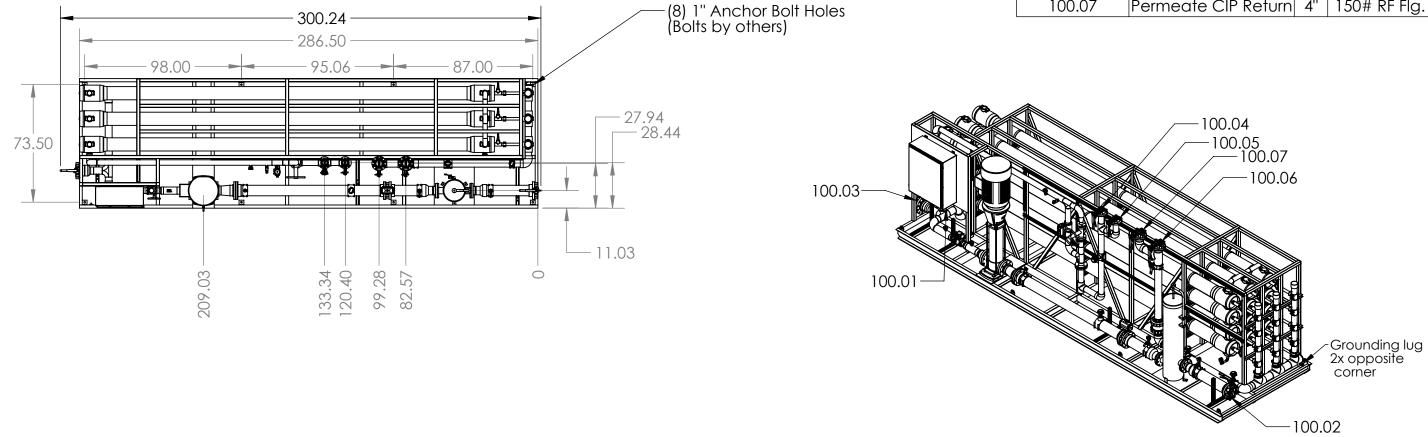
The budgetary price for EACH system is: \$ 1,523,000

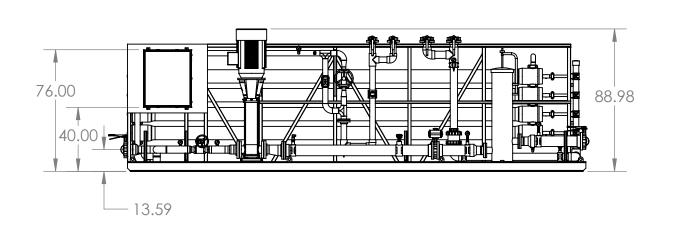
We look forward to working with you on this water treatment project. If you have any questions, please feel free to call me at 612.708.6517.

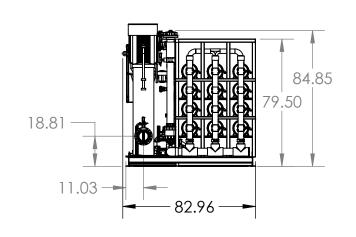
Sincerely,


Alan Schneider


Territory Manager


cc: Jason Metz, William/Reid, Ltd.


Attachments: NF treatment skid example drawing



Design Specs:
1. Designed inlet flow:
2. Designed inlet pressure: Designed product flow:

Notes:

Unloading and install by others.
All external loads supported by others.
Approx. operating weight: 13,000 lbs
Approx. special the second secon

Electrical terminations by others.
Interconnecting piping by others.
Skid coating: Black Powder Coat
Skid material.
Skid material.

Piping material

9a: Low pressure piping: Sch. 80 PVC 9b: High pressure piping: 304SS Allow for 48" of clearance on both ends

of RO for membrane removal.
Allow for 48" of clearance above filter housing

for filter removal. Electrical conduit material to be:

12. 13. Air line material to be: LLDPE

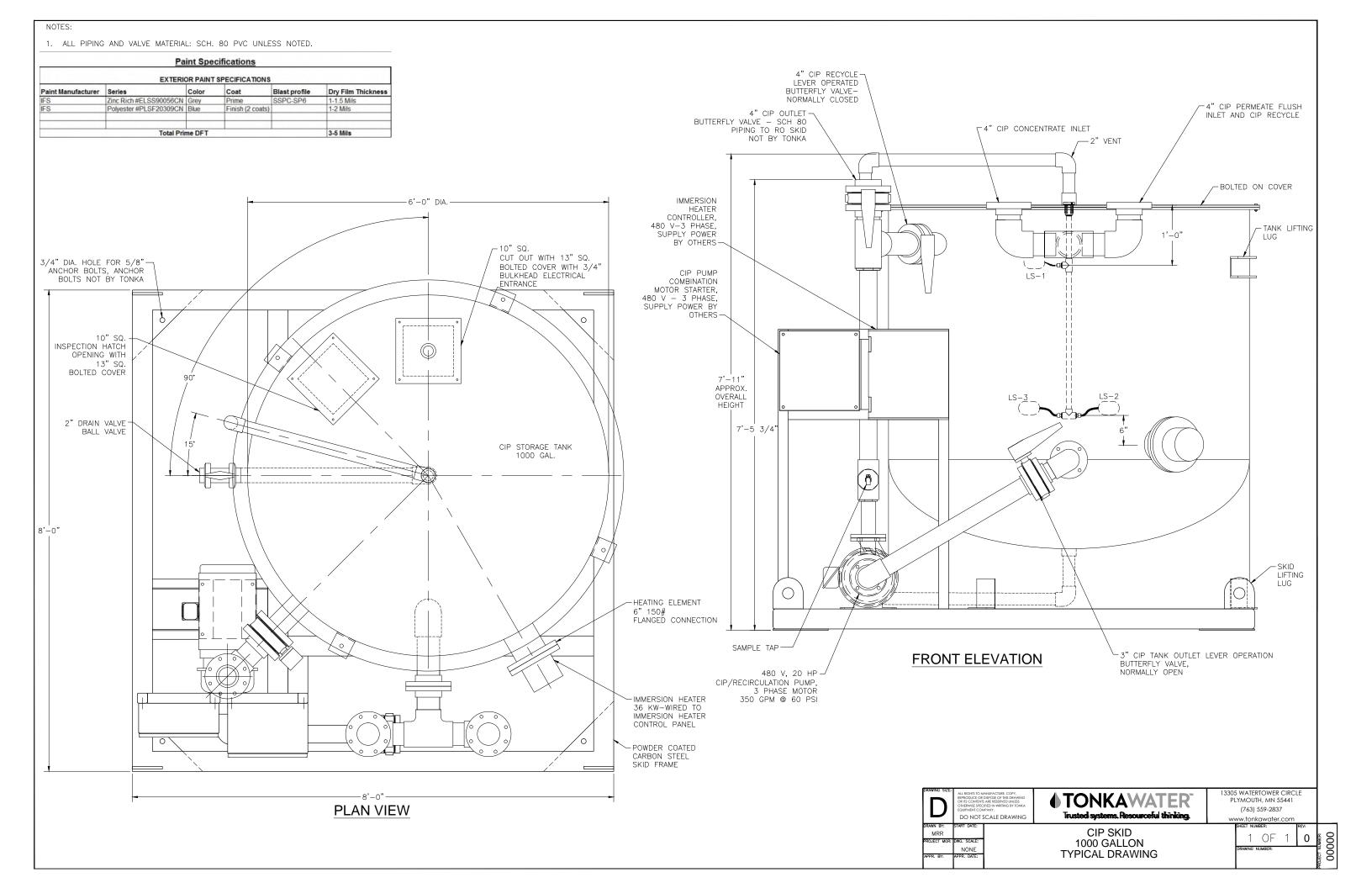
TOLERANCES UNLESS OTHERWISE NOTED ALL DIMENSIONS SHOWN IN INCHES ANGLES DECIMALS ±1° $.X \pm 3.0$ $.XX \pm 1.00$ FRAC .XXX ±0.500 ± N/A

Ŀυ	KEV.	DESCRIPTION	DAIL	DRWN	CHKD	APPD	
	0	Initial Release	10/31/14	KAE	NEB	NEB	
;							
4							_

gner: KAE	Date: 10/31/14
NO.	Page: 1 of 1
R 300G Silver	REV O

USHR 300 Silver

NOTICE ON REPRODUCTIONS


THIS DRAWING, THE DESIGN AND THE PATENTS IT COVERS, ARE THE PROPERTY OF USWS.
THEY ARE LOANED MERELY AND ON THE BORROWER'S EXPRESS AGREEMENT THAT THEY WILL NOT BE REPRODUCED, COPIED, LOANED, EXHIBITED, NOR USED EXCEPT IN THE LIMITED WAY AND THE

PRIVATE USE PERMITTED BY WRITTEN CONSENT GIVEN BY THE LENDER TO THE BORROWER.

2

3

Α

H.4 WATER SURPLUS - RO TREATMENT AND PRESSURE F	ILTER INFO

From: Jim Groose < <u>Jim.Groose@watersurplus.com</u>>

Sent: Monday, July 17, 2023 1:01 PM

To: Jeff Wolford < jwolford@cbssquaredinc.com >

Cc: Dileep Agnihotri < Dileep.A@watersurplus.com >; Jody Burgess < jody.burgess@watersurplus.com >

Subject: Kaukauna - Filtration and RO Treatment Budget Estimates

Jeff,

We have gone over the sizing for the RO and filtration system for the two sites. We have the following two sites that you specified for us to give you sizing recommendations and budgetary costs for each site. We would recommend that the systems be designed with Low E membranes because it will provide the softening at a lower RO operating pressure and save energy over the long haul. Nanofiltration produces permeate at a slightly lower pressure but has a significant cost adder for the NF membranes.

Site 1 – Wells 4, 5 and 10 – Pumping Capacity = 1,600 gpm – Average hardness = 665 mg/L as Ca CO₃

Site #2 - Wells 8 & 9 - Pumping Capacity = 1,750 gpm - Average Hardness = 630 mg/L as CaCO₃

The target hardness is the hardness of Lake Michigan around 130 mg/L. This is a 80.5% and 79.4% reduction from Sites 1 and 2, respectively.

Reverse Osmosis (RO) System Design:

With a target around 80% reduction, the two sites look like this for a process flow rate:

Site 1:

Influent to RO Systems (**3 RO skids**) = 1,330 gpm
Bypass Around RO System = 270 gpm
Permeate produced at 80% recovery = 1,064 gpm (355 gpm/skid)
Concentrate waste = 266 gpm
Blended Product = 1,330 gpm at 130 mg/L of hardness as CaCO₃

Site 2:

Influent to RO Systems (**2 RO skids**) = 1,450 gpm
Bypass Around RO System = 300 gpm
Permeate produced at 80% recovery = 1,160 gpm (580 gpm/skid)
Concentrate waste = 290 gpm
Blended Product = 1,450 gpm at 130 mg/L of hardness as CaCO₃

We did a performance projection with our ImpactRO design, and it is possible to achieve up to 85% recovery with lower pressure, better flux distribution which reduces future membrane cleanings, and makes membranes last longer. In addition, a patented micro-disruption design interrupts precipitation and provides longer lives between membrane cleanings.

Pressure Filter Design:

For Site #1, 1,600 gpm design, we would design with catalytic OxiPlus⁷⁵ filter media and a target 6.25 gpm/ft² surface loading rate. This would need 256 ft² of filter surface area which would be a 10' diameter x 28' OAL 4 cell horizontal filter. An alternate design would be 16-54'' diameter filter vessels which represents a 6.29 gpm/ft² loading rate design. The advantage of the small vessel design is that one or two vessels can be taken offline and still treat the water prior to the RO. If you use the single horizontal vessel design, if something requires maintenance, the entire horizontal vessel must come offline. This provides a built-in redundancy.

For Site #2, 1,750 gpm design, we would design with catalytic OxiPlus⁷⁵ filter media and a target 6.25 gpm/ft² surface loading rate. This would need 280 ft² of filter surface area which would be a 10' diameter x 30' OAL 4 cell horizontal filter. An alternate design would be 18-54'' diameter filter vessels which represents a 6.11 gpm/ft² loading rate design. Again, the smaller vessel design has a bigger turn down ratio and more redundancy if a vessel should require repair or maintenance.

Budget Equipment Pricing – 2023 (Correct for Inflation if project is 2024 or beyond):

Filters with Catalytic OxiPlus⁷⁵ Filter Media, Face Piping, Controls and Compressor:

Site 1-10' dia x 28' OAL horizontal filter = \$800,000 $16 \times 54''$ dia x 60" Straight Side vertical vessels = \$725,000 Site $2-10' \times 30'$ OAL horizontal filter = \$850,000 $18 \times 54''$ dia x 60" Straight side vertical vessels = \$775,000

RO Filters ImpactRO Design including common cartridge filter housing for all RO's, Low E Membranes, Pressure housings, High Pressure pump, 1 Master Control Panel (MCP), 2 Remote IO Panels (site #1) or 1 Remote IO Panel (Site #2), and one spare HMI with a stainless-steel structural frame for 30 year engineered life. It includes operating features which evens out the flux rate to the membranes, lowers the average pressure the RO operates at to lower power costs, reduces the frequency of chemical cleanings and lengthens the overall life of the membranes.

Site #1 - 3 - 355 gpm RO skids - \$418,000 each or \$1,254,000 total for three units.

Site #2 - 2 - 580 gpm RO skids - \$572,000 each or \$1,144,000 total for two units.

Please also set aside any budget you may need for:

- 1. Forwarding pumps to RO
- 2. Chemical feed pumps Acid (maybe if pH is 7.5 or higher), Antiscalant, Dechlorination with sodium bisulfite
- 3. Inflation per year until project happens. Industrial/municipal inflation has been higher than Consumer Price Index (CPI).
- 4. Due to high Ca and hardness, you would need 2.2mg/L of Avista Vitec 7000 as Antiscalant.
- 5. We would also like to have full inorganic scan for each well. Strontium, barium, pH and other inorganics can dramatically affect recovery efficiencies. A full inorganic scan helps make sure we identify the best antiscalant to feed to the system.

Any questions about this information, let me know.

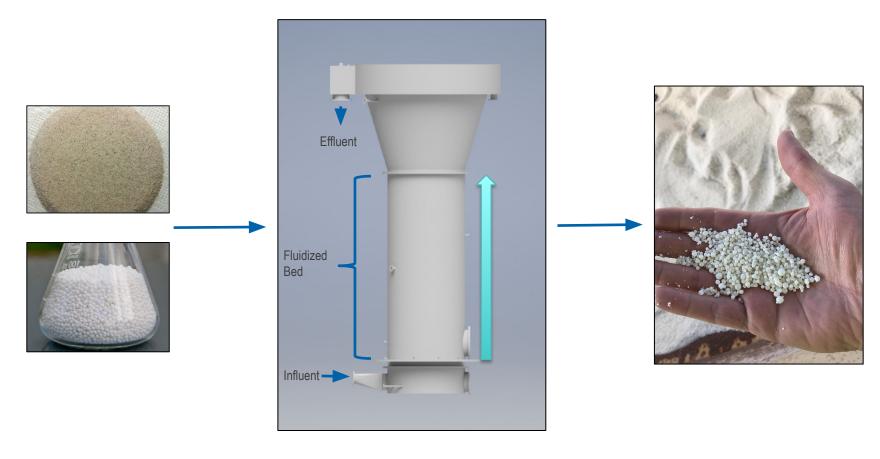
Why and When to Use Pellet Softening

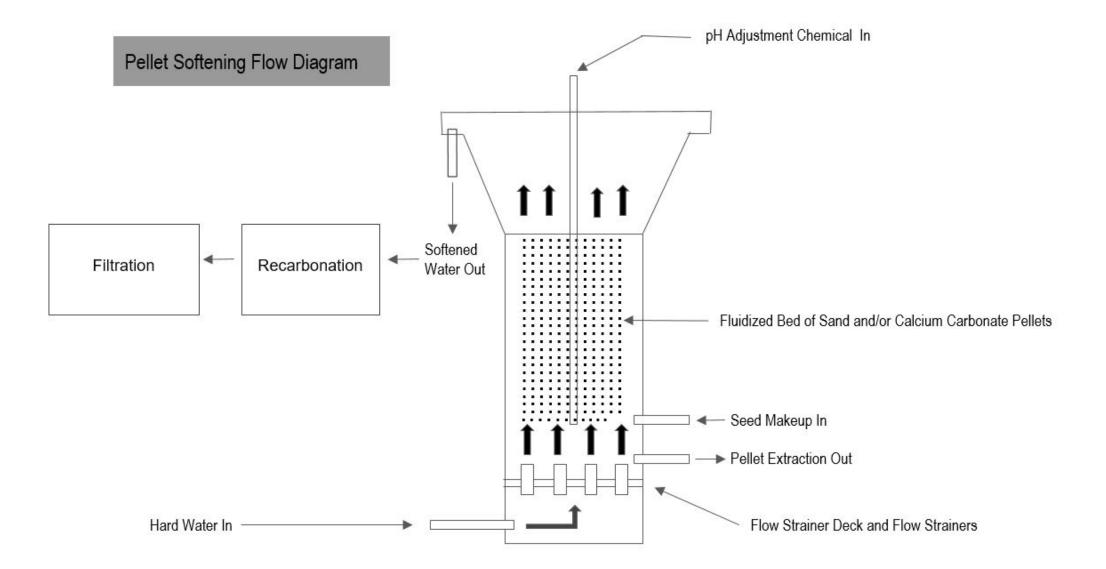
Why Use Pellet Softening?

- Simple operation, no moving parts
- Small process footprint
- No mechanical dewatering of waste pellets required (pellets self-dewater to 95% solids)
- Reduces hardness, iron, manganese, along with other compounds that can be precipitated
- Can operate with caustic or lime for pH adjustment
- Pellets can be repurposed (crushed for reactor seed, construction fill, concrete production, animal feed supplement)

When to Use Pellet Softening?

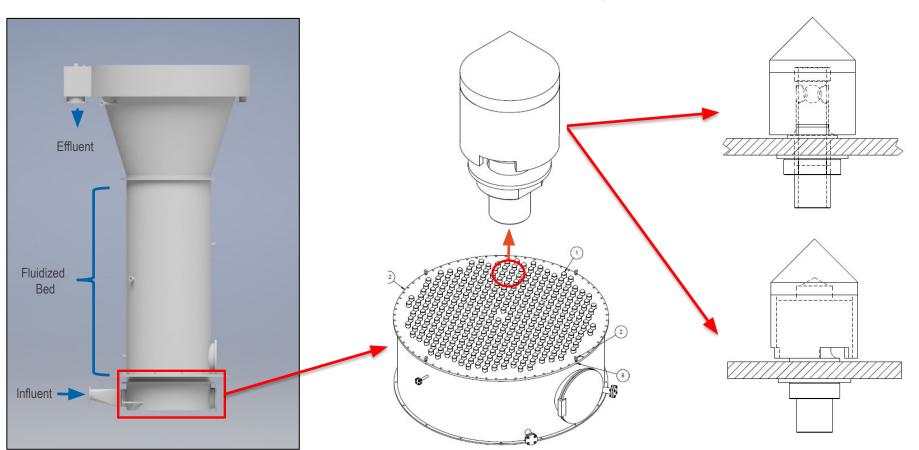
- Current or future disposal limitations for lime sludge or membrane brine
- Need to expand capacity but don't have the space
- Lime softening operating costs increasing (sludge disposal, cost of lime, lime equipment failure, filter performance)
- New water source to be treated with high hardness
- Pretreatment to ion exchange: minimize brine production and extend media life
- Treatment of membrane brine / concentrate for potential recovery/reuse



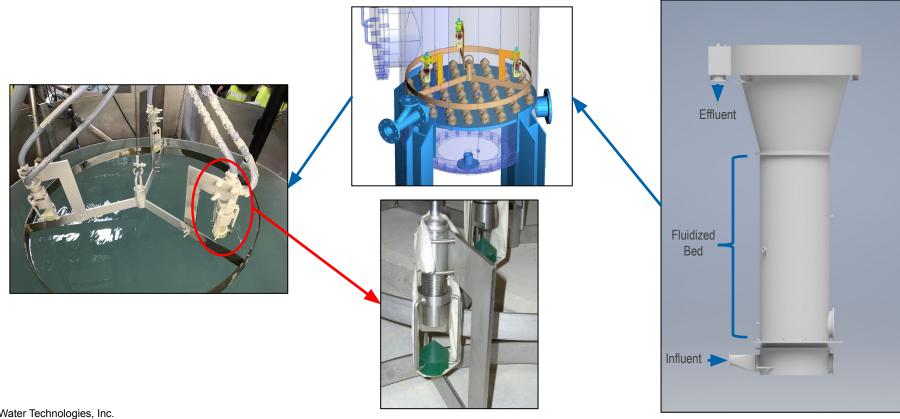

ACTINA™ Pellet Softening Process

What is it and what does it do?

- o Simple, fluidized bed reactor that uses a catalyst (silica sand and/or crushed pellets) to promote calcium carbonate precipitation
- Reduces calcium hardness (70 90%) while producing a reusable, easily dewatered pellet
- Reduces Iron, Magnesium, Manganese, and other compounds through the precipitation reaction


ACTINA™ Pellet Softening Process Flow Diagram

How is the influent flow distributed through the reactor?

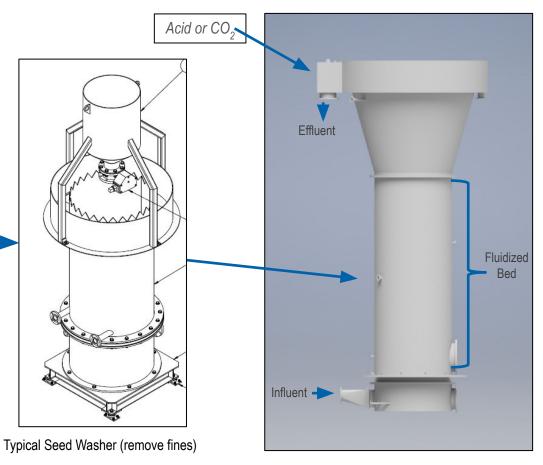

- At the bottom of the reactor is a strainer plate which has numerous flow distribution nozzle strainers installed
- Veolia's strainers are specifically designed for pellet softening and allow for material in raw water to pass
- Even distribution of flow is critical to pellet softening

What chemicals are required?

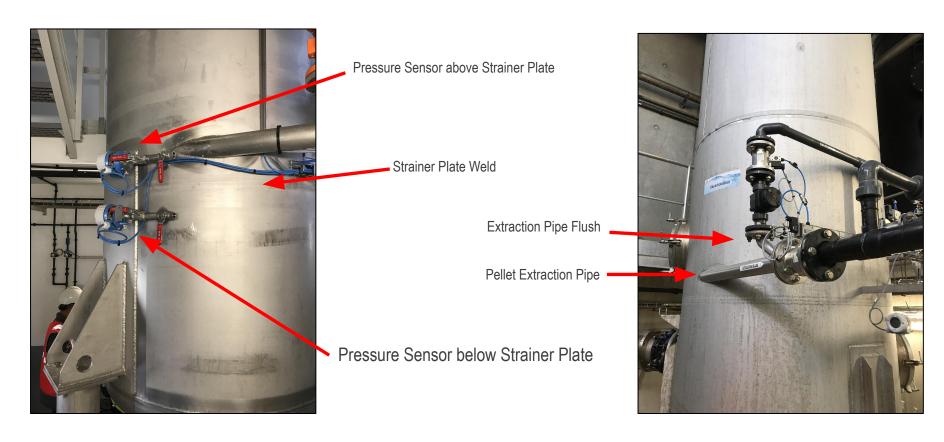
- Raw water pH is increased to 8.8 9.5 with caustic soda or lime to reduce calcium carbonate solubility
- Softened water (post ACTINA) pH is reduced with acid or CO₂ to stop the precipitation of calcium carbonate
- Caustic or lime + softened carrier water is pumped to a removable "Chandelier" that sits in the reactor, just above nozzle deck
- Exclusive Veolia Nozzle design ensures equal distribution of chemical across reactor cross section

What chemicals are required?

- The fluidized bed catalyst can be sand, or calcium carbonate pellets
- Softened water pH is reduced with acid or CO₂ to stop the precipitation of calcium carbonate Catalyst is added by pump or eductor into the side of the reactor or at the top
- Fresh catalyst is added periodically over the course of a day (2 to 3 x)
- Post pH adjustment is added into ACTINA effluent box


Small Capacity Systems Seed Eductor

Mid Capacity Systems Bulk Bag + Inductor



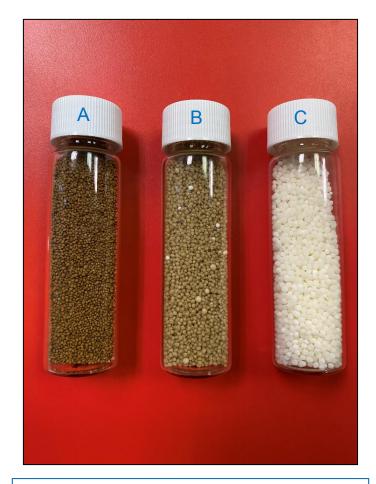
Large Capacity Systems Silo +Feed Auger

When and how are the mature pellets extracted from the reactor?

- o Pressure is continuously measured above and below strainer plate
- o Once a predetermined differential pressure is reach the pellets are extracted by a pump or gravity
- After each extraction the pipe is flushed
- o Pellet extraction and catalyst addition is automated, without stopping influent flow

How are the extracted pellets dewatered and handled?

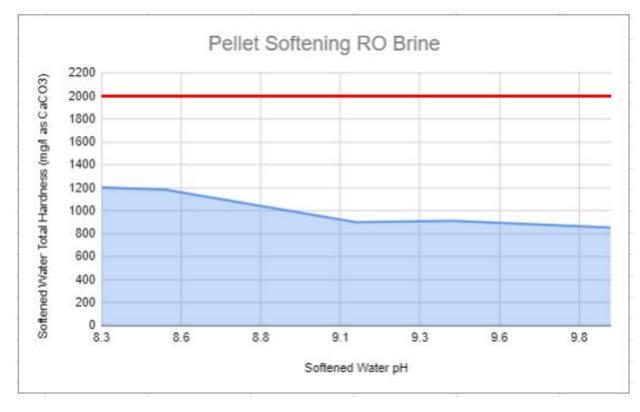
- Pellets are self draining no mechanical dewatering required
- Bin with drain capabilities most common (1 or 1 + 1 standby)
- o For larger facilities, a silo with truck unloading



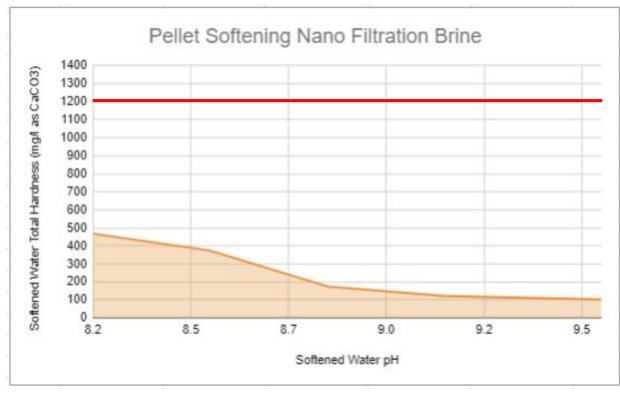
Pellet Softening Expected Performance

Parameter (mg/l)	pH Adjustment + Filtration		
Total Hardness	55 to 75 %		
Calcium Hardness	75 to 95%		
Magnesium Hardness	10 to 20%		
Total Organic Carbon	5 to 10% with NaOH		
	15 to 20% with lime		
Iron	50 to 85%		
Manganese	70 to 80%		
Fluoride	10 to 30%		
Sulfate	10 to 20%		

Influent Groundwater Quality


Vial A = Iron 3 mg/l, TH 300 mg/l

Vial B = Manganese 1 mg/l, TH 475 mg/l


Vial C = No Iron or Mn, TH 400 mg/l

Pellet Softening Nano/RO Filtration Reject Performance Examples

Influent Total Hardness at Time of Testing

Pellet Softening Operating Cost Example

Boynton Beach, FL

8 MGD Lime Softening Annual Chemical and Sludge Handling Costs (Existing)

Lime = \$480,000 Polymer = \$27,000

Sludge Handling/Hauling = \$100,000 Sludge Lagoon Dredging = \$30,000

Yearly TOTAL = \$637,000

Estimated Pellet Softening Chemical and Pellet Handling Costs (with Caustic)

Caustic = \$340,000 Polymer = \$0

Pellet Handling/Hauling = \$30,000 Sludge Lagoon Dredging = \$8,500 Catalyst (sand) = \$40,000

Yearly TOTAL = \$420,000

\$220,000 savings per year

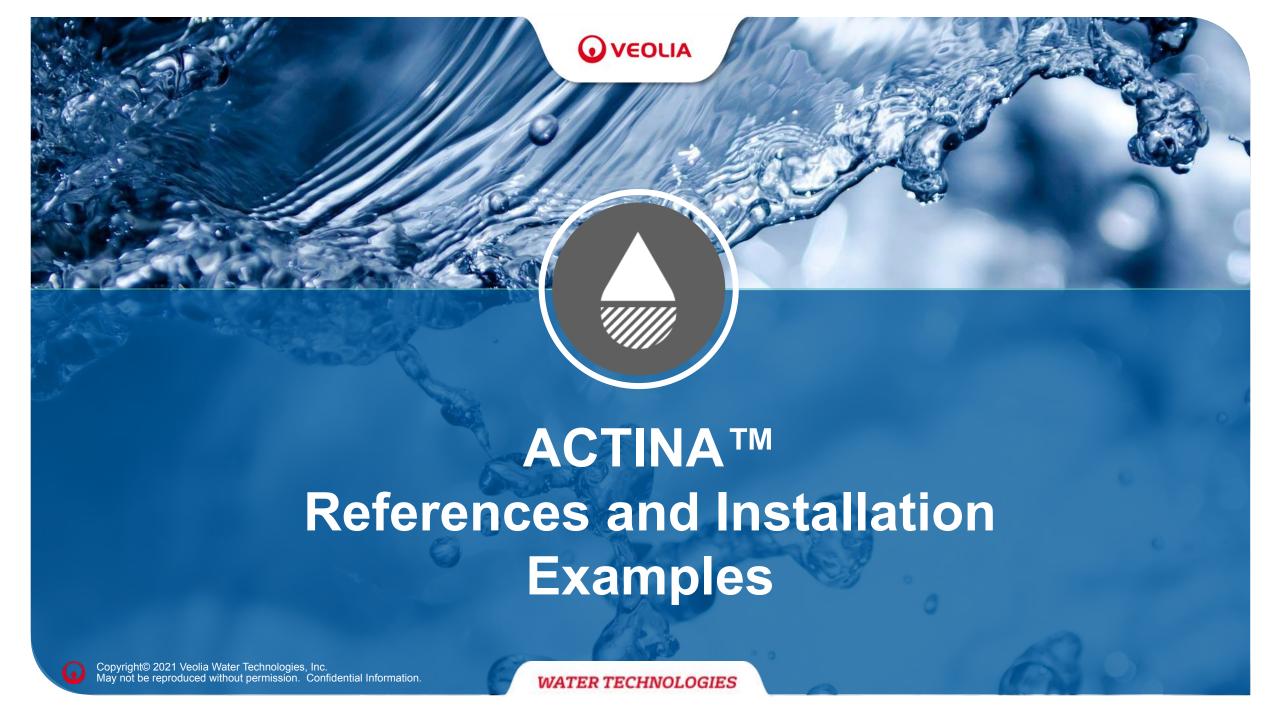
(Additional savings in labor and power not included in this number)

Pellet Softening Life Cycle Cost Example (by Stantec)

New Smyrna Beach, FL

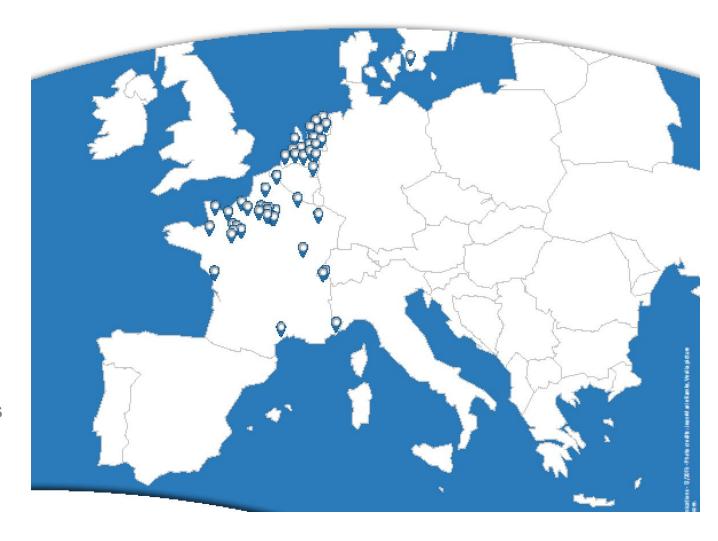
5 MGD Lime Softening Plant

- Similar initial evaluation completed for chemical, sludge hauling and lagoon dredging was completed
- Pellet softening showed a \$330,000 per year saving potential
- Four treatment options considered to increase capacity from 5 MGD to 8.3 MGD


20 YEAR NPV COMPARISONS (Capital, OPEX, installation)

Membrane Softening at New Site = \$44,100,000
Lime and Membrane Softening at Existing Site = \$34,900,000
Expand Lime Softening at Existing Site = \$29,120,000
Pellet Softening at Existing Site = \$21,500,000

- ✓ Pellet Softening:
- 42% less chemicals compared options with lime softening
- ✓ 95% less energy than membranes
- ✓ 50% less energy than lime softening
- 47% less labor than lime softening



ACTINA™ Installation Base

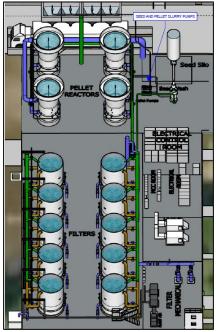
50+ Installations Worldwide

- 30 years of design experience
- Largest installation 80 MGD
- Smallest installations 0.2 MGD
- 17 installations 2 MGD or less
- 19 installations with flow rates 2 10 MGD
- 14 installations > 10 MGD
- Latest installations benefit from lessons learned and operating experience

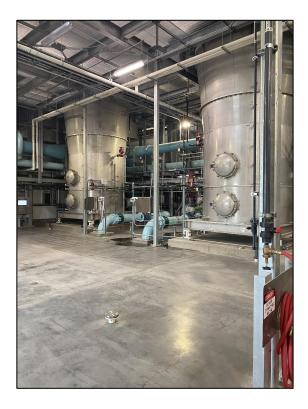
ACTINA™ Pilot and Fullscale References - USA

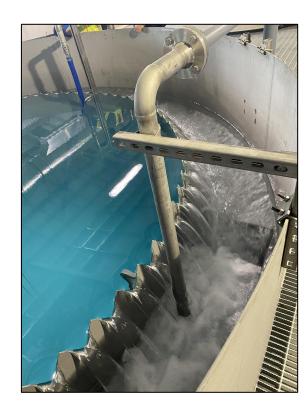
ACTINA™ Installation Example

South Adams County, Colorado


- 3 Pellet Reactors each rated for 4.6 MGD (13.8 MGD total)
- Media Filtration
- Ion Exchange (caustic carry water)
- Commissioned March 2021




Courtesy of Carollo Engineering


ACTINA™ Installation Example

South Adams County, Colorado

- 3 Pellet Reactors each rated for 4.6 MGD (13.8 MGD total)
- Media Filtration
- Ion Exchange (caustic carry water)
- Commissioned March 2021

ACTINA™ Pilot Units

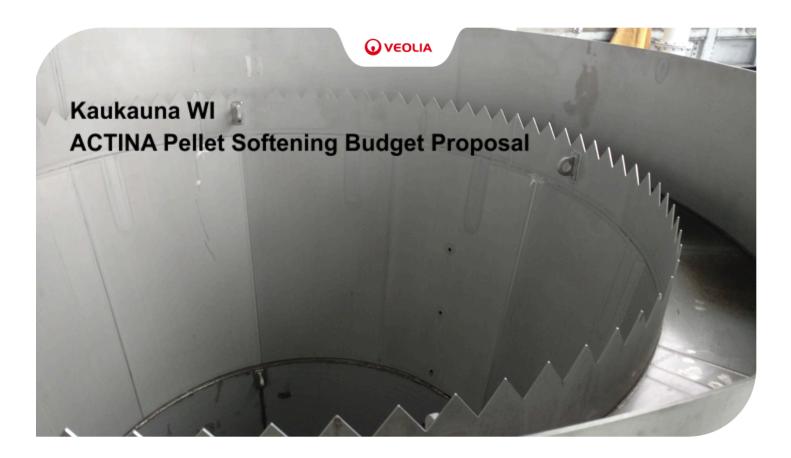
Pilots are rated to treat 10 – 14 gpm

- Pilots Consist of Two skids
 - ACTINA Reactor
 - Control Panel with Chemical Feed
- Can be used with caustic or lime
- Automatic control of pellet extraction
- Numerous reactor heights available to test

Wrap-Up

Simple to Operate Technology

Self-Dewatering Pellets


30+ Years of Experience & Expertise

Demonstration Units Available

Additional Questions?
Harrison Fowler
Sales Engineer - Softening

910-625-5536

Kruger Project: 5704149001

Proposal Date: 2/15/2024

This document is confidential and may contain proprietary information. It is not to be disclosed to a third party without the written consent of Veolia Water Technologies.

1. PRICING TERMS AND SCHEDULE

1.1. DESCRIPTION OF WORK

Kruger, an equipment supplier, proposes and agrees to furnish all labor services, materials, equipment, and all other items and facilities necessary to supply and deliver the equipment items as specified in these Proposal Documents and conditions stated herein.

1.2. PROPOSAL PRICE

Price includes ACTINA system as well as instrumentation and controls as detailed herein. Kruger's budget proposal is expressly conditioned upon the scope of supply, all terms and conditions, pricing and Kruger's Terms of Sale as included herein.

The price excludes sales and/or use taxes. Buyer agrees to provide the necessary tax-exempt certification or Reseller documentation for sales taxes exemption within thirty (30) days after receipt of a purchase agreement executed by all parties.

Kruger shall furnish and deliver (DDP Jobsite, freight estimated) ACTINA Equipment as well as instrumentation and controls, equipment drawings, start-up and other services, in conformance to the requirements set forth in this document for the Lump Sum price of:

\$2,830,000

Please note the price above is for the equipment and labor for both sites. There is currently no allowance for pilot testing in the price above.

The price is valid for 14 days from the date of this Proposal. The proposed goods may be affected by the ongoing market fluctuations impacting material and shipping costs. Kruger reserves the right to re-evaluate the Proposal price prior to order acceptance.

The price above includes **\$120,000** of shipping and freight costs. Please note that this shipping allowance is the total for both sites. Please note that shipping will be billed based on actual price at time of delivery.

1.3. LIQUIDATED DAMAGES

Kruger shall not accept liquidated damages from Buyer, unless otherwise agreed to in writing between Buyer and Supplier. In any event, Kruger shall not be liable for liquidated damages imposed on an installing general contractor by the Owner.

1.4. TERMS OF PAYMENT AND CONDITION OF SALE

The terms of payment are 30% upon execution of contract and 70% upon delivery of equipment to destination.

Payment shall not be contingent upon receipt of funds by the CONTRACTOR from the OWNER and there shall be no retention in payments due to Kruger. All payment terms are net 30 days from the date of invoice. Final payment shall not exceed 120 days from delivery of equipment. All other payment terms are as defined in Kruger's Standard Terms of Sale.

1.5. BONDS

Pricing does <u>not</u> include bonds. If bonds are required, Kruger shall provide a quotation as an adder that will be based upon a quotation from our Surety.

1.6. DELIVERY SCHEDULE

Equipment drawings will be submitted within 6 to 8 weeks of receipt of an executed Purchase Agreement signed by all parties.

All equipment will be delivered within 20-24 weeks of the delivery and acceptance of equipment drawings.

If Kruger is able to ship equipment sooner than the above schedule, the contractor must accept deliveries and provide adequate storage on-site for such equipment.

Operation and Maintenance Manuals will be submitted within 30 days prior to delivery of equipment.

1.7. CONTACT INFORMATION

This budget proposal is respectfully submitted by:

	Kruger Contact
Name	Harrison Fowler
Company	Veolia Kruger
Address	Cary, NC
Mobile	(910) 625-5536
Email	harrison.fowler@veolia.com

1.8. PROPRIETARY INFORMATION

The information or data contained in this proposal is proprietary to Kruger and should not be copied, reproduced, duplicated, or disclosed to any third party, in whole or part, without the prior written consent of Kruger. This restriction will not apply to any information or data that is available to the public generally.

1.9. STATEMENT REGARDING COVID-19

Veolia shall not be held liable in the event of a non-compliance with its obligations set forth herein to the extent such non-compliance is due to the consequences of the Covid-19 pandemic including without limitation (i) obligation to comply with the legislation enacted or measures taken by the authorities to address the Covid-19 pandemic (including mandatory closures, requisitions, transport limitations, social distancing requirements), (ii) observance of hygiene and security rules and recommendations resulting from the Covid-19 pandemic, (iii) inability to supply or distribute to relevant personnel appropriate personal protective equipment for the tasks to be performed, as a result of shortages of supply resulting from the Covid-19 pandemic, (iv) inability of a Veolia subcontractor or supplier to comply with its obligations for the reasons mentioned above; and to the extent the resulting impediments cannot be reasonably overcome.

In the event such consequences of the Covid-19 pandemic render Veolia's performance hereunder more onerous than could have been anticipated at the date hereof the parties shall negotiate alternative contractual terms, including for delivery/performance dates or service levels, which reasonably allow for the impact of the consequences of the Covid-19 pandemic referred to here above.

1.10. CONTRACT PRICE

Veolia shall be entitled to an adjustment of the Contract Price and/or time of performance in connection with exceptional circumstances beyond Veolia's control such as, without limitation, raw materials shortages, sudden fluctuations of raw material pricing, extension, suspension or delay of the the project schedule, sudden disruption on production of Goods and/or spare parts required for the Project, which may affect the execution of Veolia's timely performance of the Work or affect it financially. Veolia shall notify the Owner accordingly within ten (10) days from the actual knowledge of such circumstances. Following submission of such notice, Veolia shall provide relevant justification reasonably satisfactory to the Owner to proceed to the necessary adjustments to the Contract Price and/or time of performance under the Contract.

2. KRUGER - TERMS OF SALE

- 1. Applicable Terms. These terms govern the purchase and sale of the equipment and related services, if any (collectively, "Equipment"), referred to in Seller's purchase order, quotation, proposal or acknowledgment, as the case may be ("Seller's Documentation"). Whether these terms are included in an offer or an acceptance by Seller, such offer or acceptance is conditioned on Buyer's assent to these terms. Seller rejects all additional or different terms in any of Buyer's forms or documents.
- 2. <u>Payment.</u> Buyer shall pay Seller the full purchase price as set forth in Seller's Documentation. Unless Seller's Documentation provides otherwise, freight, storage, insurance and all taxes, duties or other governmental charges relating to the Equipment shall be paid by Buyer. If Seller is required to pay any such charges, Buyer shall immediately reimburse Seller. All payments are due within 30 days after receipt of invoice. Buyer shall be charged the lower of 1 ½% interest per month or the maximum legal rate on all amounts not received by the due date and shall pay all of Seller's reasonable costs (including attorneys' fees) of collecting amounts due but unpaid. All orders are subject to credit approval.
- 3. <u>Delivery.</u> Delivery of the Equipment shall be in material compliance with the schedule in Seller's Documentation. Unless Seller's Documentation provides otherwise, Delivery terms are F.O.B. Seller's facility.
- 4. Ownership of Materials. All devices, designs (including drawings, plans and specifications), estimates, prices, notes, electronic data and other documents or information prepared or disclosed by Seller, and all related intellectual property rights, shall remain Seller's property. Seller grants Buyer a non-exclusive, non-transferable license to use any such material solely for Buyer's use of the Equipment. Buyer shall not disclose any such material to third parties without Seller's prior written consent.
- 5. Changes. Seller shall not implement any changes in the scope of work described in Seller's Documentation unless Buyer and Seller agree in writing to the details of the change and any resulting price, schedule or other contractual modifications. This includes any changes necessitated by a change in applicable law occurring after the effective date of any contract including these terms.
- 6. Warranty. Subject to the following sentence, Seller warrants to Buyer that the Equipment shall materially conform to the description in Seller's Documentation and shall be free from defects in material and workmanship. The foregoing warranty shall not apply to any Equipment that is specified or otherwise demanded by Buyer and is not manufactured or selected by Seller, as to which (i) Seller hereby assigns to Buyer, to the extent assignable, any warranties made to Seller and (ii) Seller shall have no other liability to Buyer under warranty, tort or any other legal theory. If Buyer gives Seller prompt written notice of breach of this warranty within 18 months from delivery or 1 year from beneficial use, whichever occurs first (the "Warranty Period"), Seller shall, at its sole option and as Buyer's sole remedy, repair or replace the subject parts or refund the purchase price therefore. If Seller determines that any claimed breach is not, in fact, covered by this warranty, Buyer shall pay Seller its then customary charges for any repair or replacement made by Seller. Seller's warranty is conditioned on Buyer's (a) operating and maintaining the Equipment in accordance with Seller's instructions, (b) not making any unauthorized repairs or alterations, and (c) not being in default of any payment obligation to Seller. Seller's warranty does not cover damage caused by chemical action or abrasive material, misuse or improper installation (unless installed by Seller). THE WARRANTIES SET FORTH IN THIS SECTION ARE SELLER'S SOLE AND EXCLUSIVE WARRANTIES AND ARE SUBJECT TO SECTION 10 BELOW. SELLER MAKES NO OTHER WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR PURPOSE.
- 7. Indemnity. Seller shall indemnify, defend and hold Buyer harmless from any claim, cause of action or liability incurred by Buyer as a result of third party claims for personal injury, death or damage to tangible property, to the extent caused by Seller's negligence. Seller shall have the sole authority to direct the defense of and settle any indemnified claim. Seller's indemnification is conditioned on Buyer (a) promptly, within the Warranty Period, notifying Seller of any claim, and (b) providing reasonable cooperation in the defense of any claim.
- 8. <u>Force Majeure.</u> Neither Seller nor Buyer shall have any liability for any breach (except for breach of payment obligations) caused by extreme weather or other act of God, strike or other labor shortage or disturbance, fire, accident, war or civil disturbance, delay of carriers, failure of normal sources of supply, act of government or any other cause beyond such party's reasonable control.
- 9. <u>Cancellation</u>. If Buyer cancels or suspends its order for any reason other than Seller's breach, Buyer shall promptly pay Seller for work performed prior to cancellation or suspension and any other direct costs incurred by Seller as a result of such cancellation or suspension.
- 10. <u>LIMITATION OF LIABILITY.</u> NOTWITHSTANDING ANYTHING ELSE TO THE CONTRARY, SELLER SHALL NOT BE LIABLE FOR ANY CONSEQUENTIAL, INCIDENTAL, SPECIAL, PUNITIVE OR OTHER INDIRECT DAMAGES, AND SELLER'S TOTAL LIABILITY ARISING AT ANY TIME FROM THE SALE OR USE OF THE EQUIPMENT SHALL NOT EXCEED THE PURCHASE PRICE PAID FOR THE EQUIPMENT. THESE LIMITATIONS APPLY WHETHER THE LIABILITY IS BASED ON CONTRACT, TORT, STRICT LIABILITY OR ANY OTHER THEORY.
- 11. Miscellaneous. If these terms are issued in connection with a government contract, they shall be deemed to include those federal acquisition regulations that are required by law to be included. These terms, together with any quotation, purchase order or acknowledgement issued or signed by the Seller, comprise the complete and exclusive statement of the agreement between the parties (the "Agreement") and supersede any terms contained in Buyer's documents, unless separately signed by Seller. No part of the Agreement may be changed or canceled except by a written document signed by Seller and Buyer. No course of dealing or performance, usage of trade or failure to enforce any term shall be used to modify the Agreement. If any of these terms is unenforceable, such term shall be limited only to the extent necessary to make it enforceable, and all other terms shall remain in full force and effect. Buyer may not assign or permit any other transfer of the Agreement without Seller's prior written consent. The Agreement shall be governed by the laws of the State of North Carolina without regard to its conflict of laws provisions.

3. DESIGN SUMMARY

3.1. DESIGN CRITERIA

The proposed System is designed per the following design summary:

Table 1: Influent & Effluent Design Criteria

Treatment Capacity	MGD	
Treatment Flow	2.3 & 2.52	
Raw Water Characteristics	Value	
рН	7.2	
Alkalinity, mg/L as CaCO₃	188.6	
Total Hardness, mg/L as CaCO₃	677	
Calcium, mg/L	226.6	
Magnesium, mg/L	20.6	
Strontium, mg/L	23.6	
Iron, mg/L	0.62	
Softened Water Characteristics	Expected Effluent Performance	
Total Hardness, mg/L as CaCO₃	120-150	

4. EQUIPMENT SCOPE OF SUPPLY

Equipment Items	Qty	Description
800 & 875 gpm (2.3 & 2.52 MGD Total Flow) Pellet Softening Reactor	4	 304 SS construction, flat bottom One manways, one above and one below the strainer deck per reactor One pellet extraction pipes per reactor and an adjustable effluent weir Sufficient number of flow strainers to evenly distribute influent flow through the reactor bed Influent and Effluent flow flanged connections Two reactors designed for 800 gpm (2.3 MGD) Two reactors designed for 875 gpm (2.52 MGD)
Removable Caustic Soda Injection Chandelier	5	 One per reactor + one shelf spare 304 SS frame with lifting connection Sufficient number of chemical dispersion nozzles required for the size of the reactor
Sodium Hydroxide Feed Skid	2	 One skid per site Corrosion resistant chemical skid Volumetric metering pumps with variable speed drives Skid components to include: Pressure relief valves Check valves Isolation valves Calibration column Pressure gauge Piping and fittings
Seed Washer	2	 One seed washer per site 304 SS construction Flow strainers to evenly distribute flow through the washer Influent and outlet flow flanged connections Two seed extraction pipes with flanged connections
Pellet Extraction Pump	4	 4 duty, one per reactor Belt driven, centrifugal slurry pump with food grade rubber casing liners and impeller Closed vane impeller Dry gland IEEE841 Motor Subframe and drip tray Standard paint finish 1 pump per reactor in duty
Seed Transfer Pump	4	 4 duty, one per reactor V-Belt and pulley driven, cast iron centrifugal slurry pump with food grade rubber liner and open vane impeller Dry gland seal with drip pan TEFC, premium efficient, inverter duty motor, 230/460V, 3-phase, 60 Hz, 10 HP (Est.)
Carrier Water Softener	2	 One carrier water softener skid per site Two vessel, ion exchange softener Electronic controllers with digital display Polyethylene brine storage tank Automatic backwash flow controller Ion exchange media

Valves	LOT	 One (1) 9" Influent Automated Butterfly Valve (4 Total) One (1) 12" Effluent Automated Butterfly Valve (4 Total) Two (2) Automated Pinch Valves per Extraction Line (8 Total) One (1) Solenoid Valve per Extraction Line (4 Total) Manual valves as required
Spare Parts	1 lot	50 flow strainers

4.1. Control Panel and Instrumentation

ACTINA Control Panel

Two (2) main PLC Based Control panels, one for each site, will be supplied to control the ACTINA Process based on operator setpoints. All field wiring and field terminations are by others. The Control Panel will be completely assembled, tested, and programmed for the required functionality. U. L. labeled Panel's will be comprised of the following:

Qty	Description	Manufacturer
2	NEMA 12 Enclosure	Saginaw
2	PLC Processor	Allen Bradley
2	HMI Operator Interface	Allen Bradley
2	PLC and Operator Interface Programming	Kruger
2	PLC site Start-Up and Testing	Kruger

Per agreement with the owner, the ACTINA PLC will communicate with the Plant SCADA System via Allen Bradley Ethernet IP. Any third party modules, gateways or configuration required is the responsibility of the integrator.

Each PLC Control Panel will include the necessary input/output plus twenty percent (20%) "Live" spare wired signals for future or additional signal interface.

All PLC and Operator Interface programming are based on Kruger standards. Any requests or requirements that would deviate from this standard will result in additional costs. Kruger will be providing PLC/Operator Interface programming only for the Kruger supplied PLC Control Panel.

The PLC Program and Operator Interface Program and its associated Graphic screens developed by Kruger are for use on the Kruger supplied PLC and Operator Interface only. The Kruger supplied PLC Program and Operator Interface Program and its associated Graphic screens cannot be used, whole or any part for other uses.

Kruger will use Allen Bradley development software for PLC Programming and Operator Interface Programming; the development software is licensed to Kruger and will not be provided as part of this scope. Kruger will not be providing any PLC, Network, Operator Interface, SCADA, or Alarm Notification software.

Kruger will supply copies of the completed PLC and Operator Interface programs at job completion. Prior to supplying completed PLC and Operator Interface programs, Kruger requests that a non-disclosure agreement be signed and returned to Kruger.

Factory testing of the Kruger PLC Control Panel will be conducted by Kruger personnel at a Kruger selected Panel Facility. Kruger reserves the right to conduct this testing when it is deemed appropriate in regards to Kruger personnel. Kruger has an established Panel testing criteria and will conduct all Panel and Software testing per Kruger standards. When said Panel/Software testing is complete, a Test Report will be generated per Kruger standards. Other party's are welcome to witness panel testing at no expense to Kruger. Testing can be witnessed at an agreed upon date that does not impact delivery or start-up schedules.

No other Instruments, Control Panel Components (PLC or other components) will be supplied unless they are explicitly listed in this Scope of Supply.

Field Instruments

Qty	Description	Manufacturer
4	Immersion pH Meter DPD1P1 w/ SC200 Transmitter	Hach
4	Solitax Turbidity Probe	Hach
8	Differential Pressure Transmitter (PMD75)	Endress+Hauser

Kruger will calibrate and start-up Instruments supplied by Kruger. Instruments supplied by others will require calibration and start-up by others.

IMPORTANT NOTE: NO ADDITIONAL TOOLS AND/OR SPARE PARTS OTHER THAN LISTED ABOVE WILL BE PROVIDED AS PART OF KRUGER'S SCOPE OF SUPPLY. OIL AND LUBRICANTS ARE <u>NOT</u> INCLUDED AS PART OF KRUGER'S SCOPE OF SUPPLY. THESE ARE TO BE THE RESPONSIBILITY OF THE CONTRACTOR.

4.2. SCOPE OF WORK

Kruger is responsible for process design and equipment procurement required for the ACTINA process. Kruger scope of work does not include any equipment, materials or other services not specifically defined in this proposal. The equipment scope of supply shall include the equipment as shown in the attached scope of supply.

4.3. PROCESS DESIGN AND ENGINEERING

Kruger will perform engineering in accordance with the applicable national codes, standards, and/or regulations (except where otherwise noted) in effect at the time of this proposal. Reactor drawings will not be stamped by a professional engineer, if this is required a cost adder will apply. Additionally, Kruger will provide equipment drawings only, site layout and piping runs by others. Kruger is not responsible for the design, selection, installation, operation, or maintenance of any material, equipment, or services provided by others.

Kruger will provide process engineering and design support for the system as follows:

- 1. Technical instruction for operation and start-up of the system
- 2. Equipment drawings
- 3. Equipment installation instructions
- 4. O&M manuals

4.4. FIELD SERVICE

Kruger shall supply the following services of one (1) system-trained representative as detailed herein, per site:

• Ten (10) days, in not more than four (4) trips to assist with inspection check-out, start-up, and operator training.

NOTES:

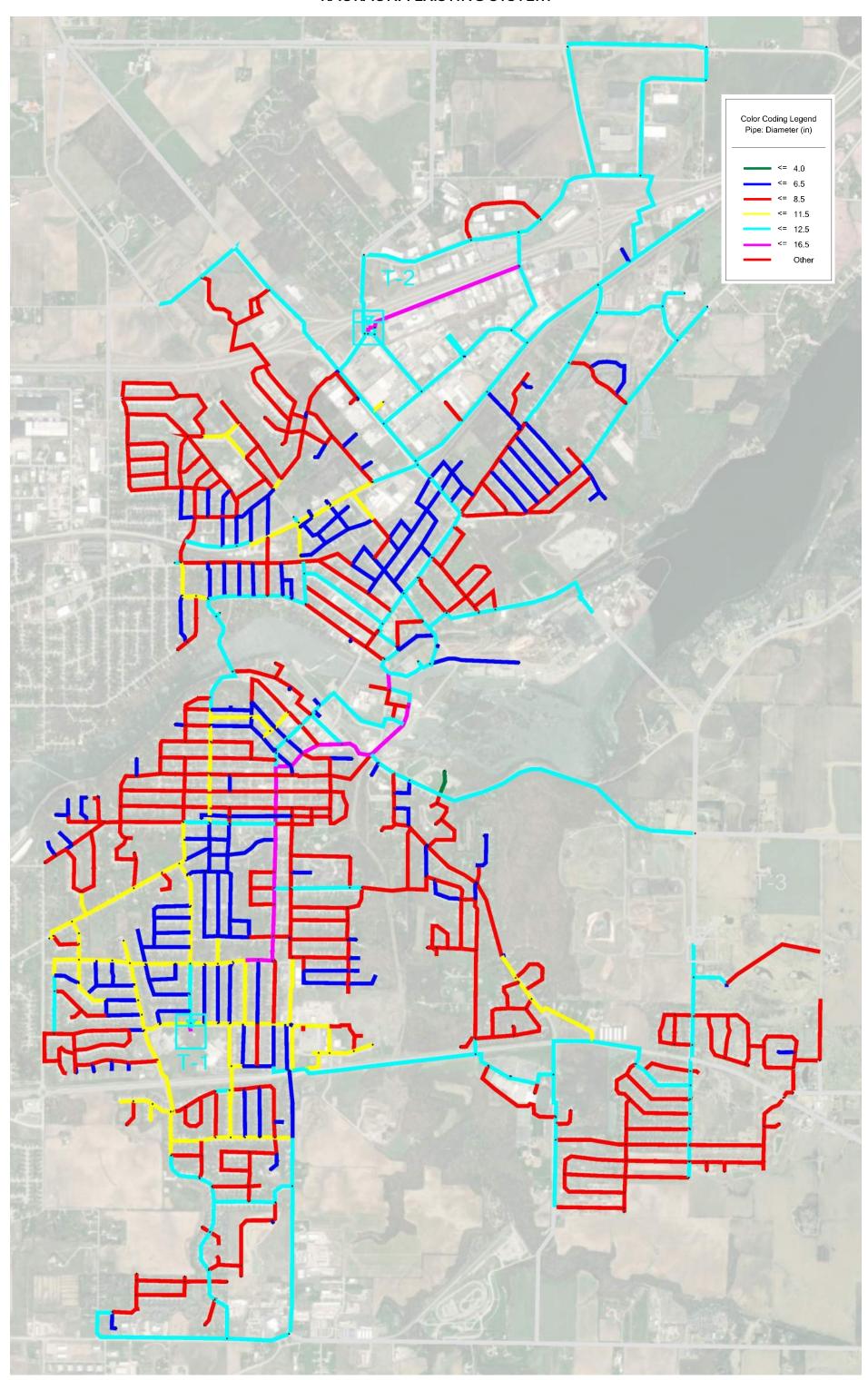
- Please note that the trips and days describe above are for EACH site.
- Man-days are eight hour days Monday through Friday that include travel time.
- Man-days and/or trips required beyond those indicated above will be billed at Kruger's
 published standard rates at time of service, plus travel and lodging costs. Such additional
 days could become necessary for correction of improperly installed equipment or
 instrumentation, prolonged construction time, or Contractor's failure to properly coordinate
 start-up and training.

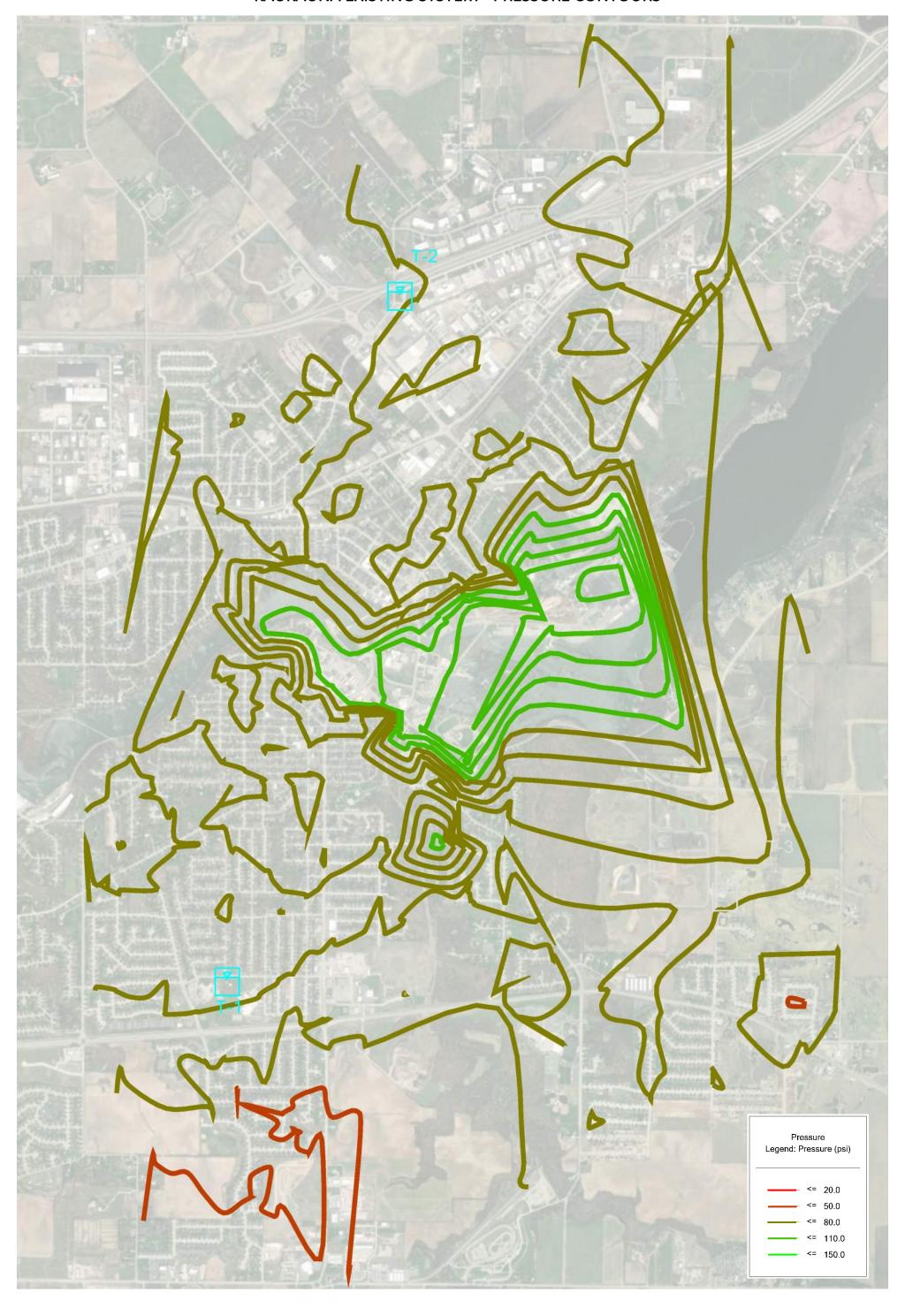
5. ITEMS NOT INCLUDED

5.1. SCOPE OF SUPPLY BY OTHERS

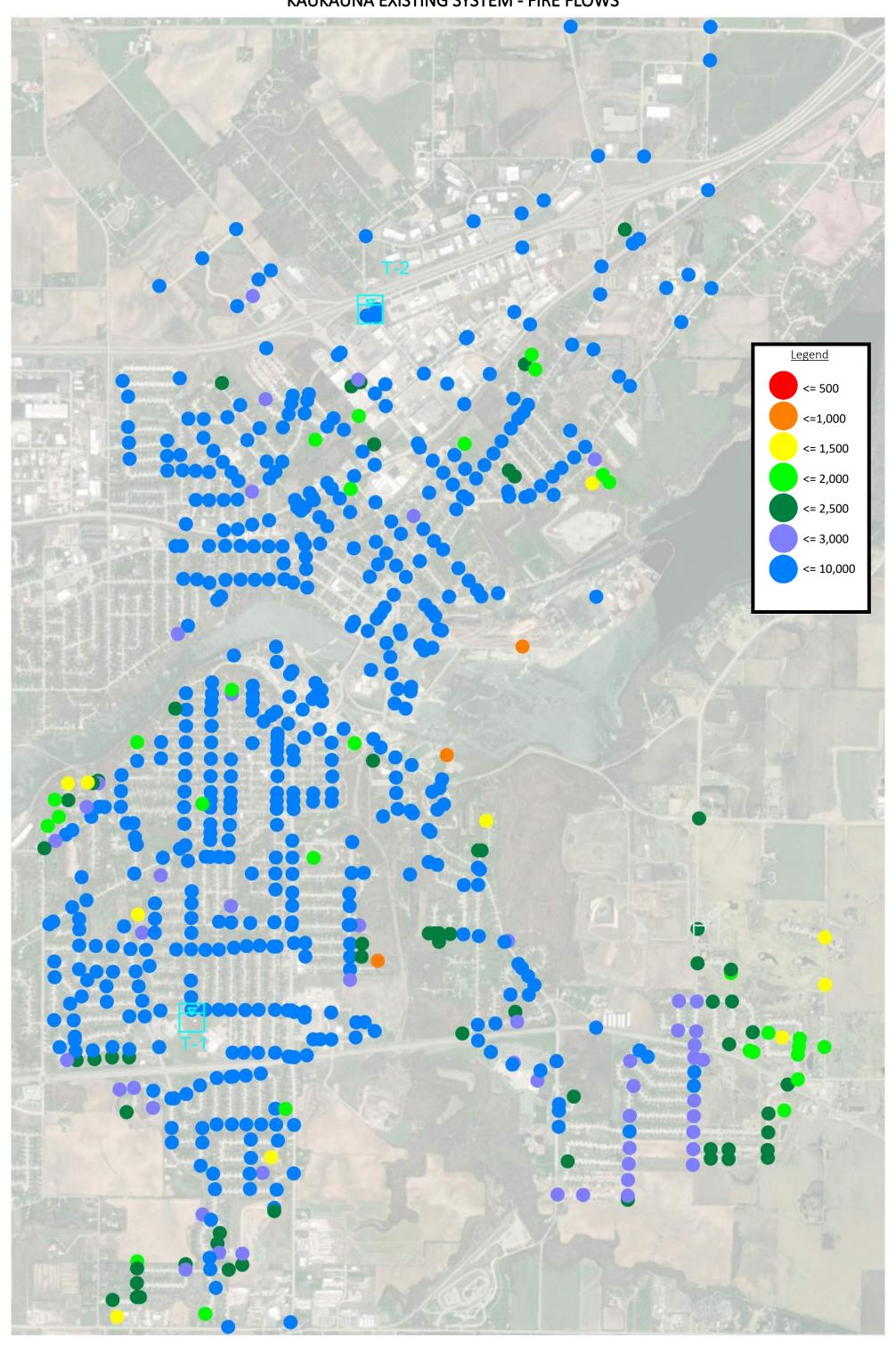
Unless otherwise indicated in this Scope of Supply document, the Contractor shall furnish the following items. The Contractors scope is not necessarily limited to this list:

- 1. Others shall provide access to the facilities for Kruger field personnel to inspect the installed Kruger equipment. This access shall include, but not be limited to, the following:
 - a. Safe ingress and egress at the reactors.
 - b. Provisions, such as scaffolding or lifting devices, to allow the Kruger inspector to gain close access to installed equipment for a complete and proper inspection.
 - c. Sufficient lighting for safety and inspection visibility purposes.
 - d. Provisions for atmospheric monitoring and ventilation, if necessary.
 - e. Personnel available to provide remedy for items that can be corrected during or just after the inspection.
- 2. Receiving (preparation of receiving reports), unloading, storage, maintenance preservation and protection of all equipment, and materials provided by Kruger.
- 3. Installation of all equipment and materials provided by Kruger.
- 4. Supply and install all bulk storage tanks, pads, and supports not included in Kruger scope of supply.
- 5. Supply, fabrication, installation, cleaning, pickling, and/or passivation of all stainless steel piping components not provided by Kruger.
- 6. All cutting, welding, fitting, and finishing for all field fabricated piping.
- 7. Supply and installation of all flange gaskets and bolts for all piping components not supplied by Kruger.
- 8. Supply and installation of all pipe supports and connection points not supplied by Kruger.
- 9. Provide all motor control centers, motor starters, panels, transformers, and VFDs other than supplied by Kruger.
- 10. Install and terminate all motor control centers, motor starters, panels, transformers, and VFDs.
- 11. Supply and install all chandelier lifting systems and any required cabling
- 12. Supply and install all required caustic feed monitoring equipment to include rotameters, pressure gauges and safety panels to house the equipment
- 13. Supply and install all piping/tubing required to deliver caustic soda and softened carrier water to each pellet softening reactor and to each chandelier tubing manifold.
- 14. Supply and install all electrical power and control wiring and conduit to the equipment served plus interconnection between Kruger's furnished equipment as required, including wire, cable, junction boxes, fittings, conduit, etc.
- 15. Provide softened carrier water for the delivery of caustic soda to each pellet softening reactor
- 16. Provide and install all stainless tubing with grease fittings routed to 4 feet above the floor for any grease fitting located above 5 feet.
- 17. Provide all anchor bolts, epoxy anchor adhesive / applicators and mounting hardware not provided by Kruger.
- 18. Provide and install all piping required to interconnect to the Supplier's equipment.
- 19. Provide all nameplates, safety signs and labels.
- 20. The Contractor shall coordinate the installation and timing of interface points such as piping and electrical with the Supplier.
- 21. Video recording of any training activities.
- 22. Supply and install all sunshields, heat tracing and/or additional enclosures as needed when installing equipment and instrumentation outdoors.
- 23. Collecting samples from the process (including necessary labor, composite samplers, etc.) during the project, including startup, performance testing, and operation of the system.
- 24. Laboratory testing of process samples during the project, including startup, performance testing, and operation of the system.
- 25. Provide all chemicals, lubricants, glycol, oils, or grease and other supplies required for equipment start-up or plant operation.
- 26. Seismic calculations. If seismic calculations are required, they can be provided at additional cost.
- 27. All other equipment and services not otherwise listed as specifically supplied by Kruger.

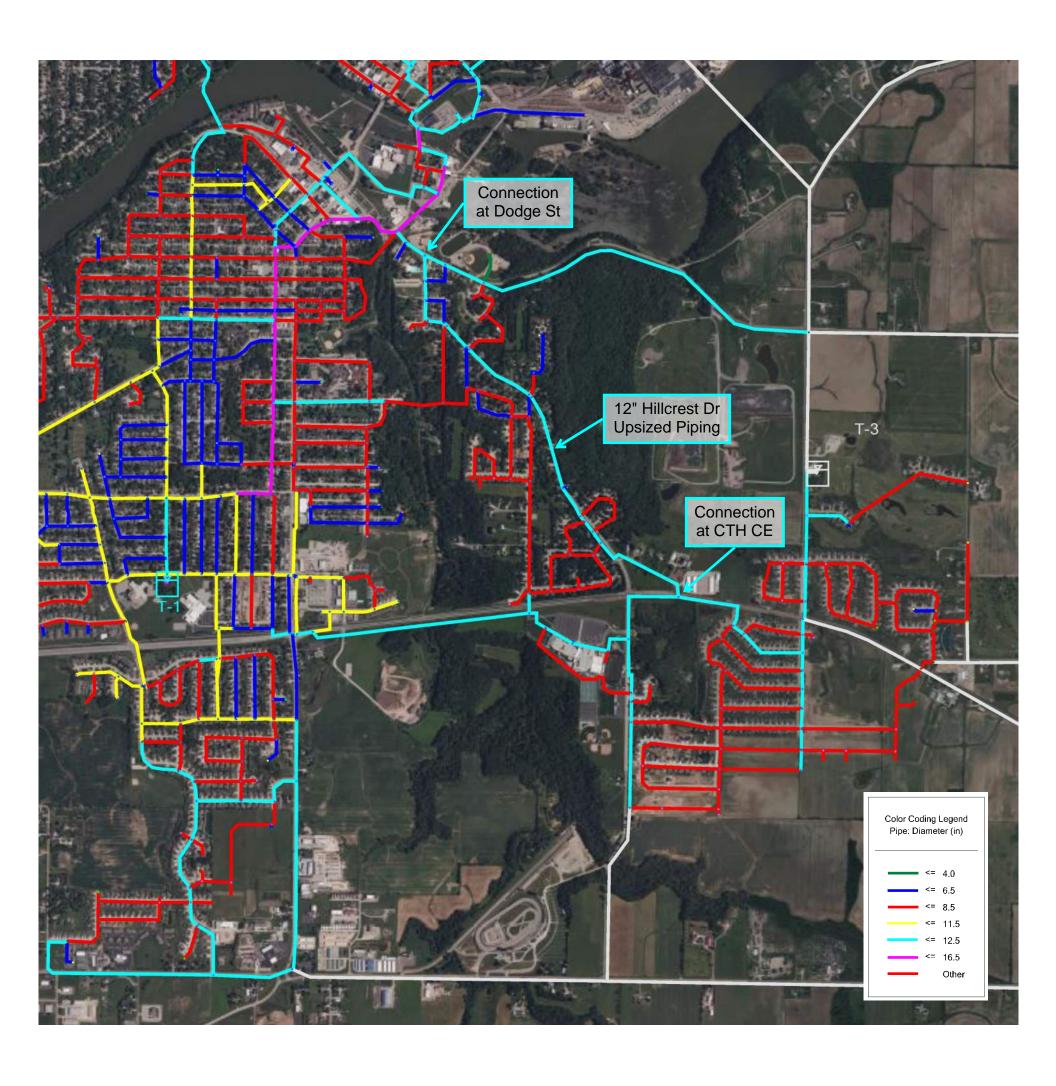


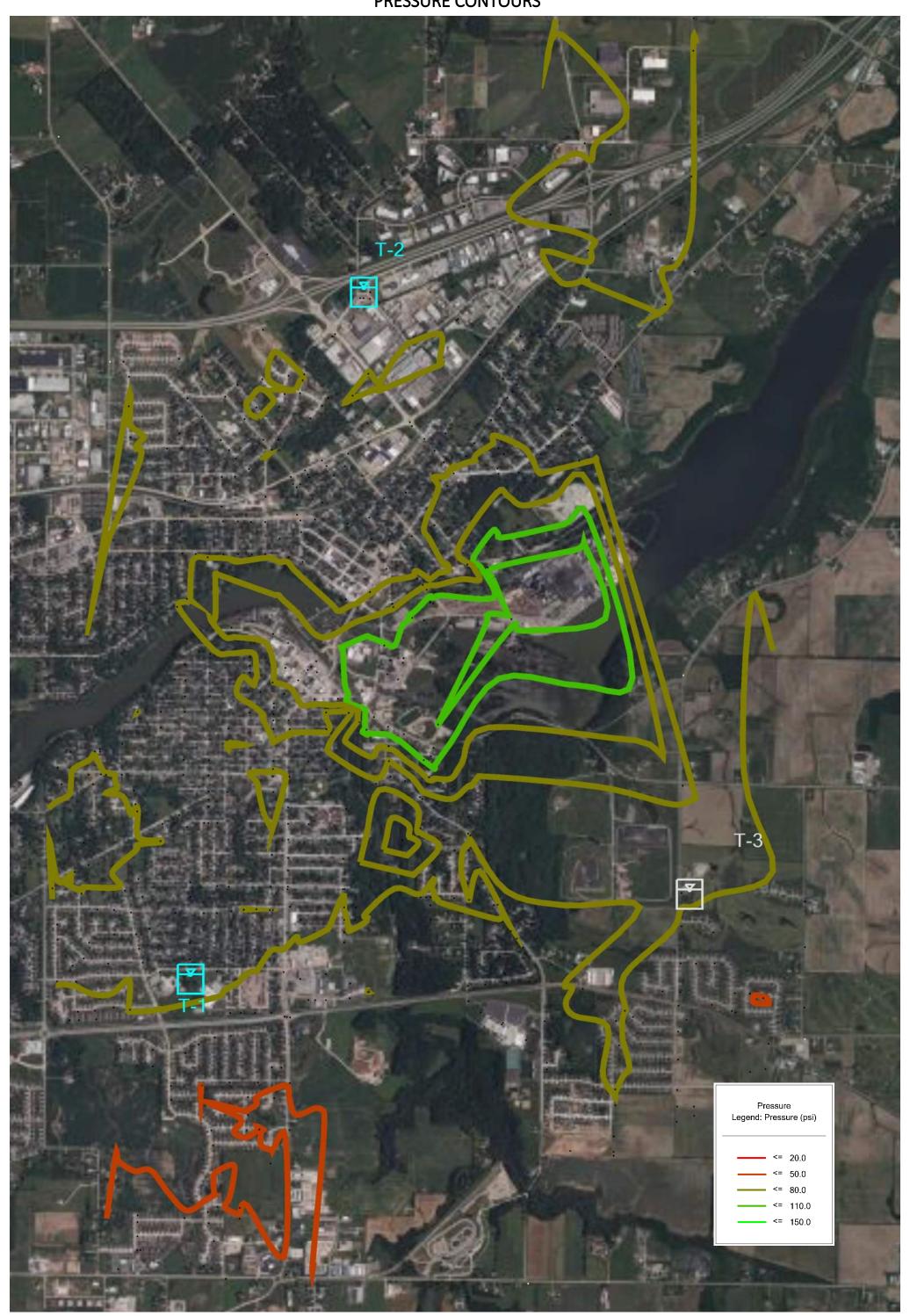

6. OPERATIONS INFORMATION

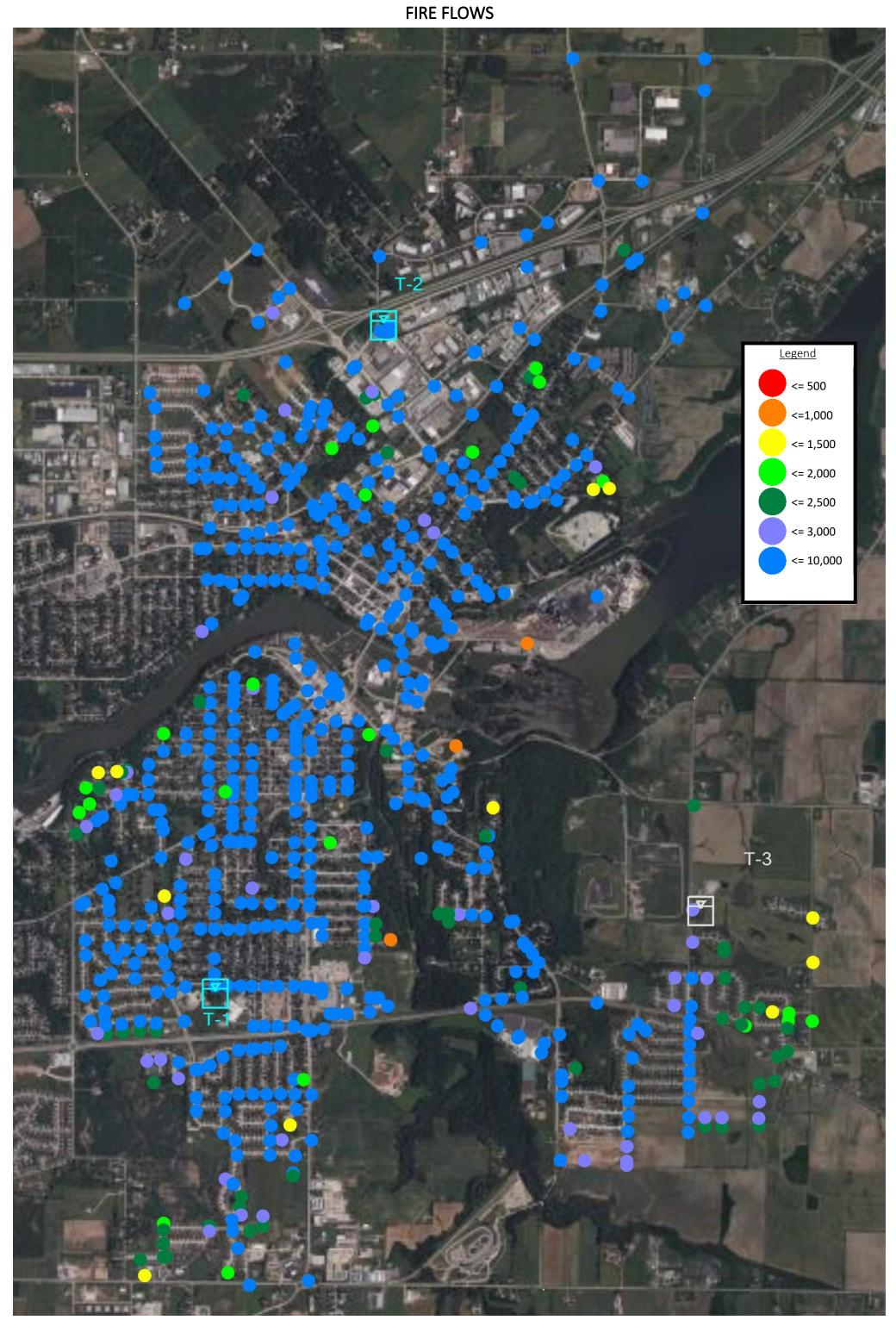
7. ACTINA REACTOR DRAWING

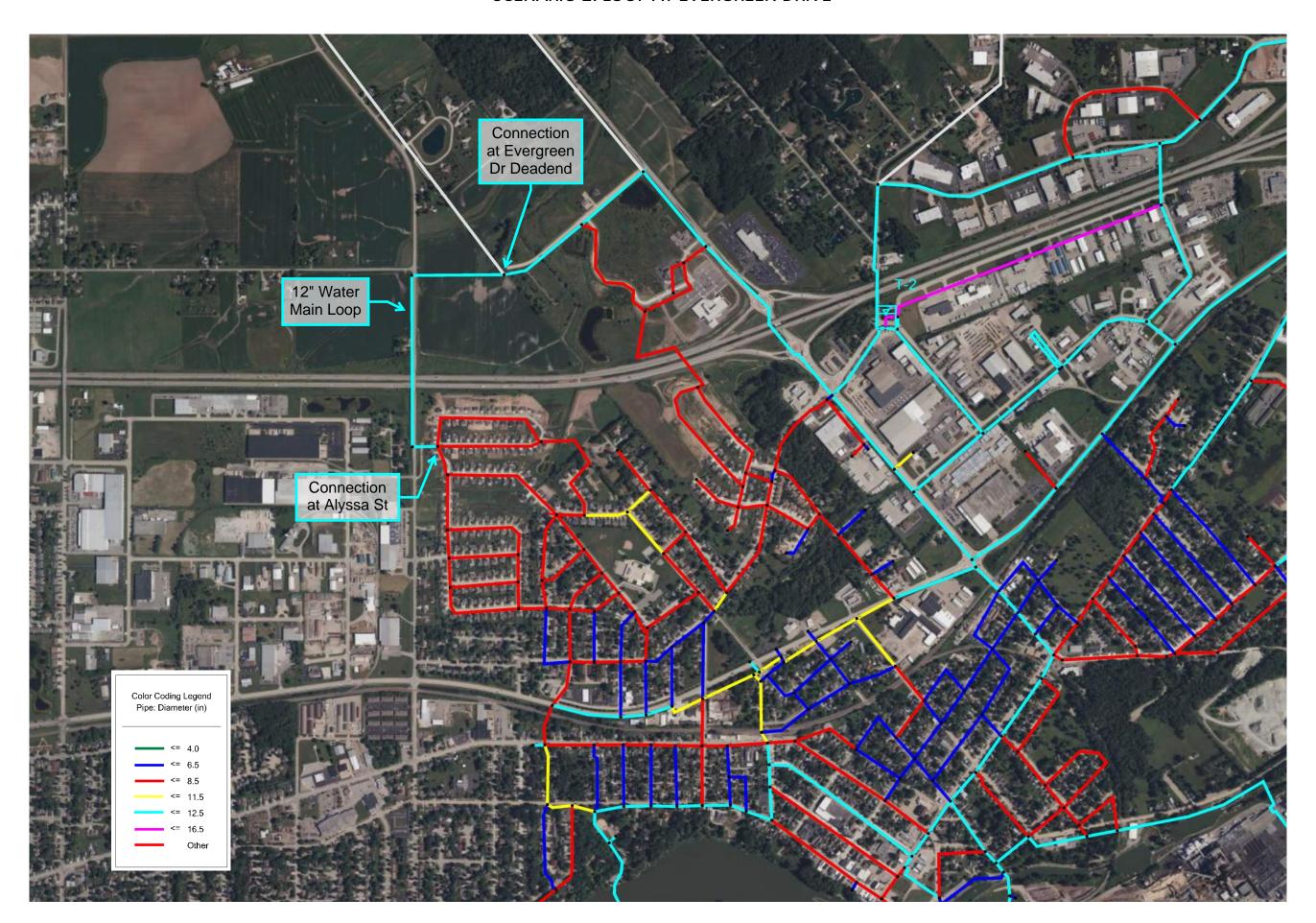

APPENDIX K Computer Water Model Information

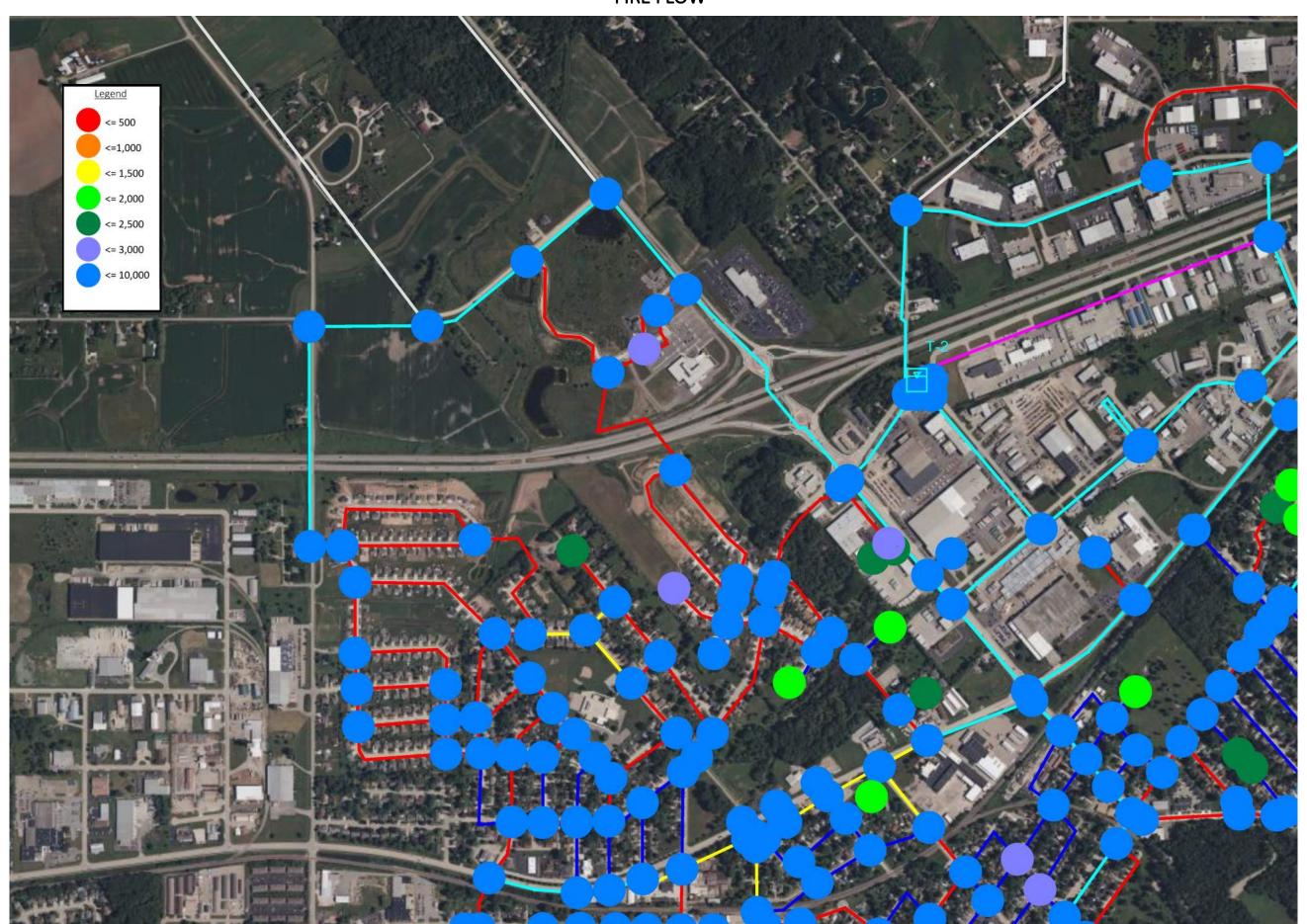
KAUKAUNA EXISTING SYSTEM

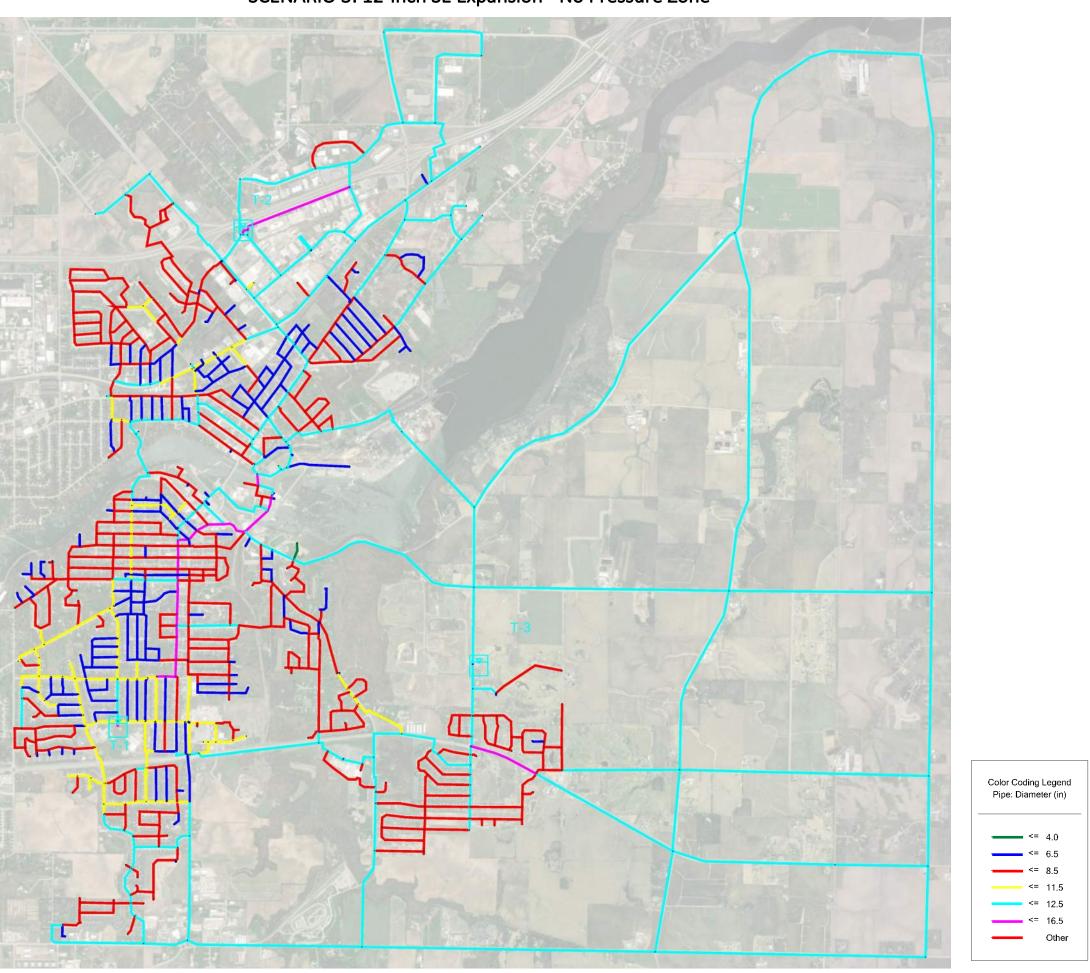


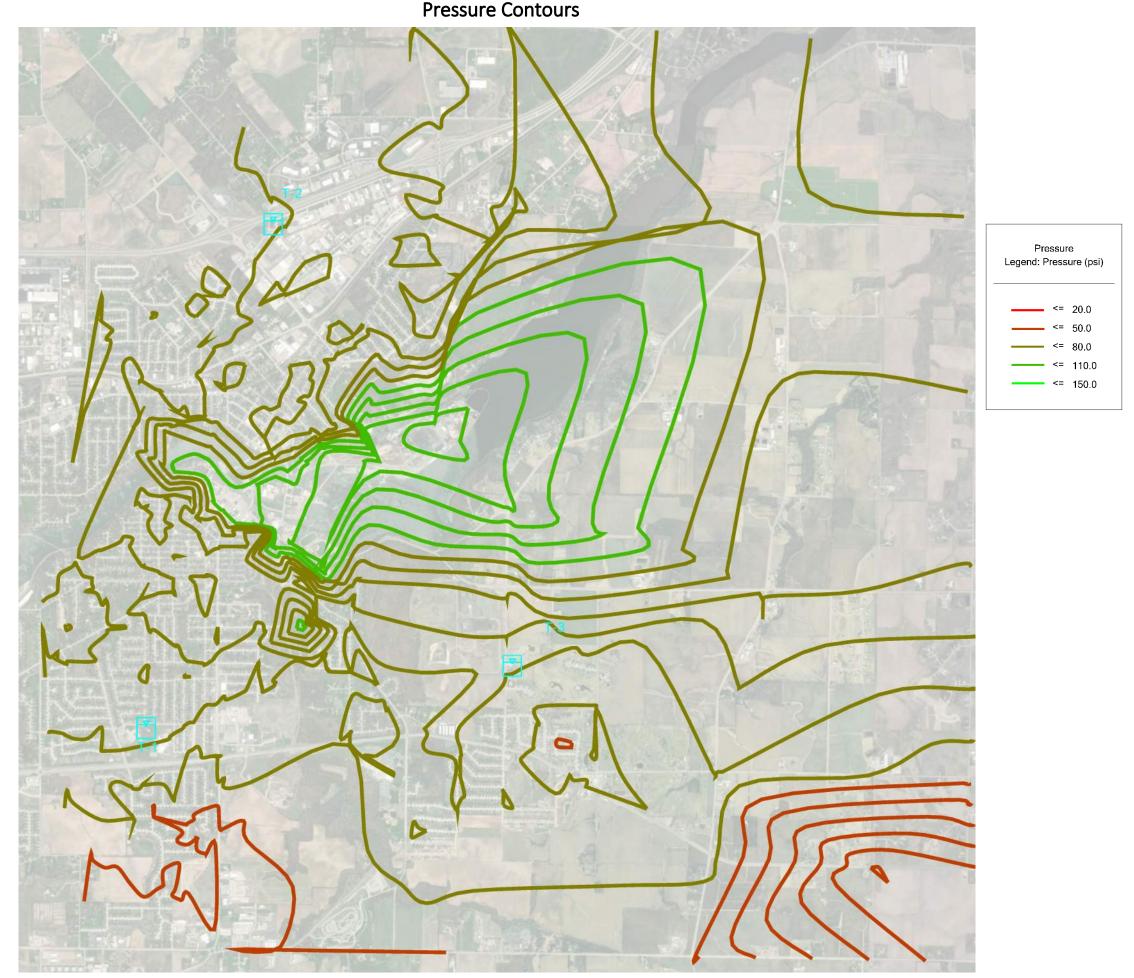

KAUKAUNA EXISTING SYSTEM - FIRE FLOWS

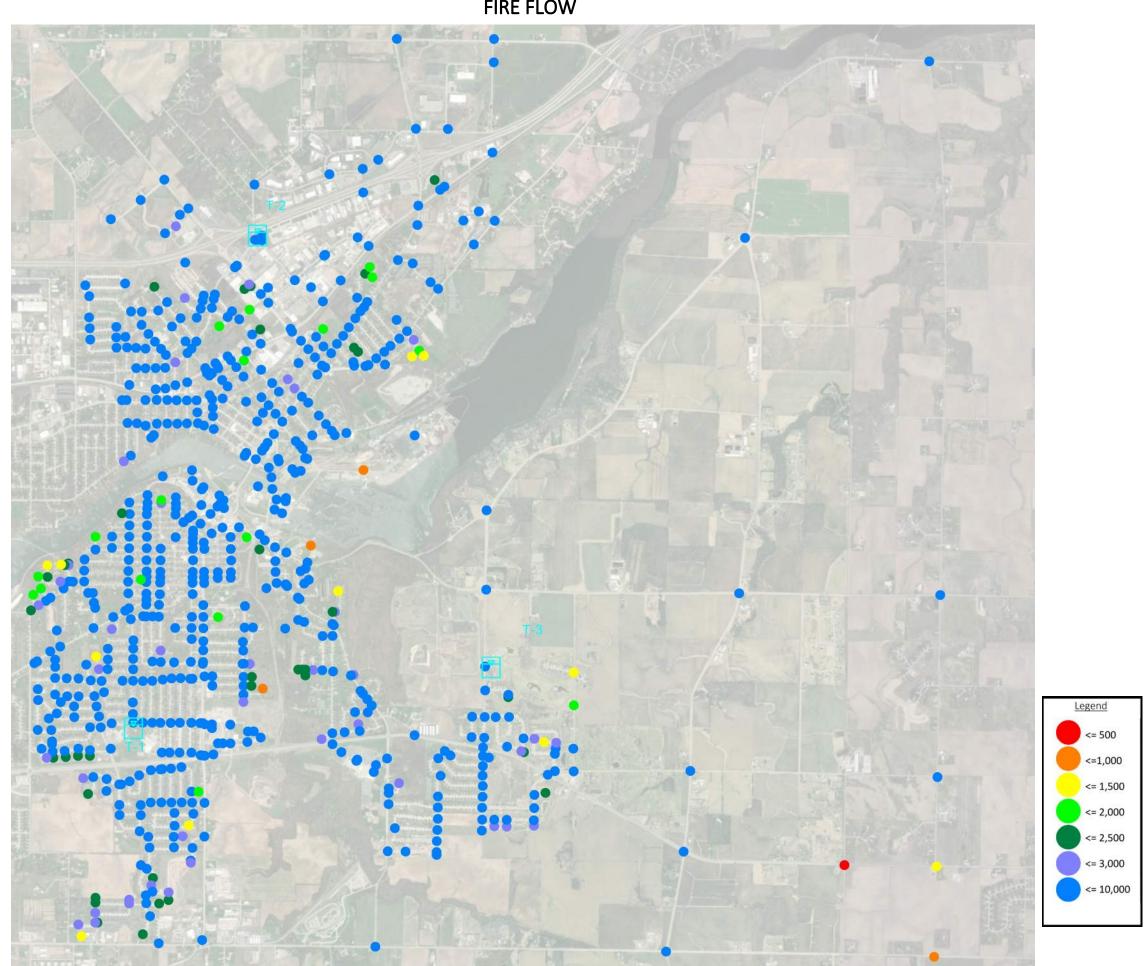

KAUKAUNA SCENARIO 1: HILLCREST WATER MAIN PIPE UPSIZING

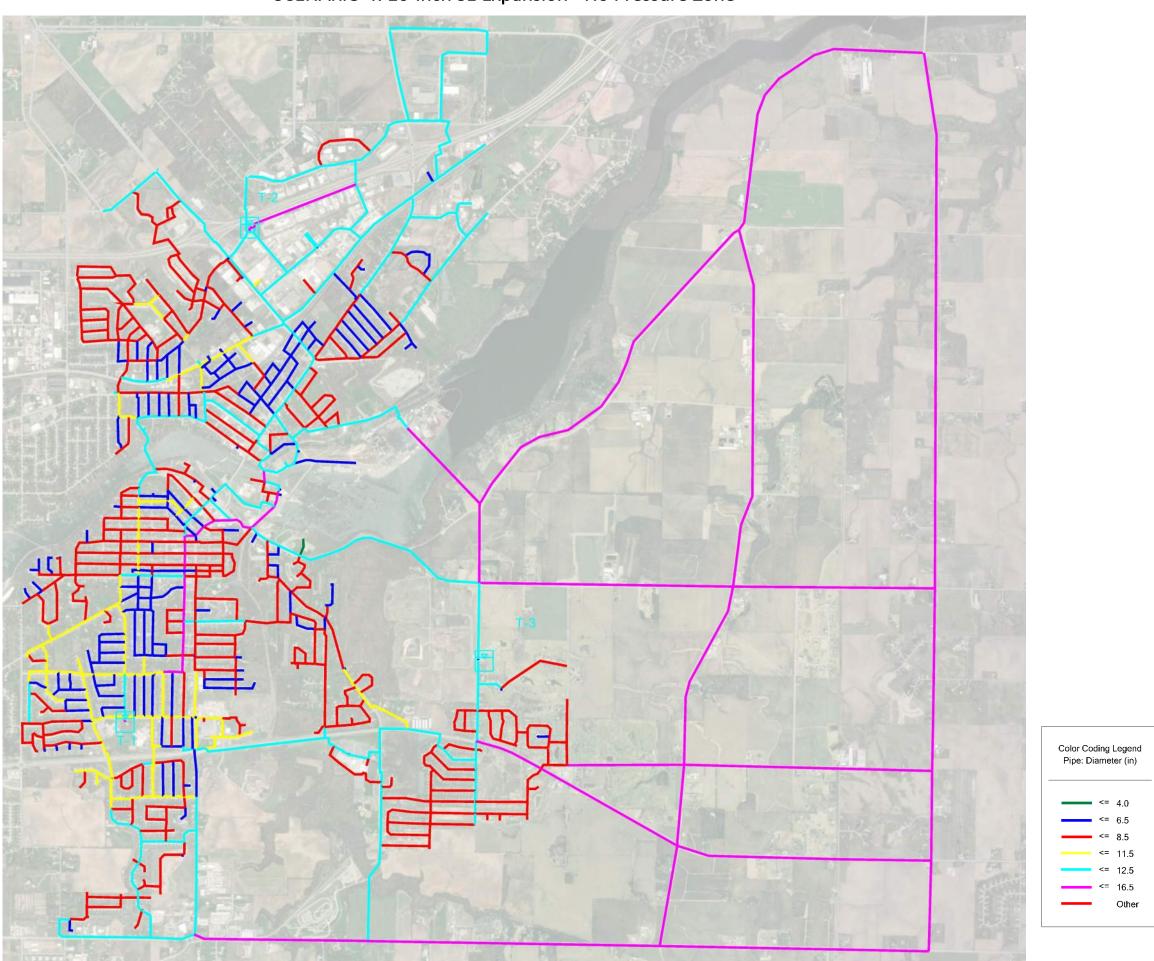

KAUKAUNA SCENARIO 1: HILLCREST WATER MAIN PIPE UPSIZING PRESSURE CONTOURS

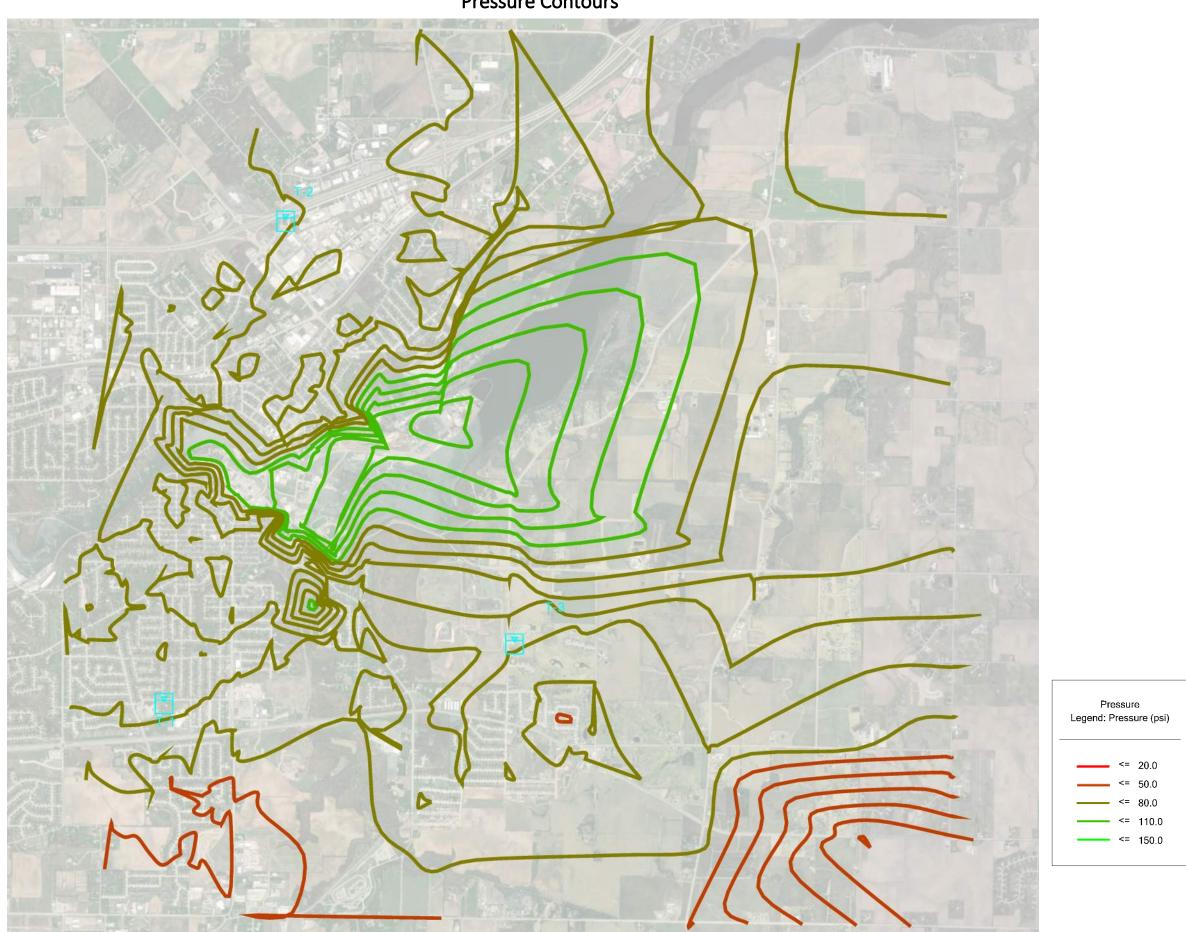

KAUKAUNA SCENARIO 1: HILLCREST WATER MAIN PIPE UPSIZING FIRE FLOWS

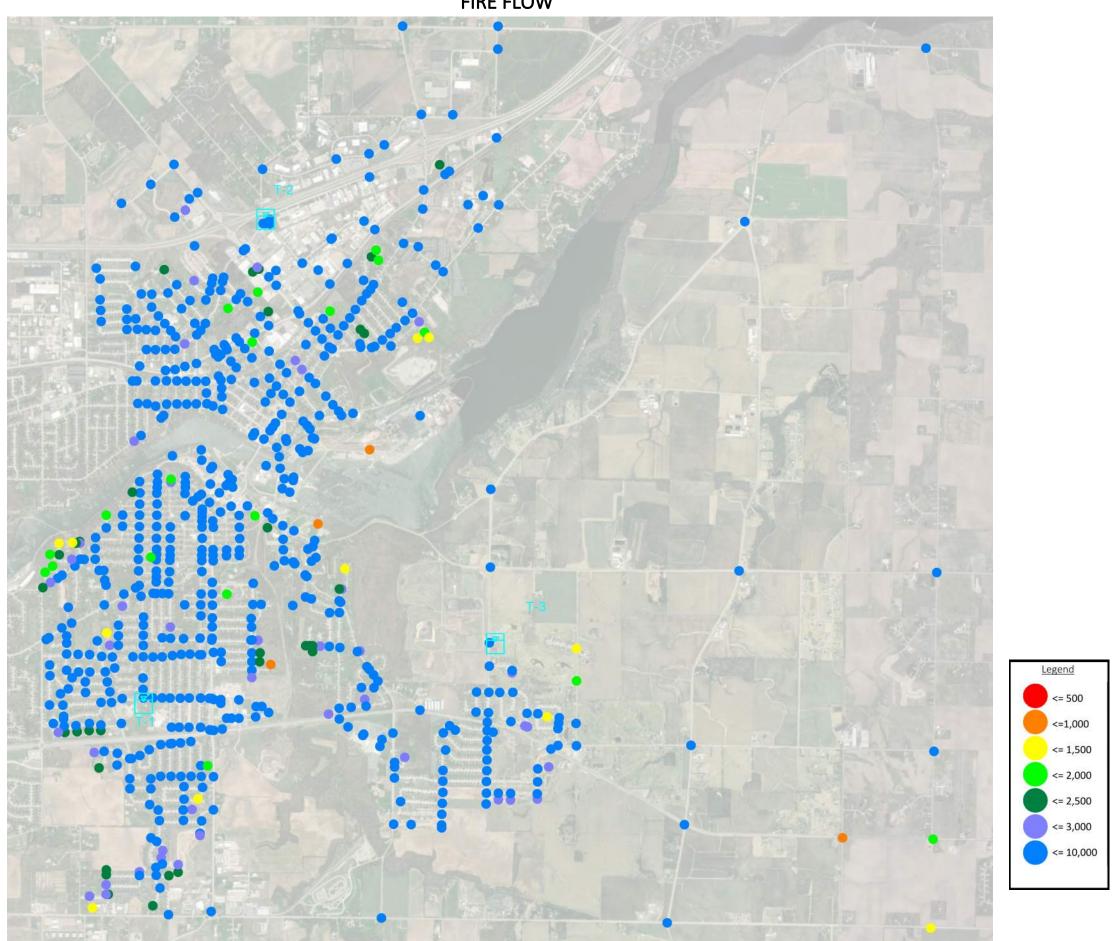

KAUKAUNA SCENARIO 2: LOOP AT EVERGREEN DRIVE

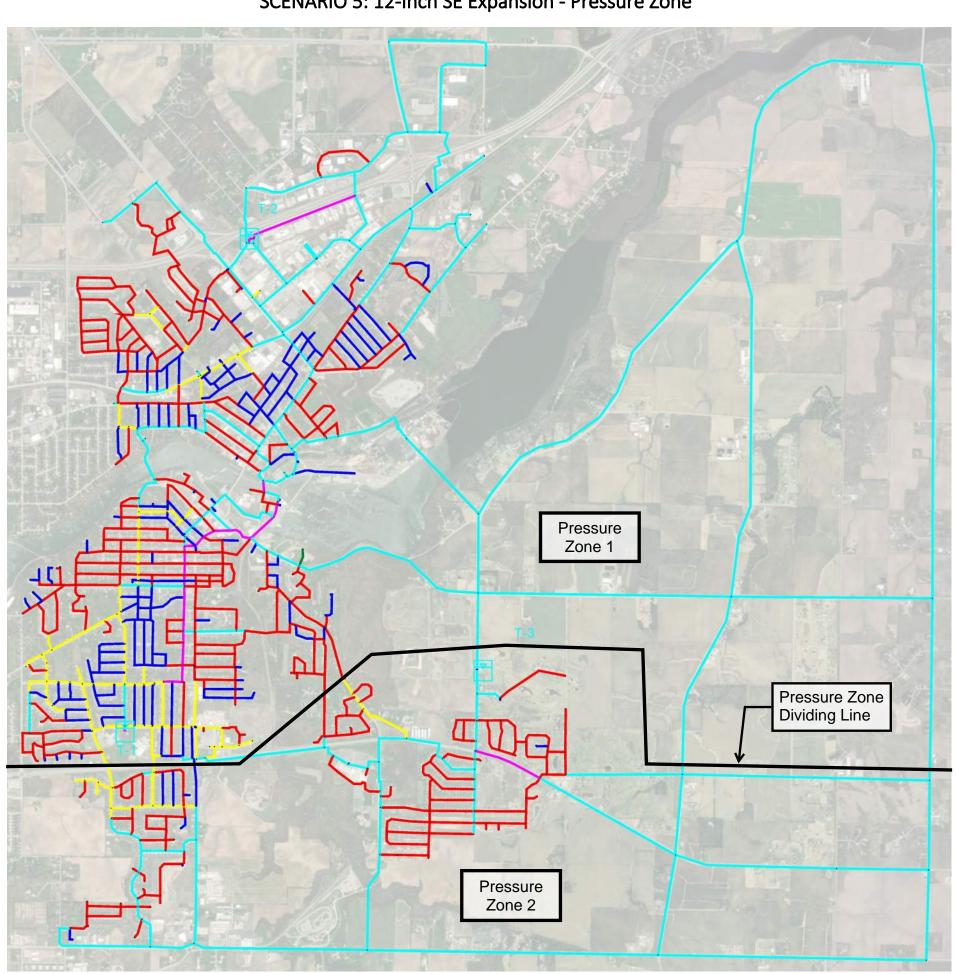

KAUKAUNA SCENARIO 2: LOOP AT EVERGREEN DRIVE FIRE FLOW

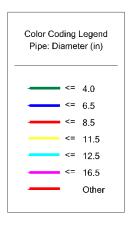

KAUKAUNA SCENARIO 3: 12-Inch SE Expansion - No Pressure Zone


KAUKAUNA SCENARIO 3: 12-Inch SE Expansion - No Pressure Zone Pressure Contours

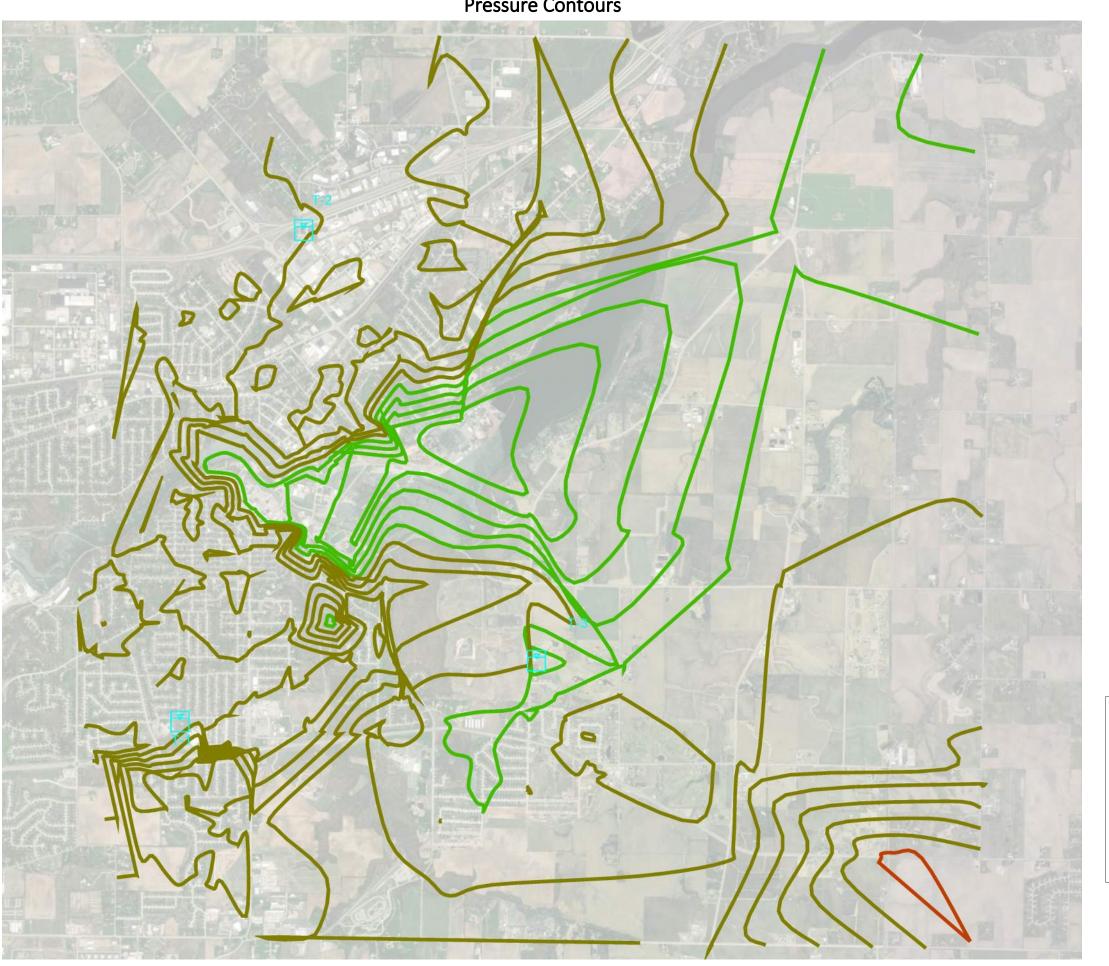

KAUKAUNA SCENARIO 3: 12-Inch SE Expansion - No Pressure Zone FIRE FLOW


KAUKAUNA SCENARIO 4: 16-Inch SE Expansion - No Pressure Zone

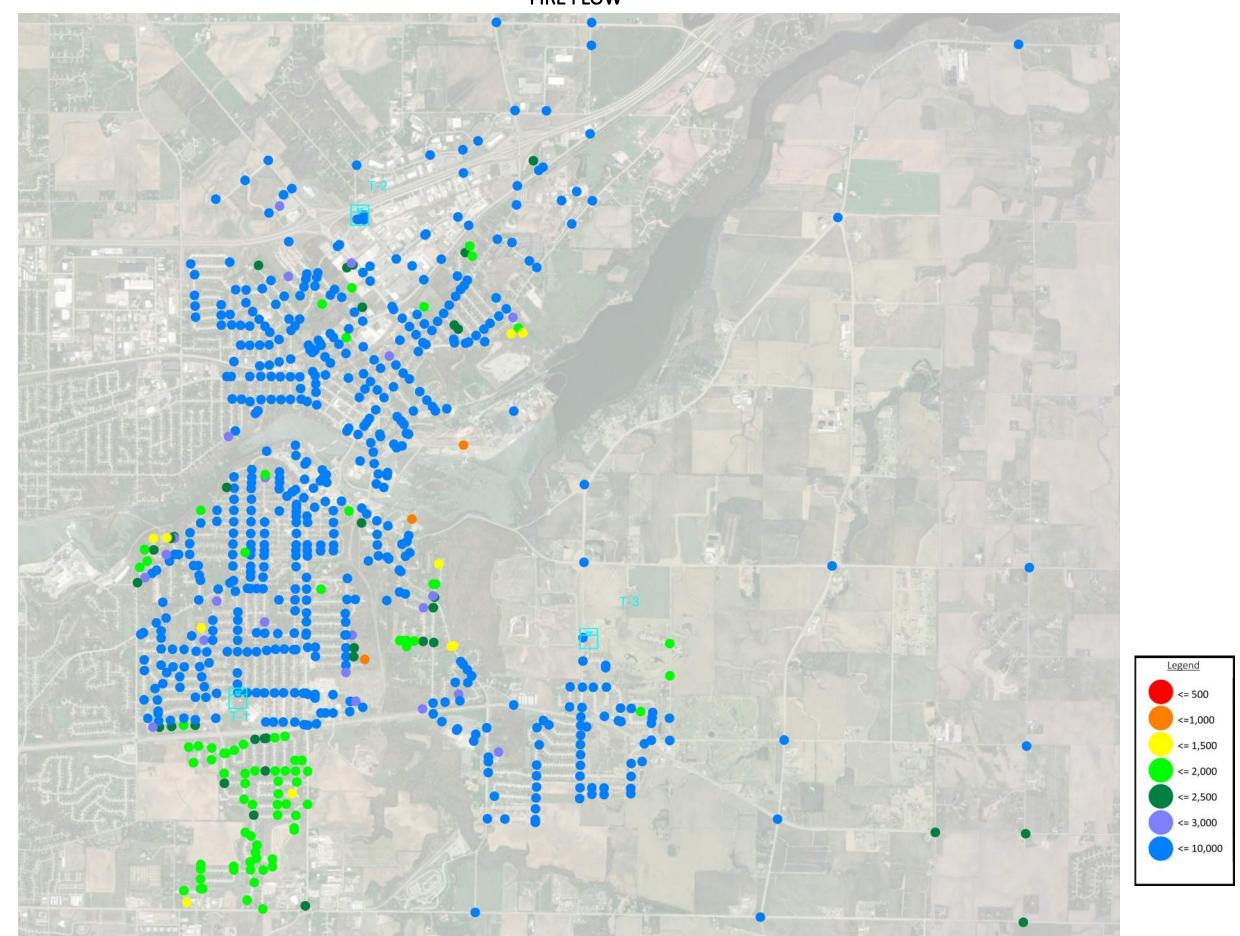

KAUKAUNA SCENARIO 4: 16-Inch SE Expansion - No Pressure Zone Pressure Contours

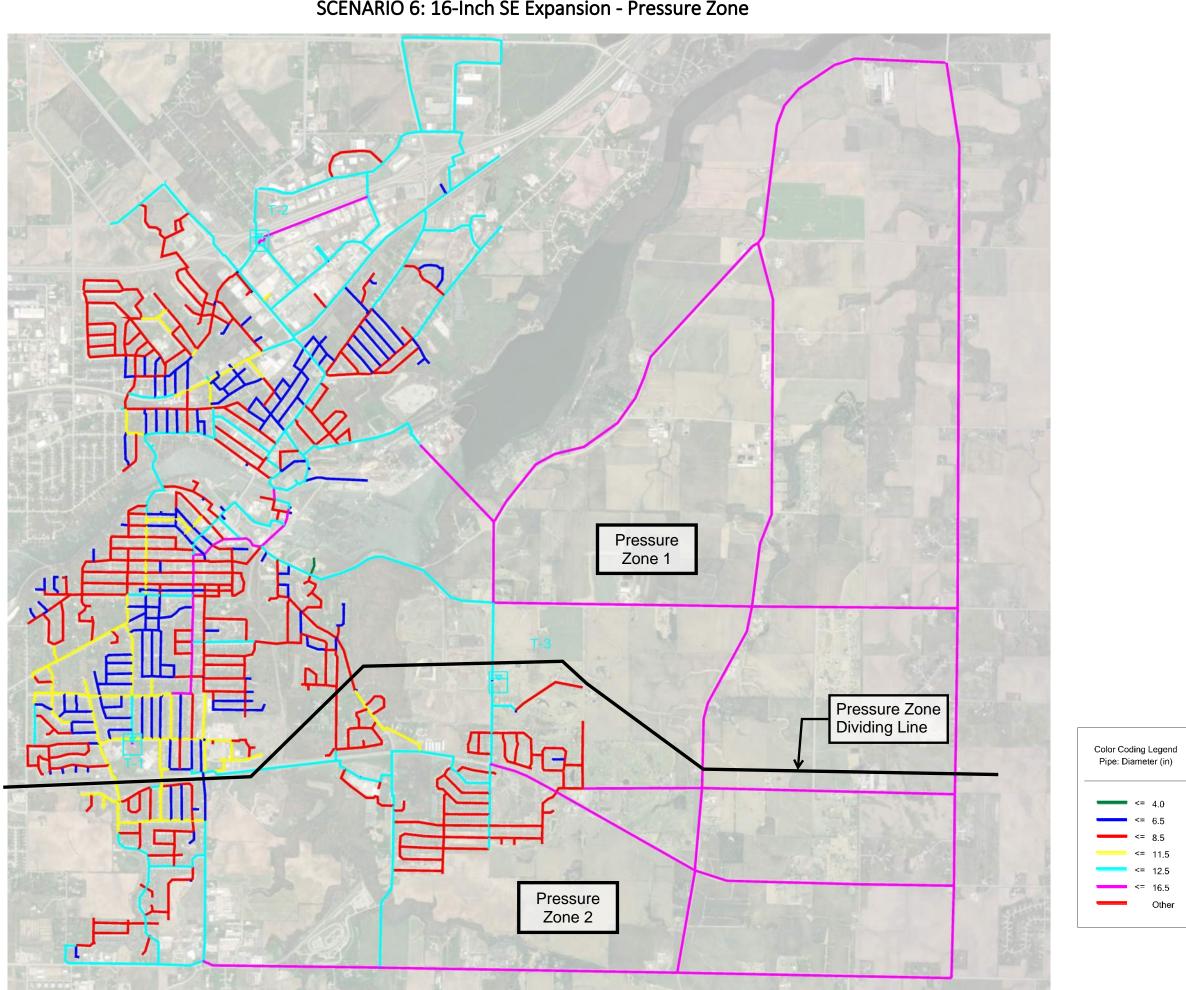


KAUKAUNA SCENARIO 4: 16-Inch SE Expansion - No Pressure Zone FIRE FLOW



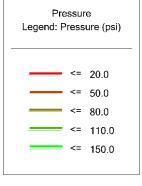
KAUKAUNA SCENARIO 5: 12-Inch SE Expansion - Pressure Zone


KAUKAUNA SCENARIO 5: 12-Inch SE Expansion - Pressure Zone Pressure Contours

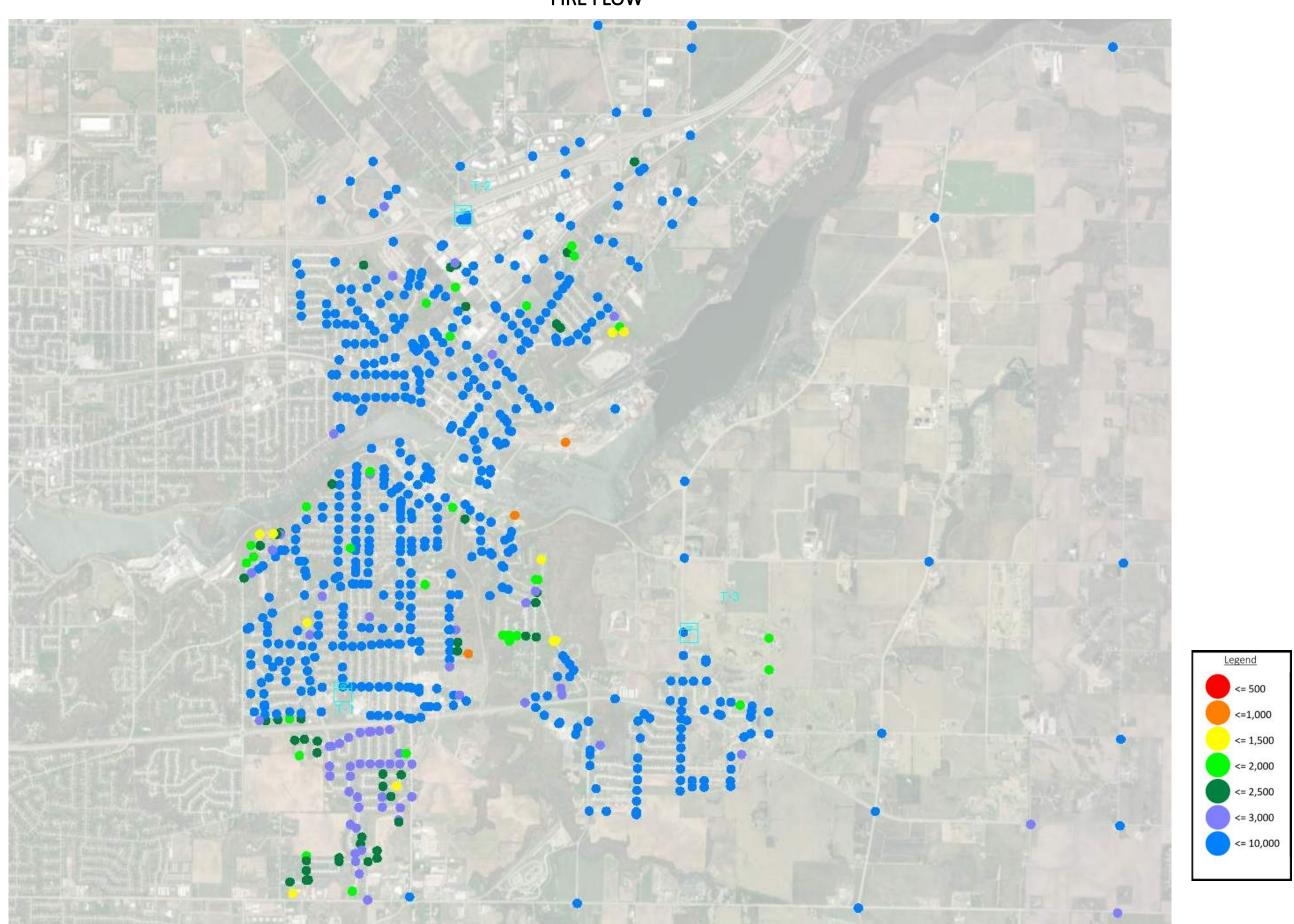

Pressure Legend: Pressure (psi)

--- <= **1**50.0

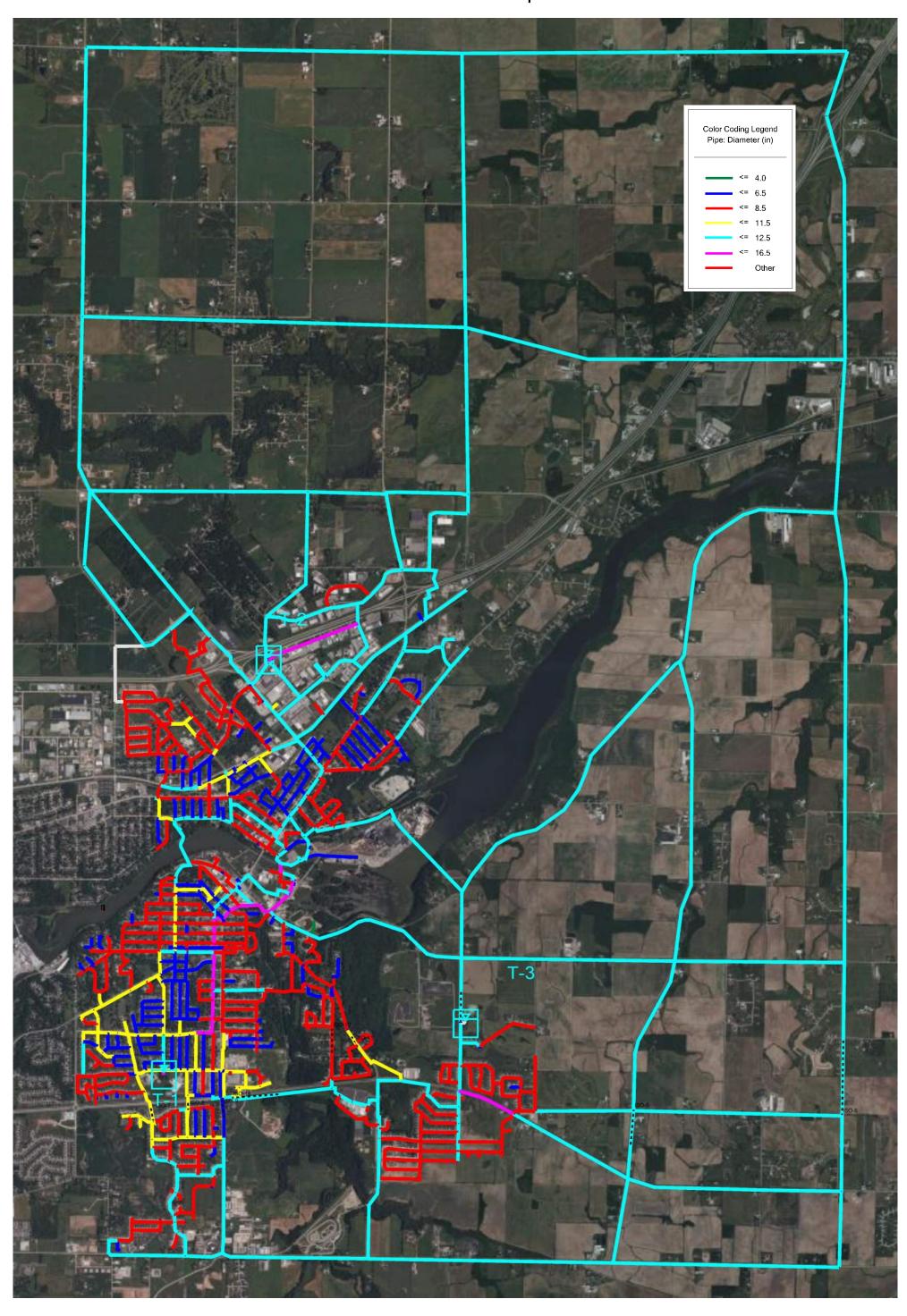

KAUKAUNA SCENARIO 5: 12-Inch SE Expansion - Pressure Zone FIRE FLOW

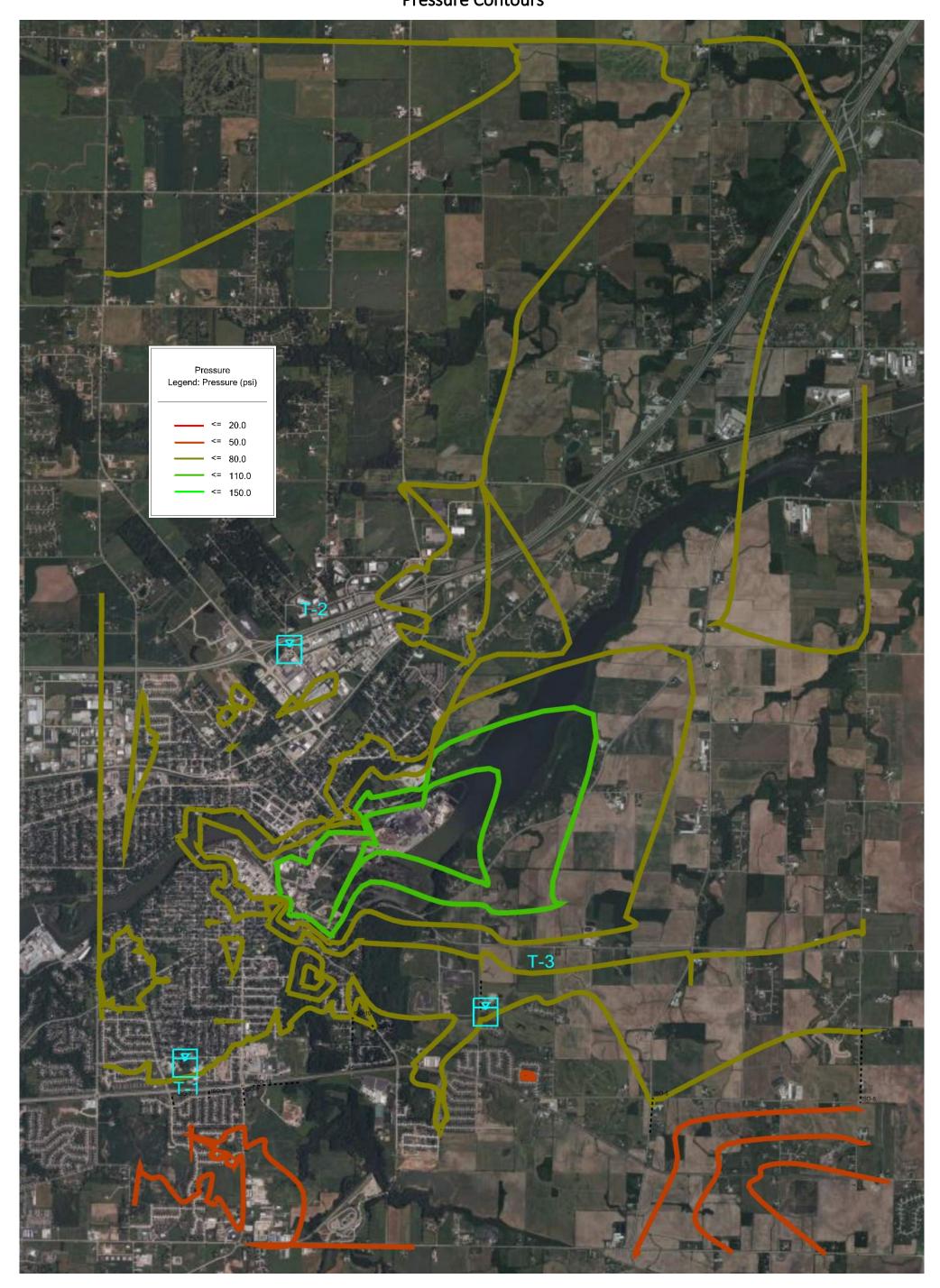


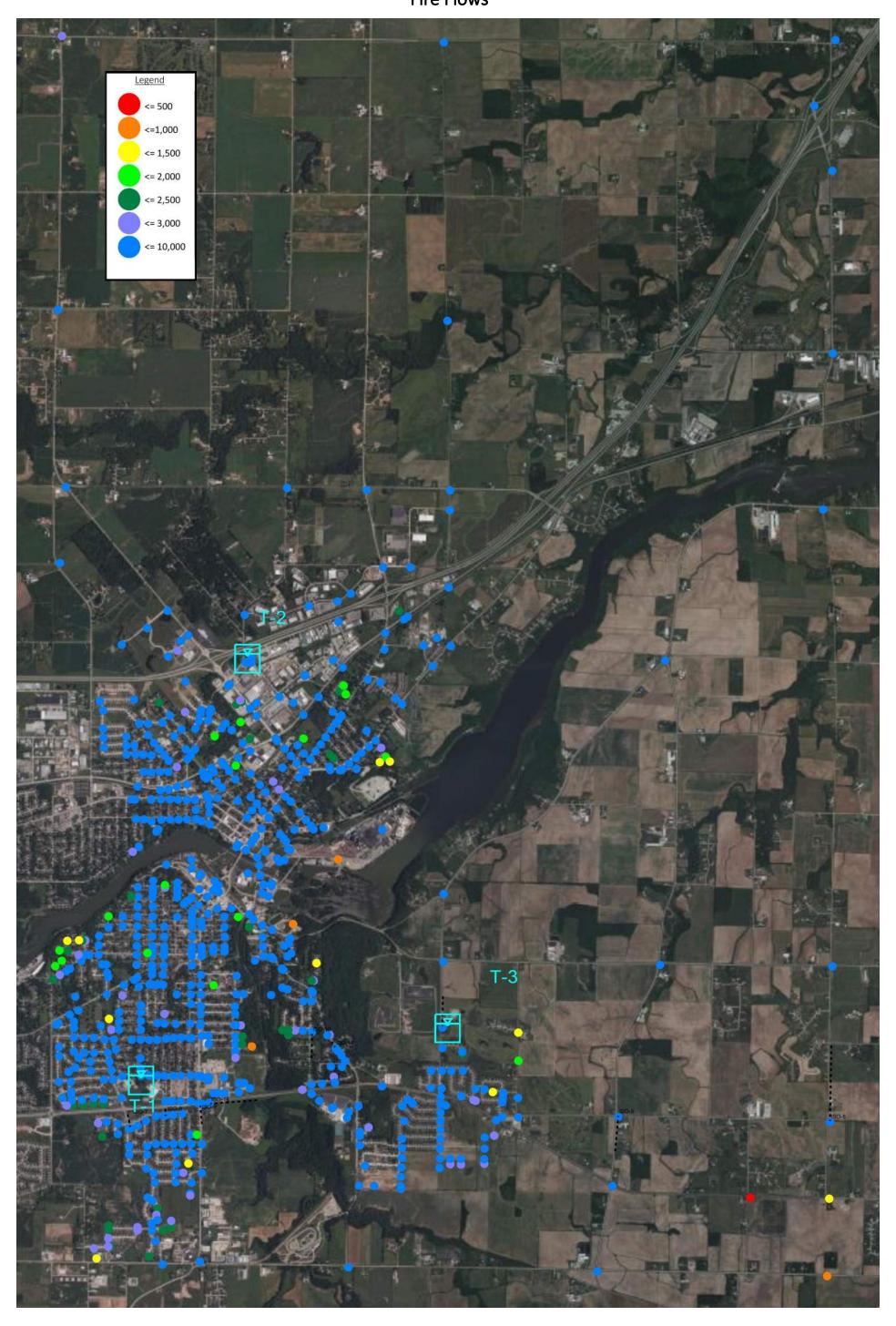
KAUKAUNA SCENARIO 6: 16-Inch SE Expansion - Pressure Zone

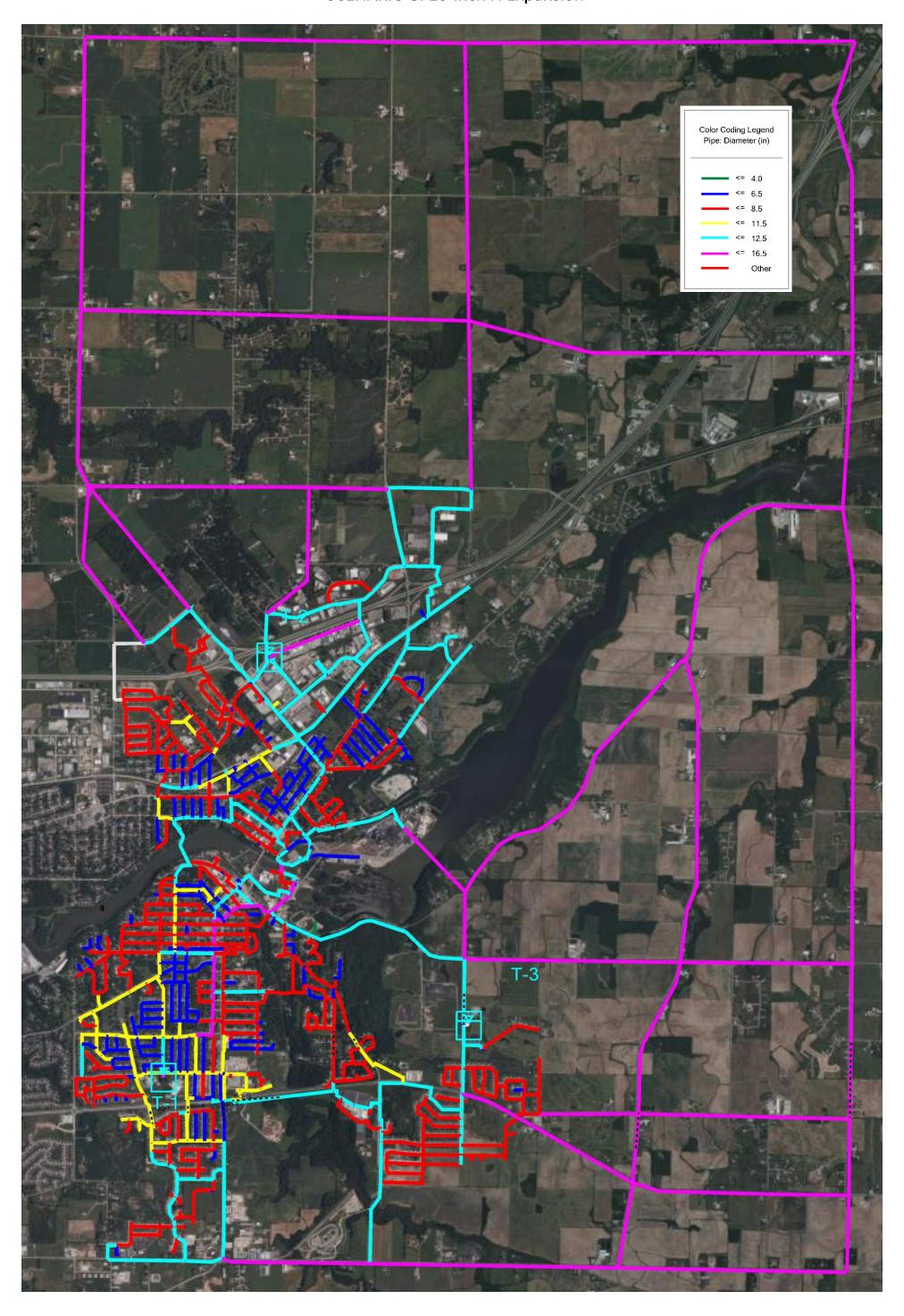


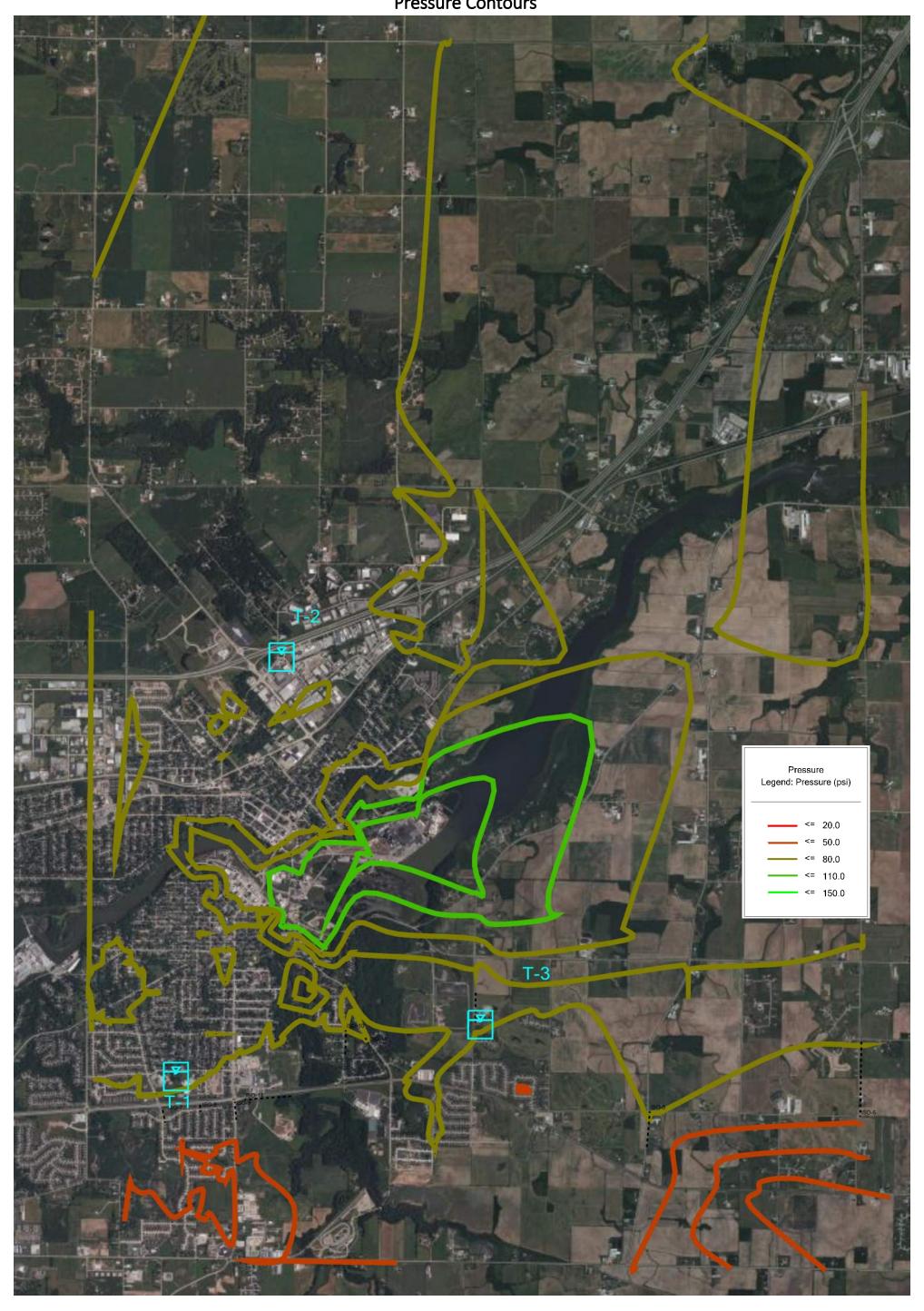
KAUKAUNA SCENARIO 6: 16-Inch SE Expansion - Pressure Zone Pressure Contours

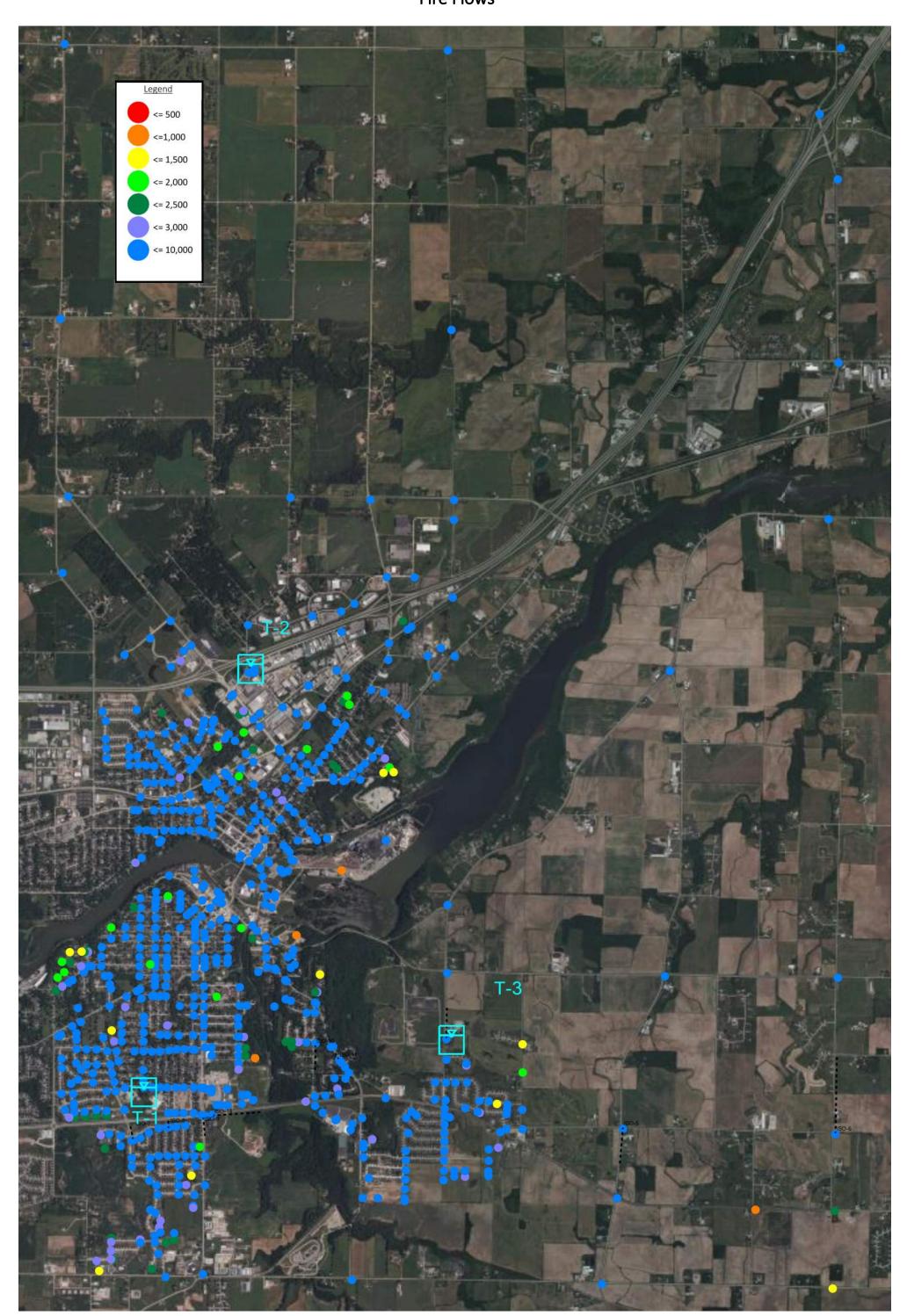


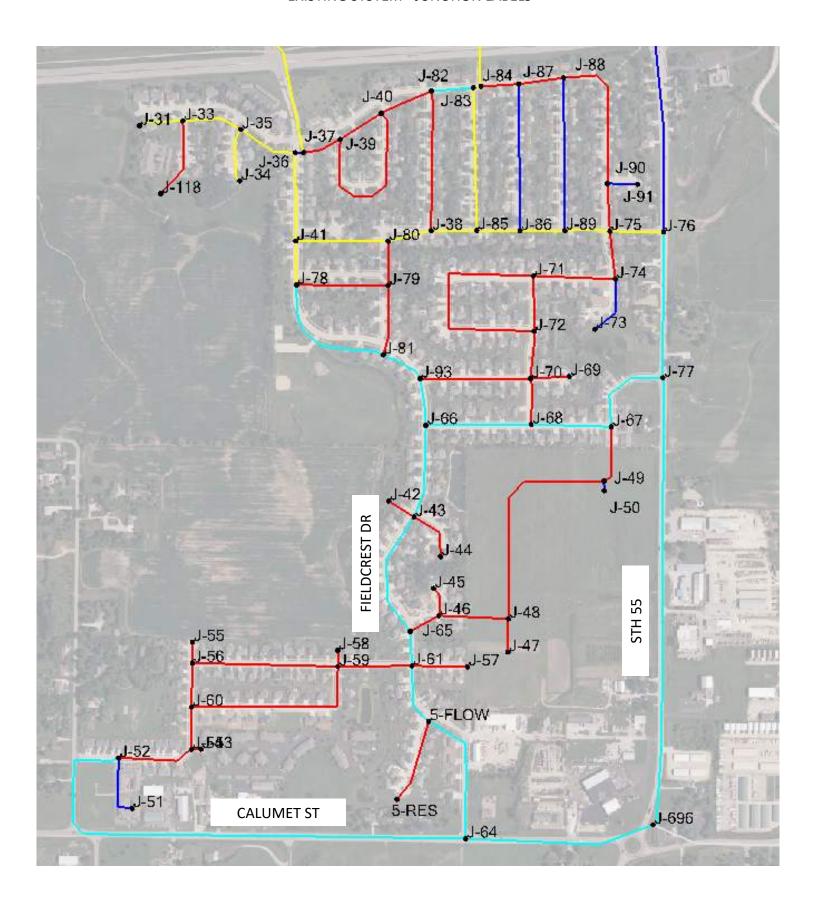

KAUKAUNA SCENARIO 6: 16-Inch SE Expansion - Pressure Zone FIRE FLOW

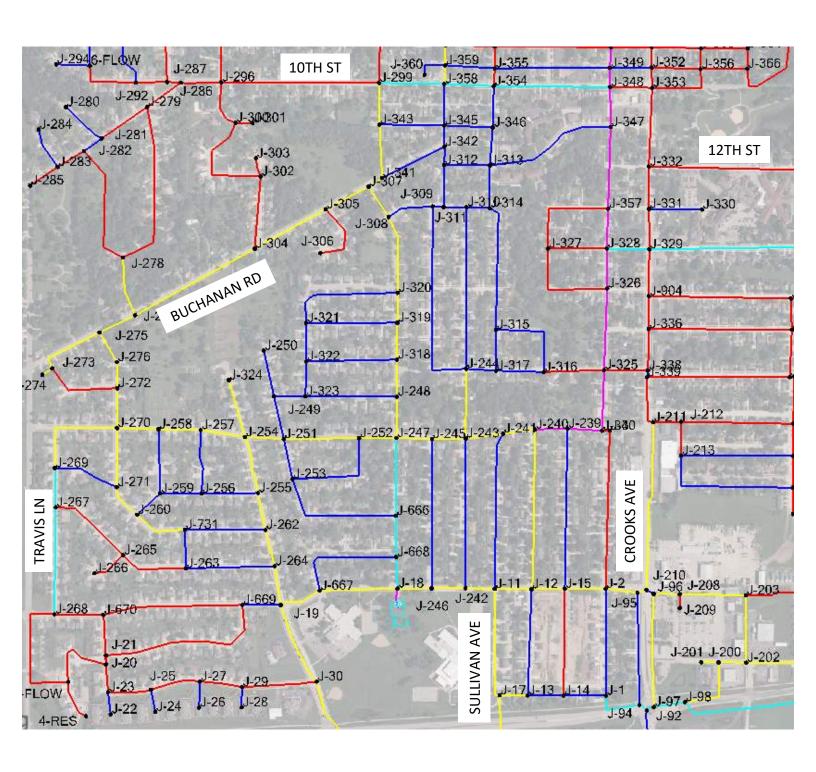

KAUKAUNA SCENARIO 7: 12-Inch N Expansion

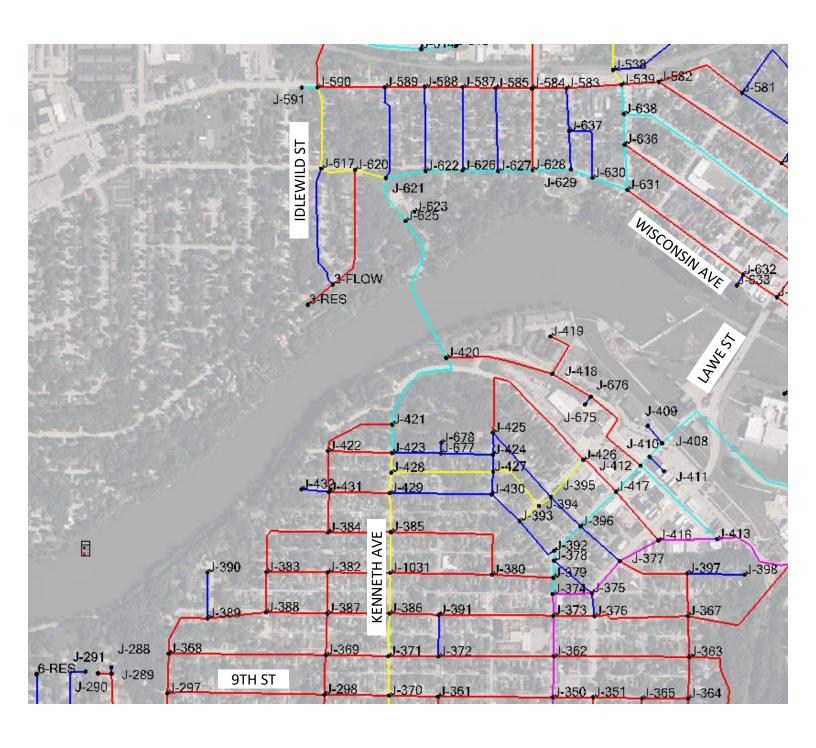

KAUKAUNA SCENARIO 7: 12-Inch N Expansion Pressure Contours

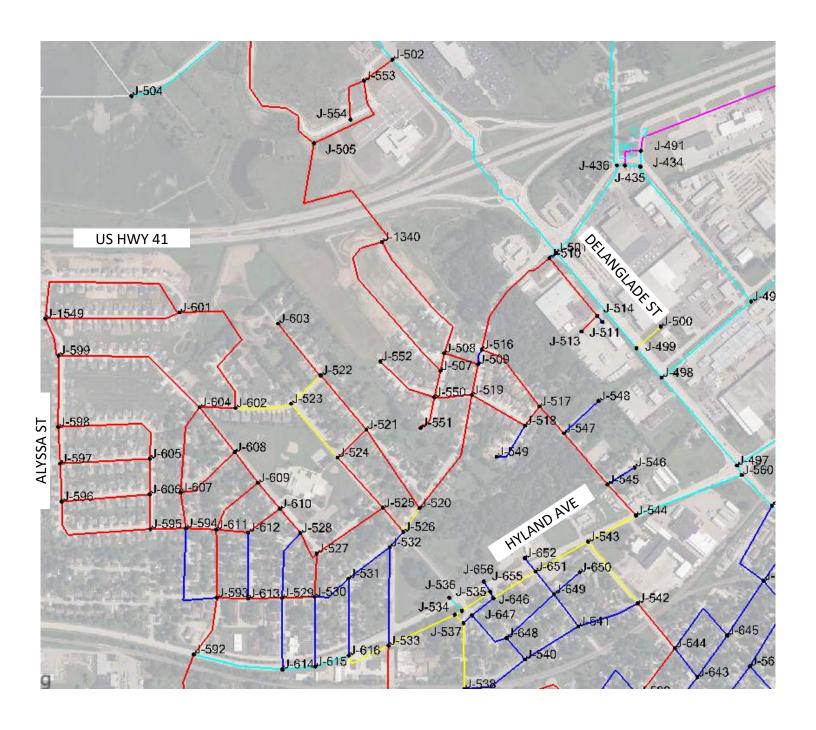

KAUKAUNA SCENARIO 7: 12-Inch N Expansion Fire Flows

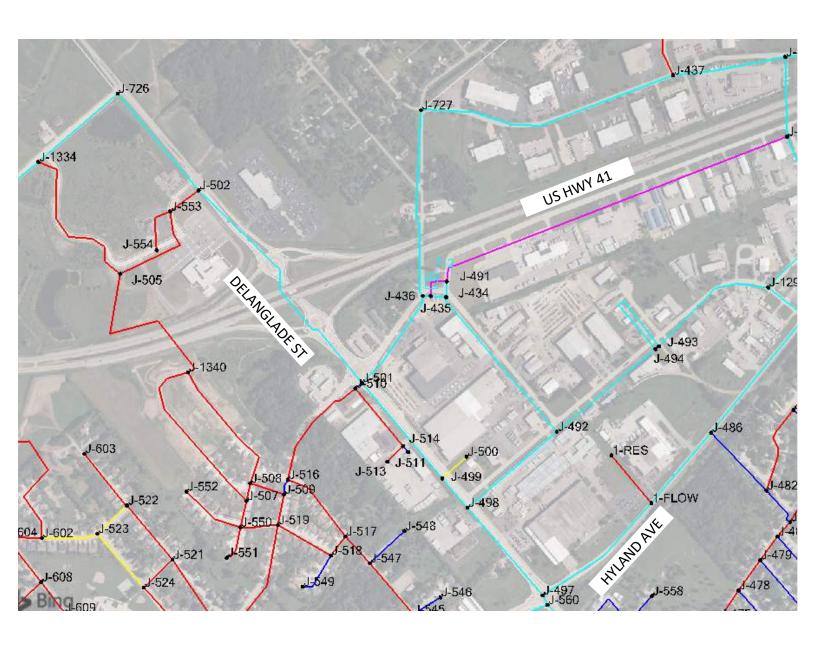

KAUKAUNA SCENARIO 8: 16-Inch N Expansion

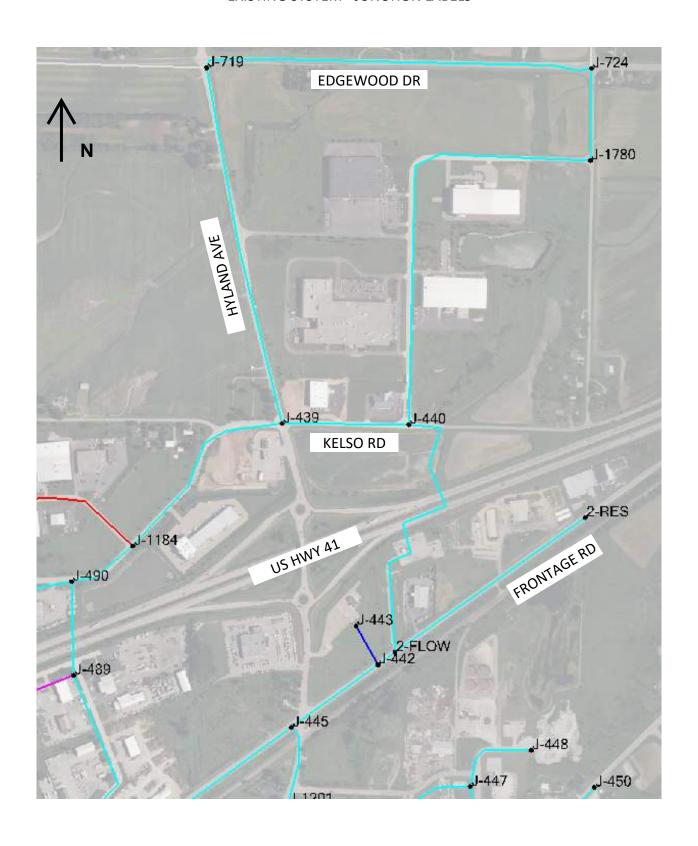


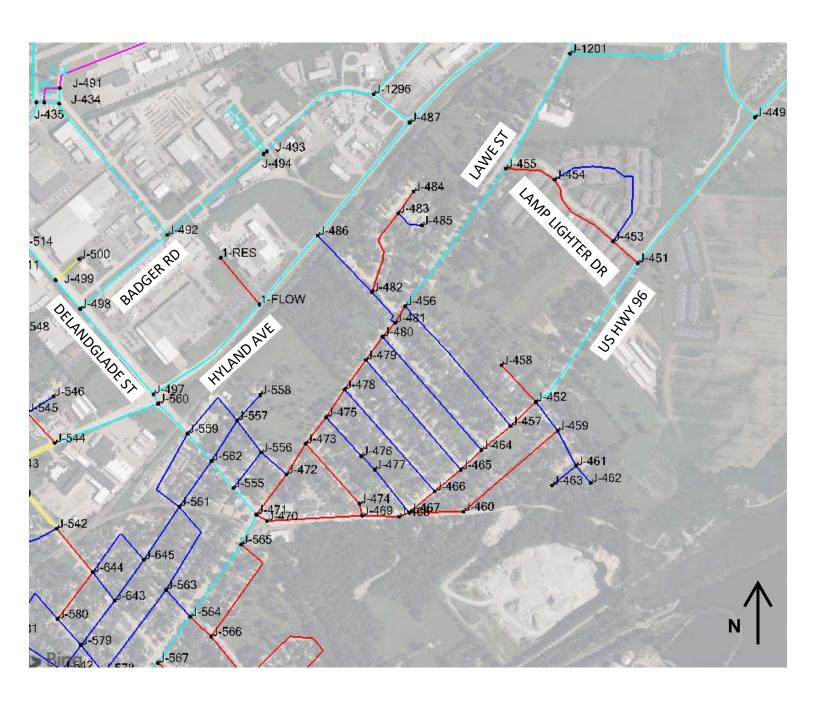

KAUKAUNA SCENARIO 8: 16-Inch N Expansion Pressure Contours

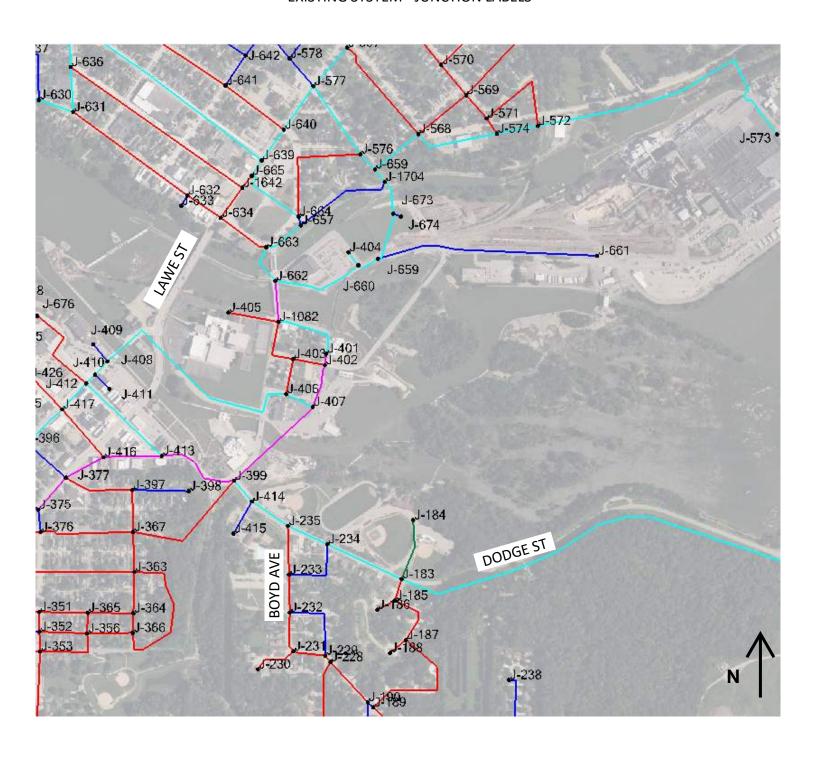


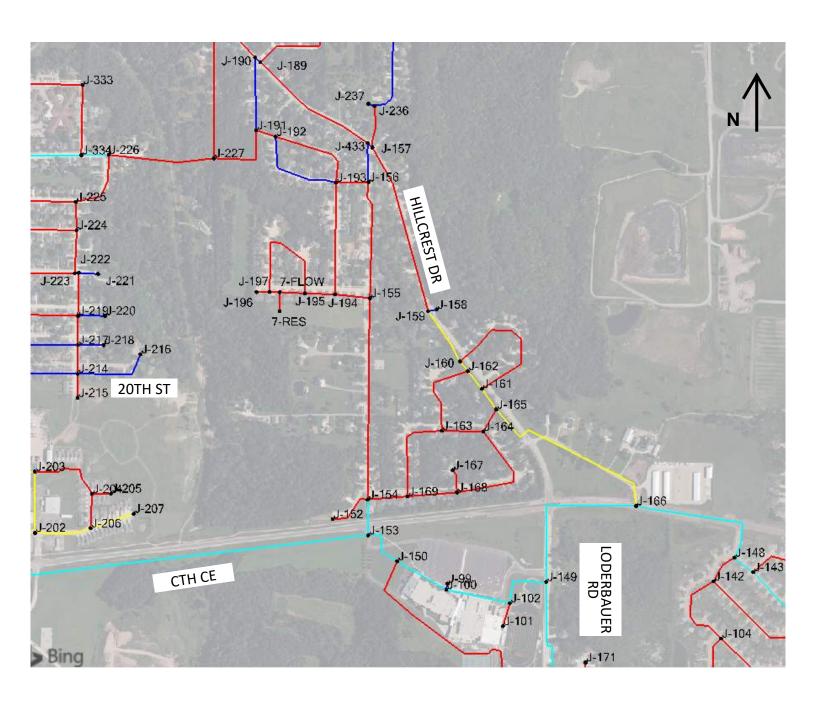

KAUKAUNA SCENARIO 8: 16-Inch N Expansion Fire Flows

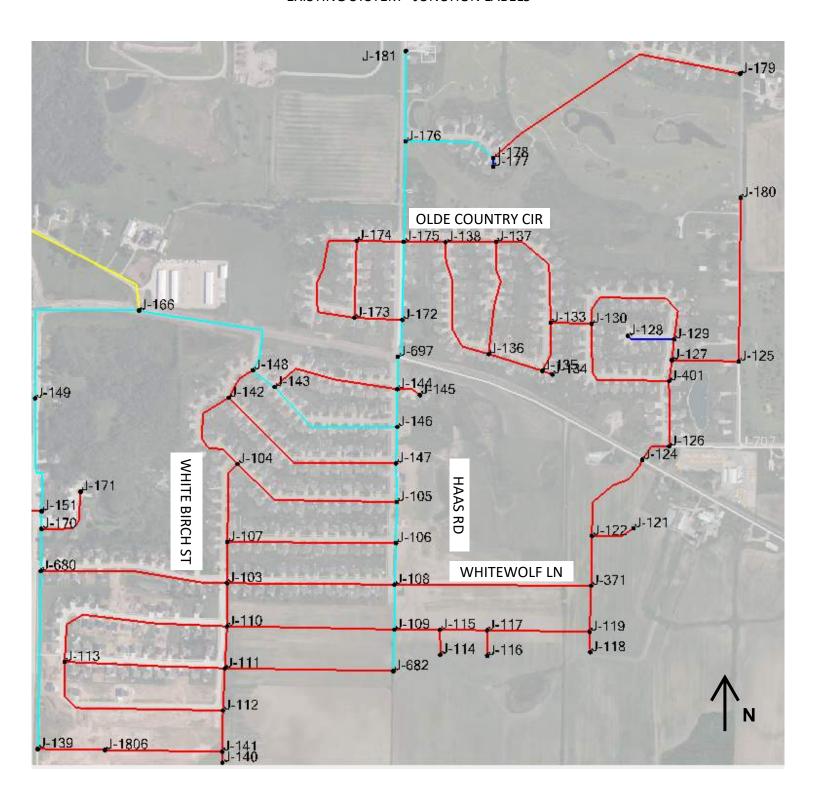


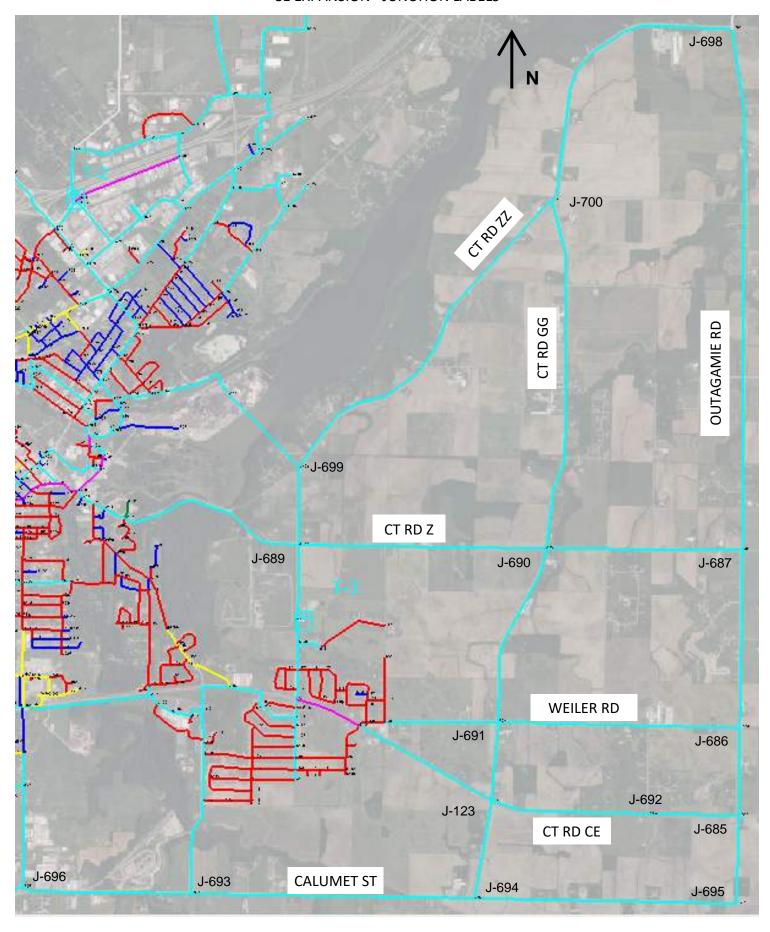


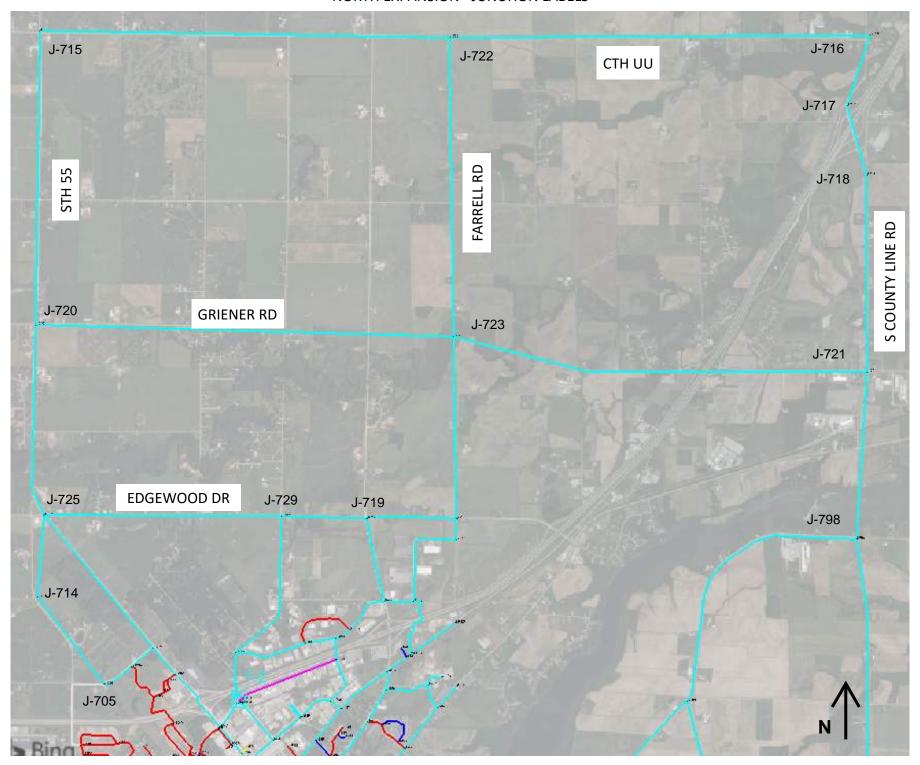












SCENARIO 9: TOWER DRIVE DOWNSIZE AND LOOP TO NORTH

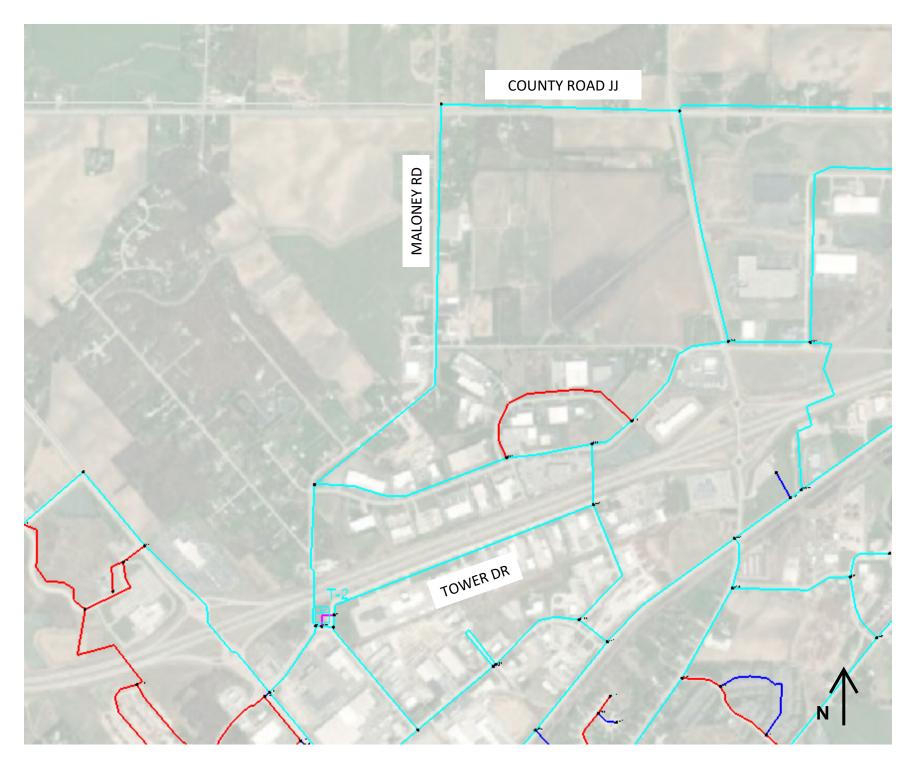


Table 1: Static Pressures

BASE SCENARIO

		Elevation		Demand	Hydraulic	Pressure
ID	Label	(ft)	Is Active?	(gpm)	Grade (ft)	(psi)
1317	1-FLOW	699.8	TRUE	1	859.91	69.3
1319	1-RES	698	TRUE	3	859.9	70
1191	2-FLOW	690	TRUE	1	859.93	73.5
1197	2-RES	690	TRUE	1	859.93	73.5
1604	3-FLOW	701	TRUE	1	859.82	68.7
1606	3-RES	699	TRUE	1	859.82	69.6
1755	4-FLOW	725.23	TRUE	1	859.85	58.2
1754	4-RES	723.64	TRUE	1	859.85	58.9
201	5-FLOW	746.82	TRUE	1	859.8	48.9
199	5-RES	745.17	TRUE	1	859.8	49.6
805	6-FLOW	719.81	TRUE	1	859.81	60.6
809	6-RES	718	TRUE	1	859.81	61.4
573	7-FLOW	721.97	TRUE	1	859.76	59.6
576	7-RES	723.98	TRUE	1	859.76	58.7
34	J-1	731.58	TRUE	1	859.79	55.5
36	J-2	723.69	TRUE	1	859.81	58.9
40	J-3	716.09	TRUE	1	859.81	62.2
56	J-11	718.27	TRUE	1	859.84	61.3
60	J-12	719.68	TRUE	1	859.82	60.6
63	J-13	731.17	TRUE	1	859.82	55.7
67	J-14	733.9	TRUE	1	859.81	54.5
70	J-15	720.93	TRUE	1	859.81	60.1
77	J-17	725.73	TRUE	1	859.82	58
80	J-18	717.13	TRUE	1	859.98	61.8
84	J-19	713.66	TRUE	1	859.87	63.3
87	J-20	727.79	TRUE	1	859.85	57.1
89	J-21	727.38	TRUE	1	859.85	57.3
93	J-22	724.44	TRUE	1	859.85	58.6
95	J-23	725	TRUE	1	859.85	58.3
98	J-24	729	TRUE	1	859.85	56.6
100	J-25	729.33	TRUE	1	859.85	56.5
103	J-26	725.84	TRUE	1	859.85	58
105	J-27	724	TRUE	1	859.85	58.8
108	J-28	722	TRUE	1	859.85	59.6
110	J-29	720.89	TRUE	1	859.85	60.1
113	J-30	720.74	TRUE	1	859.85	60.2
117	J-31	727.59	TRUE	1	859.81	57.2
120	J-33	730	TRUE	1	859.81	56.2
123	J-34	735.39	TRUE	1	859.81	53.8
125	J-35	732	TRUE	1	859.81	55.3
128	J-36	732	TRUE	1	859.81	55.3
132	J-37	732	TRUE	1	859.82	55.3
135	J-38	738.66	TRUE	1	859.81	52.4

139	J-39	731.59	TRUE	1	859.82	55.5
142	J-40	731.56	TRUE	1	859.82	55.5
146	J-41	734.8	TRUE	1	859.81	54.1
149	J-42	736	TRUE	1	859.8	53.6
151	J-43	740.61	TRUE	1	859.8	51.6
154	J-44	747.94	TRUE	1	859.8	48.4
156	J-45	745.17	TRUE	1	859.8	49.6
158	J-46	745.96	TRUE	1	859.8	49.3
161	J-47	747.34	TRUE	1	859.8	48.7
163	J-48	740.85	TRUE	1	859.8	51.5
166	J-49	736.29	TRUE	1	859.8	53.4
168	J-50	735.04	TRUE	1	859.8	54
170	J-51	755.07	TRUE	1	859.8	45.3
172	J-52	747.33	TRUE	1	859.8	48.7
175	J-53	750.92	TRUE	1	859.8	47.1
177	J-54	749.85	TRUE	1	859.8	47.6
180	J-55	752.1	TRUE	1	859.8	46.6
182	J-56	749.01	TRUE	1	859.8	47.9
	J-57	750.97	TRUE	1	859.8	47.1
187	J-58	745.71	TRUE	1	859.8	49.4
	J-59	745.49	TRUE	1	859.8	49.5
	J-60	747	TRUE	1	859.8	48.8
	J-61	746	TRUE	1	859.8	49.2
	J-64	745.73	TRUE	1	859.8	49.4
208	J-65	747.62	TRUE	1	859.8	48.5
	J-66	738	TRUE	1	859.8	52.7
215	J-67	746.89	TRUE	1	859.8	48.9
219	J-68	741.05	TRUE	1	859.8	51.4
222	J-69	743.83	TRUE	1	859.81	50.2
224	J-70	747	TRUE	1	859.81	48.8
227	J-71	741.14	TRUE	1	859.81	51.3
229	J-72	745.63	TRUE	1	859.81	49.4
233	J-73	748.32	TRUE	1	859.81	48.2
235	J-74	750.84	TRUE	1	859.81	47.1
238	J-75	739.77	TRUE	1	859.81	51.9
240	J-76	742.87	TRUE	1	859.8	50.6
244	J-77	746.68	TRUE	1	859.8	48.9
248	J-78	732	TRUE	1	859.81	55.3
251	J-79	744.02	TRUE	1	859.81	50.1
	J-80	744.39	TRUE	1	859.81	49.9
	J-81	737.62	TRUE	1	859.81	52.9
	J-82	728	TRUE	1	859.81	57
	J-83	730.86	TRUE	1	859.81	55.8
	J-84	730.48	TRUE	1	859.81	56
	J-85	733	TRUE	1	859.81	54.9
	J-86	734.15	TRUE	1	859.81	54.4
	J-87	733	TRUE	1	859.81	54.9
	-					2

282	J-88	734.15	TRUE	1	859.81	54.4
285	J-89	736.14	TRUE	1	859.81	53.5
289	J-90	735	TRUE	1	859.81	54
292	J-91	736.61	TRUE	1	859.81	53.3
294	J-92	733	TRUE	1	859.79	54.9
298	J-93	739	TRUE	1	859.81	52.3
302	J-94	732.14	TRUE	1	859.79	55.2
305	J-95	727	TRUE	1	859.8	57.5
309	J-96	727.78	TRUE	1	859.79	57.1
312	J-97	733	TRUE	1	859.79	54.9
316	J-98	727.37	TRUE	1	859.79	57.3
319	J-99	731.02	TRUE	1	859.74	55.7
321	J-100	731.71	TRUE	1	859.74	55.4
324	J-101	732.82	TRUE	1	859.74	54.9
326	J-102	727.94	TRUE	1	859.74	57
329	J-103	720.16	TRUE	1	859.73	60.4
331	J-104	720.61	TRUE	1	859.73	60.2
333	J-105	730.61	TRUE	1	859.73	55.9
335	J-106	734.46	TRUE	1	859.73	54.2
337	J-107	719.69	TRUE	1	859.73	60.6
341	J-108	730.81	TRUE	1	859.73	55.8
344	J-109	725.77	TRUE	1	859.73	58
346	J-110	722	TRUE	1	859.73	59.6
348	J-111	728.53	TRUE	1	859.73	56.8
350	J-112	732.05	TRUE	1	859.73	55.2
352	J-113	733.66	TRUE	1	859.73	54.5
356	J-114	725.11	TRUE	1	859.73	58.2
358	J-115	728.84	TRUE	1	859.73	56.6
361	J-116	724.65	TRUE	1	859.73	58.4
363	J-117	728.08	TRUE	1	859.73	57
118	J-118	726.4	TRUE	1	859.81	57.7
366	J-118	724	TRUE	1	859.72	58.7
368	J-119	724.6	TRUE	1	859.72	58.5
374	J-121	726.83	TRUE	1	859.72	57.5
376	J-122	731.72	TRUE	1	859.72	55.4
379	J-123	728.45	FALSE	(N/A)	(N/A)	(N/A)
381	J-124	732	TRUE	1	859.72	55.3
384	J-125	730.77	TRUE	1	859.72	55.8
386	J-126	735.36	TRUE	1	859.72	53.8
390	J-127	741.71	TRUE	1	859.72	51.1
393	J-128	745.85	TRUE	1	859.72	49.3
395	J-129	741	TRUE	1	859.72	51.4
398	J-130	743.24	TRUE	1	859.72	50.4
405	J-133	739.91	TRUE	1	859.72	51.8
407	J-134	740.81	TRUE	1	859.72	51.4
409	J-135	738.56	TRUE	1	859.72	52.4
412	J-136	729.04	TRUE	1	859.72	56.5
				-		

415	J-137	726.81	TRUE	1	859.72	57.5
418	J-138	725	TRUE	1	859.72	58.3
421	J-139	728.47	TRUE	1	859.73	56.8
422	J-140	724.78	TRUE	1	859.73	58.4
424	J-141	726.05	TRUE	1	859.73	57.8
430	J-142	720.22	TRUE	1	859.73	60.4
433	J-143	722.45	TRUE	1	859.73	59.4
435	J-144	726.09	TRUE	1	859.73	57.8
437	J-145	727	TRUE	1	859.73	57.4
439	J-146	725	TRUE	1	859.73	58.3
442	J-147	725.83	TRUE	1	859.73	57.9
446	J-148	721	TRUE	1	859.73	60
449	J-149	724.94	TRUE	1	859.74	58.3
453	J-150	732.98	TRUE	1	859.74	54.8
456	J-151	726.29	TRUE	1	859.74	57.7
460	J-152	731.93	TRUE	1	859.75	55.3
461	J-153	732.13	TRUE	1	859.75	55.2
465	J-154	732.01	TRUE	1	859.75	55.3
468	J-155	721.14	TRUE	1	859.76	60
470	J-156	724.9	TRUE	1	859.76	58.3
472	J-157	715.91	TRUE	1	859.76	62.2
	J-158	714.98	TRUE	1	859.75	62.6
	J-159	715.11	TRUE	1	859.75	62.6
	J-160	725.93	TRUE	1	859.74	57.9
	J-161	730.96	TRUE	1	859.74	55.7
	J-162	727.76	TRUE	1	859.74	57.1
	J-163	738.05	TRUE	1	859.74	52.7
	J-164	732.54	TRUE	1	859.74	55
	J-165	730.62	TRUE	1	859.74	55.9
	J-166	718	TRUE	1	859.74	61.3
	J-167	738.93	TRUE	1	859.74	52.3
	J-168	740.45	TRUE	1	859.74	51.6
	J-169	742.53	TRUE	1	859.75	50.7
	J-170	726.53	TRUE	1	859.74	57.6
	J-171	725.61	TRUE	1	859.74	58
	J-172	725.48	TRUE	1	859.73	58.1
	J-173	727.52	TRUE	1	859.73	57.2
	J-174	723.98	TRUE	1	859.73	58.7
	J-175	723.36	TRUE	1	859.72	58.7
	J-176	725.03	TRUE	1	859.72	58.3
	J-177	723.05	TRUE	1	859.72	57
	J-178	723.54	TRUE	1	859.72	57.2
	J-179	730.62	TRUE	1	859.72	55.9
	J-180	730.02	TRUE	1	859.72	55.3
	J-180	717.64	TRUE	1	859.72	61.5
	J-183	633.58	TRUE	1	859.79	97.9
540	J-184	628.59	TRUE	1	859.79	100

542	J-185	635.54	TRUE	1	859.79	97
544	J-186	650.32	TRUE	1	859.79	90.6
546	J-187	656.47	TRUE	1	859.79	88
548	J-188	670.99	TRUE	1	859.79	81.7
550	J-189	709.18	TRUE	1	859.78	65.2
552	J-190	709	TRUE	1	859.78	65.2
554	J-191	707.29	TRUE	1	859.78	66
556	J-192	714.18	TRUE	1	859.77	63
558	J-193	715.35	TRUE	1	859.76	62.5
563	J-194	717	TRUE	1	859.76	61.8
566	J-195	720	TRUE	1	859.76	60.5
568	J-196	724.66	TRUE	1	859.76	58.4
570	J-197	722.51	TRUE	1	859.76	59.4
578	J-200	726	TRUE	1	859.79	57.9
581	J-201	726	TRUE	1	859.79	57.9
583	J-202	727	TRUE	1	859.79	57.5
586	J-203	727.82	TRUE	1	859.79	57.1
590	J-204	724.15	TRUE	1	859.79	58.7
593	J-205	723.07	TRUE	1	859.79	59.2
595	J-206	725.33	TRUE	1	859.79	58.2
598	J-207	721.07	TRUE	1	859.79	60
600	J-208	725.85	TRUE	1	859.79	58
603	J-209	726	TRUE	1	859.79	57.9
605	J-210	728	TRUE	1	859.8	57
608	J-211	716.66	TRUE	1	859.8	61.9
610	J-212	717	TRUE	1	859.8	61.8
612	J-213	717.77	TRUE	1	859.8	61.5
614	J-214	723	TRUE	1	859.8	59.2
616	J-215	724.18	TRUE	1	859.8	58.7
618	J-216	722.88	TRUE	1	859.8	59.2
620	J-217	722	TRUE	1	859.8	59.6
622	J-218	718.3	TRUE	1	859.8	61.2
624	J-219	721	TRUE	1	859.8	60.1
626	J-220	717.03	TRUE	1	859.8	61.8
630	J-221	713.39	TRUE	1	859.8	63.3
	J-222	720.27	TRUE	1	859.8	60.4
635	J-223	720.8	TRUE	1	859.8	60.1
637	J-224	714	TRUE	1	859.8	63.1
639	J-225	712	TRUE	1	859.8	63.9
641	J-226	707.42	TRUE	1	859.8	65.9
643	J-227	656.62	TRUE	1	859.79	87.9
	J-228	713.52	TRUE	1	859.79	63.3
649	J-229	711.15	TRUE	1	859.79	64.3
651	J-230	703.02	TRUE	1	859.79	67.8
653	J-231	705.43	TRUE	1	859.79	66.8
656	J-232	698.98	TRUE	1	859.79	69.6
659	J-233	669.59	TRUE	1	859.79	82.3

661 J-234	635.73	TRUE	1	859.79	96.9
664 J-235	639.3	TRUE	1	859.8	95.4
667 J-236	716.62	TRUE	1	859.76	61.9
669 J-237	719.71	TRUE	1	859.76	60.6
671 J-238	703.62	TRUE	1	859.76	67.6
674 J-239	720.62	TRUE	1	859.81	60.2
677 J-240	721.45	TRUE	1	859.81	59.9
680 J-241	713.52	TRUE	1	859.83	63.3
683 J-242	716.76	TRUE	1	859.87	61.9
687 J-243	710	TRUE	1	859.85	64.8
690 J-244	713	TRUE	1	859.84	63.5
692 J-245	712.09	TRUE	1	859.86	63.9
694 J-246	714.92	TRUE	1	859.92	62.7
698 J-247	709	TRUE	1	859.88	65.3
701 J-248	708.85	TRUE	1	859.86	65.3
703 J-249	715	TRUE	1	859.86	62.7
705 J-250	717	TRUE	1	859.86	61.8
707 J-251	711	TRUE	1	859.87	64.4
709 J-252	710	TRUE	1	859.87	64.8
712 J-253	713.36	TRUE	1	859.87	63.4
715 J-254	713.50	TRUE	1	859.86	63.7
717 J-255	712.32	TRUE	1	859.86	63
717 J-255	714.31	TRUE	1	859.86	64
721 J-257	712	TRUE	1	859.86	63.5
721 J-257 724 J-258	713.77	TRUE	1	859.86	63.2
724 J-258 726 J-259	713.77	TRUE	1	859.86	63.7
720 J-250 729 J-260	712.33	TRUE	1	859.85	64
723 J-262	716.59	TRUE	1	859.86	62
735 J-263	710.33	TRUE	1	859.86	62.7
737 J-264	715.31	TRUE	1	859.87	62.5
740 J-265	713.31	TRUE	1	859.85	63.1
740 J-266	715.21	TRUE	1	859.85	62.6
742 J-267	713.21	TRUE	1	859.85	61.4
744 J-267 746 J-268	719.86	TRUE		859.85	60.6
			1		
750 J-269	716.36	TRUE	1	859.85	62.1
752 J-270	717	TRUE	1	859.85	61.8
754 J-271	714	TRUE	1	859.85	63.1
759 J-272	720.04	TRUE	1	859.84	60.5
761 J-273	718.81	TRUE	1	859.84	61
763 J-274	718.66	TRUE	1	859.84	61.1
765 J-275	721.72	TRUE	1	859.84	59.8
767 J-276	722.94	TRUE	1	859.84	59.2
770 J-277	725	TRUE	1	859.83	58.3
772 J-278	733.47	TRUE	1	859.83	54.7
774 J-279	724.61	TRUE	1	859.82	58.5
776 J-280	716.97	TRUE	1	859.82	61.8
778 J-281	723.35	TRUE	1	859.82	59

781	J-282	722.69	TRUE	1	859.82	59.3
784	J-283	722.99	TRUE	1	859.82	59.2
786	J-284	717.92	TRUE	1	859.82	61.4
788	J-285	722.49	TRUE	1	859.82	59.4
790	J-286	722.28	TRUE	1	859.81	59.5
792	J-287	722.85	TRUE	1	859.81	59.3
794	J-288	717.53	TRUE	1	859.81	61.6
796	J-289	718.17	TRUE	1	859.81	61.3
799	J-290	720.17	TRUE	1	859.81	60.4
801	J-291	716.4	TRUE	1	859.81	62
802	J-292	728.93	TRUE	1	859.81	56.6
807	J-294	715	TRUE	1	859.81	62.7
811	J-296	720.28	TRUE	1	859.81	60.4
813	J-297	712.66	TRUE	1	859.81	63.7
815	J-298	710.61	TRUE	1	859.81	64.5
817	J-299	714.91	TRUE	1	859.81	62.7
820	J-300	719.58	TRUE	1	859.81	60.7
822	J-301	719.77	TRUE	1	859.81	60.6
824	J-302	721.49	TRUE	1	859.82	59.8
826	J-303	720.13	TRUE	1	859.82	60.4
828	J-304	722.76	TRUE	1	859.83	59.3
830	J-305	710.32	TRUE	1	859.83	64.7
832	J-306	721.53	TRUE	1	859.83	59.8
834	J-307	706	TRUE	1	859.83	66.6
836	J-308	710.63	TRUE	1	859.83	64.6
838	J-309	702.36	TRUE	1	859.83	68.1
841	J-310	699.69	TRUE	1	859.82	69.3
843	J-311	700.96	TRUE	1	859.82	68.7
846	J-312	701.86	TRUE	1	859.82	68.3
848	J-313	698.46	TRUE	1	859.81	69.8
850	J-314	703.05	TRUE	1	859.82	67.8
853	J-315	710.03	TRUE	1	859.82	64.8
	J-316	708.95	TRUE	1	859.81	65.3
857	J-317	713.69	TRUE	1	859.82	63.2
861	J-318	712.41	TRUE	1	859.86	63.8
863	J-319	713.94	TRUE	1	859.85	63.1
	J-320	712.55	TRUE	1	859.85	63.7
	J-321	714	TRUE	1	859.85	63.1
	J-322	714	TRUE	1	859.86	63.1
	J-323	716.98	TRUE	1	859.86	61.8
	J-324	720.55	TRUE	1	859.86	60.3
	J-325	706.65	TRUE	1	859.81	66.3
	J-326	705.73	TRUE	1	859.81	66.7
	J-327	705.7	TRUE	1	859.81	66.7
	J-328	705.73	TRUE	1	859.81	66.7
	J-329	709.25	TRUE	1	859.81	65.1
	J-330	702.26	TRUE	1	859.81	68.2
031	1-220	702.20	TNUE		035.01	00.2

893	J-331	706	TRUE	1	859.81	66.5
896	J-332	703.52	TRUE	1	859.81	67.6
898	J-333	698.76	TRUE	1	859.8	69.7
900	J-334	710.64	TRUE	1	859.8	64.5
907	J-336	708	TRUE	1	859.81	65.7
912	J-338	711.15	TRUE	1	859.81	64.3
915	J-339	712.15	TRUE	1	859.8	63.9
919	J-340	716.12	TRUE	1	859.81	62.2
923	J-341	706.05	TRUE	1	859.82	66.5
926	J-342	707.69	TRUE	1	859.82	65.8
929	J-343	714	TRUE	1	859.81	63.1
	J-345	710.64	TRUE	1	859.81	64.5
	J-346	709.85	TRUE	1	859.81	64.9
	J-347	692.57	TRUE	1	859.81	72.4
	J-348	691.48	TRUE	1	859.81	72.8
	J-349	702.43	TRUE	1	859.81	68.1
	J-350	706.77	TRUE	1	859.81	66.2
	J-351	702.42	TRUE	1	859.81	68.1
	J-352	703.59	TRUE	1	859.81	67.6
	J-353	699.66	TRUE	1	859.81	69.3
	J-354	709.41	TRUE	1	859.81	65.1
	J-355	704.39	TRUE	1	859.81	67.2
	J-356	704.08	TRUE	1	859.81	67.4
	J-357	697	TRUE	1	859.81	70.4
	J-358	715.19	TRUE	1	859.81	62.6
	J-359	709.27	TRUE	1	859.81	65.1
	J-360	716.89	TRUE	1	859.81	61.8
	J-361	699.52	TRUE	1	859.81	69.3
	J-362	698.91	TRUE	1	859.81	69.6
	J-363	700.99	TRUE	1	859.81	68.7
	J-364	708.84	TRUE	1	859.81	65.3
	J-365	707.02	TRUE	1	859.81	66.1
	J-366	707.52	TRUE	1	859.81	67.2
	J-367	697	TRUE	1	859.81	70.4
	J-368	712.68	TRUE	1	859.81	63.7
	J-369	703.86	TRUE	1	859.81	67.5
	J-370	703.99	TRUE	1	859.81	67.4
	J-370	730.98	TRUE	1	859.72	55.7
	J-371	702.93	TRUE	1	859.81	67.9
	J-371 J-372	697.52	TRUE	1	859.81	70.2
	J-372	693	TRUE	1	859.81	70.2
	J-373	692.31	TRUE	1	859.81	72.5
	J-374 J-375	695.97	TRUE	1		
	J-375 J-376	695.97		1	859.81 850.81	70.9 70.4
			TRUE		859.81	
	J-377	679.19	TRUE	1	859.81	78.1
	J-378	693.2	TRUE	1	859.81	72.1
1026	J-379	692	TRUE	1	859.81	72.6

1029 J-380 704.49 TRUE 1 859.81 1033 J-382 706 TRUE 1 859.81 1035 J-383 707.55 TRUE 1 859.81 1037 J-384 707.41 TRUE 1 859.81 1039 J-385 712.67 TRUE 1 859.81 1042 J-386 709.41 TRUE 1 859.81 1044 J-387 705 TRUE 1 859.81 1046 J-388 712.24 TRUE 1 859.81 1048 J-389 706.88 TRUE 1 859.81 1051 J-390 698 TRUE 1 859.81 1052 J-391 704 TRUE 1 859.81 1062 J-392 693.32 TRUE 1 859.81 1064 J-393 685.26 TRUE 1 859.81 1066 J-394 680.59 TRUE 1 859.81 1070 J-396 687.74 TRUE 1 859.81	67.2 66.5 65.9 63.7 65.1 67 63.8 66.2 70 67.4 72 75.5 77.5 79.5 74.4 69.7
1035 J-383 707.55 TRUE 1 859.81 1037 J-384 707.41 TRUE 1 859.81 1039 J-385 712.67 TRUE 1 859.81 1042 J-386 709.41 TRUE 1 859.81 1044 J-387 705 TRUE 1 859.81 1046 J-388 712.24 TRUE 1 859.81 1048 J-389 706.88 TRUE 1 859.81 1051 J-390 698 TRUE 1 859.81 1058 J-391 704 TRUE 1 859.81 1062 J-392 693.32 TRUE 1 859.81 1064 J-393 685.26 TRUE 1 859.81 1066 J-394 680.59 TRUE 1 859.81 1068 J-395 675.95 TRUE 1 859.81 1070 J-396 687.74 TRUE 1 859.81 1074 J-397 698.73 <td>65.9 65.9 63.7 65.1 67 63.8 66.2 70 67.4 72 75.5 77.5 79.5 74.4 69.7</td>	65.9 65.9 63.7 65.1 67 63.8 66.2 70 67.4 72 75.5 77.5 79.5 74.4 69.7
1037 J-384 707.41 TRUE 1 859.81 1039 J-385 712.67 TRUE 1 859.81 1042 J-386 709.41 TRUE 1 859.81 1044 J-387 705 TRUE 1 859.81 1046 J-388 712.24 TRUE 1 859.81 1048 J-389 706.88 TRUE 1 859.81 1051 J-390 698 TRUE 1 859.81 1058 J-391 704 TRUE 1 859.81 1059 J-392 693.32 TRUE 1 859.81 1064 J-393 685.26 TRUE 1 859.81 1066 J-394 680.59 TRUE 1 859.81 1068 J-395 675.95 TRUE 1 859.81 1070 J-396 687.74 TRUE 1 859.81 1074 J-397 698.73 TRUE 1 859.81 1079 J-398 703.81 <td>65.9 63.7 65.1 67 63.8 66.2 70 67.4 72 75.5 77.5 79.5 74.4 69.7</td>	65.9 63.7 65.1 67 63.8 66.2 70 67.4 72 75.5 77.5 79.5 74.4 69.7
1039 J-385 712.67 TRUE 1 859.81 1042 J-386 709.41 TRUE 1 859.81 1044 J-387 705 TRUE 1 859.81 1046 J-388 712.24 TRUE 1 859.81 1048 J-389 706.88 TRUE 1 859.81 1051 J-390 698 TRUE 1 859.81 1058 J-391 704 TRUE 1 859.81 1062 J-392 693.32 TRUE 1 859.81 1064 J-393 685.26 TRUE 1 859.81 1066 J-394 680.59 TRUE 1 859.81 1068 J-395 675.95 TRUE 1 859.81 1070 J-396 687.74 TRUE 1 859.81 1070 J-397 698.73 TRUE 1 859.81 1076 J-398 703.81 TRUE 1 859.81 1079 J-399 647.43 TRUE 1 859.81 401 J-401 741 TRUE 1 859.81 1087 J-402 643 TRUE 1 859.81 1091 J-403 644.36 TRUE 1 859.81 1094 J-404 645.97	63.7 65.1 67 63.8 66.2 70 67.4 72 75.5 77.5 79.5 74.4 69.7
1042 J-386 709.41 TRUE 1 859.81 1044 J-387 705 TRUE 1 859.81 1046 J-388 712.24 TRUE 1 859.81 1048 J-389 706.88 TRUE 1 859.81 1051 J-390 698 TRUE 1 859.81 1052 J-391 704 TRUE 1 859.81 1062 J-392 693.32 TRUE 1 859.81 1064 J-393 685.26 TRUE 1 859.81 1066 J-394 680.59 TRUE 1 859.81 1068 J-395 675.95 TRUE 1 859.81 1070 J-396 687.74 TRUE 1 859.81 1074 J-397 698.73 TRUE 1 859.81 1079 J-398 703.81 TRUE 1 859.81 1079 J-401 741 TRUE 1 859.81 1087 J-402 643	65.1 67 63.8 66.2 70 67.4 72 75.5 77.5 79.5 74.4 69.7
1044 J-387 705 TRUE 1 859.81 1046 J-388 712.24 TRUE 1 859.81 1048 J-389 706.88 TRUE 1 859.81 1051 J-390 698 TRUE 1 859.81 1058 J-391 704 TRUE 1 859.81 1062 J-392 693.32 TRUE 1 859.81 1064 J-393 685.26 TRUE 1 859.81 1066 J-394 680.59 TRUE 1 859.81 1068 J-395 675.95 TRUE 1 859.81 1070 J-396 687.74 TRUE 1 859.81 1074 J-397 698.73 TRUE 1 859.81 1076 J-398 703.81 TRUE 1 859.81 1079 J-399 647.43 TRUE 1 859.81 1084 J-401 741 TRUE 1 859.81 1087 J-402 643	67 63.8 66.2 70 67.4 72 75.5 77.5 79.5 74.4 69.7
1046 J-388 712.24 TRUE 1 859.81 1048 J-389 706.88 TRUE 1 859.81 1051 J-390 698 TRUE 1 859.81 1058 J-391 704 TRUE 1 859.81 1062 J-392 693.32 TRUE 1 859.81 1064 J-393 685.26 TRUE 1 859.81 1066 J-394 680.59 TRUE 1 859.81 1068 J-395 675.95 TRUE 1 859.81 1070 J-396 687.74 TRUE 1 859.81 1074 J-397 698.73 TRUE 1 859.81 1076 J-398 703.81 TRUE 1 859.81 1079 J-399 647.43 TRUE 1 859.81 401 J-401 741 TRUE 1 859.81 1084 J-401 643 TRUE 1 859.81 1095 J-403 644.36	63.8 66.2 70 67.4 72 75.5 77.5 79.5 74.4 69.7
1046 J-388 712.24 TRUE 1 859.81 1048 J-389 706.88 TRUE 1 859.81 1051 J-390 698 TRUE 1 859.81 1058 J-391 704 TRUE 1 859.81 1062 J-392 693.32 TRUE 1 859.81 1064 J-393 685.26 TRUE 1 859.81 1066 J-394 680.59 TRUE 1 859.81 1068 J-395 675.95 TRUE 1 859.81 1070 J-396 687.74 TRUE 1 859.81 1074 J-397 698.73 TRUE 1 859.81 1076 J-398 703.81 TRUE 1 859.81 1079 J-399 647.43 TRUE 1 859.81 401 J-401 741 TRUE 1 859.81 1084 J-401 643 TRUE 1 859.81 1095 J-403 644.36	66.2 70 67.4 72 75.5 77.5 79.5 74.4 69.7
1048 J-389 706.88 TRUE 1 859.81 1051 J-390 698 TRUE 1 859.81 1058 J-391 704 TRUE 1 859.81 1062 J-392 693.32 TRUE 1 859.81 1064 J-393 685.26 TRUE 1 859.81 1066 J-394 680.59 TRUE 1 859.81 1068 J-395 675.95 TRUE 1 859.81 1070 J-396 687.74 TRUE 1 859.81 1074 J-397 698.73 TRUE 1 859.81 1076 J-398 703.81 TRUE 1 859.81 1079 J-399 647.43 TRUE 1 859.81 401 J-401 741 TRUE 1 859.81 1084 J-401 643 TRUE 1 859.81 1097 J-402 643 TRUE 1 859.81 1094 J-404 645.97 TRUE 1 859.82 1096 J-405 646.02 TRUE 1 859.81	66.2 70 67.4 72 75.5 77.5 79.5 74.4 69.7
1051 J-390 698 TRUE 1 859.81 1058 J-391 704 TRUE 1 859.81 1062 J-392 693.32 TRUE 1 859.81 1064 J-393 685.26 TRUE 1 859.81 1066 J-394 680.59 TRUE 1 859.81 1068 J-395 675.95 TRUE 1 859.81 1070 J-396 687.74 TRUE 1 859.81 1074 J-397 698.73 TRUE 1 859.81 1076 J-398 703.81 TRUE 1 859.81 1079 J-399 647.43 TRUE 1 859.81 401 J-401 741 TRUE 1 859.81 1084 J-401 643 TRUE 1 859.81 1097 J-402 643 TRUE 1 859.81 1094 J-403 644.36 TRUE 1 859.82 1096 J-405 646.02	70 67.4 72 75.5 77.5 79.5 74.4 69.7
1058 J-391 704 TRUE 1 859.81 1062 J-392 693.32 TRUE 1 859.81 1064 J-393 685.26 TRUE 1 859.81 1066 J-394 680.59 TRUE 1 859.81 1068 J-395 675.95 TRUE 1 859.81 1070 J-396 687.74 TRUE 1 859.81 1074 J-397 698.73 TRUE 1 859.81 1076 J-398 703.81 TRUE 1 859.81 1079 J-399 647.43 TRUE 1 859.81 401 J-401 741 TRUE 1 859.81 1084 J-401 643 TRUE 1 859.81 1087 J-402 643 TRUE 1 859.81 1091 J-403 644.36 TRUE 1 859.81 1094 J-404 645.97 TRUE 1 859.81 1096 J-405 646.02	67.4 72 75.5 77.5 79.5 74.4 69.7
1062 J-392 693.32 TRUE 1 859.81 1064 J-393 685.26 TRUE 1 859.81 1066 J-394 680.59 TRUE 1 859.81 1068 J-395 675.95 TRUE 1 859.81 1070 J-396 687.74 TRUE 1 859.81 1074 J-397 698.73 TRUE 1 859.81 1076 J-398 703.81 TRUE 1 859.81 1079 J-399 647.43 TRUE 1 859.81 401 J-401 741 TRUE 1 859.81 404 J-401 643 TRUE 1 859.81 1087 J-402 643 TRUE 1 859.81 1091 J-403 644.36 TRUE 1 859.81 1094 J-404 645.97 TRUE 1 859.81 1096 J-405 646.02 TRUE 1 859.81	72 75.5 77.5 79.5 74.4 69.7
1064 J-393 685.26 TRUE 1 859.81 1066 J-394 680.59 TRUE 1 859.81 1068 J-395 675.95 TRUE 1 859.81 1070 J-396 687.74 TRUE 1 859.81 1074 J-397 698.73 TRUE 1 859.81 1076 J-398 703.81 TRUE 1 859.81 1079 J-399 647.43 TRUE 1 859.81 401 J-401 741 TRUE 1 859.81 402 J-401 643 TRUE 1 859.81 1087 J-402 643 TRUE 1 859.81 1091 J-403 644.36 TRUE 1 859.81 1094 J-404 645.97 TRUE 1 859.81 1096 J-405 646.02 TRUE 1 859.81	75.5 77.5 79.5 74.4 69.7
1066 J-394 680.59 TRUE 1 859.81 1068 J-395 675.95 TRUE 1 859.81 1070 J-396 687.74 TRUE 1 859.81 1074 J-397 698.73 TRUE 1 859.81 1076 J-398 703.81 TRUE 1 859.81 1079 J-399 647.43 TRUE 1 859.81 401 J-401 741 TRUE 1 859.81 1084 J-401 643 TRUE 1 859.81 1087 J-402 643 TRUE 1 859.81 1091 J-403 644.36 TRUE 1 859.81 1094 J-404 645.97 TRUE 1 859.82 1096 J-405 646.02 TRUE 1 859.81	77.5 79.5 74.4 69.7
1068 J-395 675.95 TRUE 1 859.81 1070 J-396 687.74 TRUE 1 859.81 1074 J-397 698.73 TRUE 1 859.81 1076 J-398 703.81 TRUE 1 859.81 1079 J-399 647.43 TRUE 1 859.81 401 J-401 741 TRUE 1 859.72 1084 J-401 643 TRUE 1 859.81 1087 J-402 643 TRUE 1 859.81 1091 J-403 644.36 TRUE 1 859.81 1094 J-404 645.97 TRUE 1 859.82 1096 J-405 646.02 TRUE 1 859.81	79.5 74.4 69.7
1070 J-396 687.74 TRUE 1 859.81 1074 J-397 698.73 TRUE 1 859.81 1076 J-398 703.81 TRUE 1 859.81 1079 J-399 647.43 TRUE 1 859.81 401 J-401 741 TRUE 1 859.72 1084 J-401 643 TRUE 1 859.81 1087 J-402 643 TRUE 1 859.81 1091 J-403 644.36 TRUE 1 859.81 1094 J-404 645.97 TRUE 1 859.82 1096 J-405 646.02 TRUE 1 859.81	74.4 69.7
1074 J-397 698.73 TRUE 1 859.81 1076 J-398 703.81 TRUE 1 859.81 1079 J-399 647.43 TRUE 1 859.81 401 J-401 741 TRUE 1 859.72 1084 J-401 643 TRUE 1 859.81 1087 J-402 643 TRUE 1 859.81 1091 J-403 644.36 TRUE 1 859.81 1094 J-404 645.97 TRUE 1 859.82 1096 J-405 646.02 TRUE 1 859.81	69.7
1076 J-398 703.81 TRUE 1 859.81 1079 J-399 647.43 TRUE 1 859.81 401 J-401 741 TRUE 1 859.72 1084 J-401 643 TRUE 1 859.81 1087 J-402 643 TRUE 1 859.81 1091 J-403 644.36 TRUE 1 859.81 1094 J-404 645.97 TRUE 1 859.82 1096 J-405 646.02 TRUE 1 859.81	
1079 J-399 647.43 TRUE 1 859.81 401 J-401 741 TRUE 1 859.72 1084 J-401 643 TRUE 1 859.81 1087 J-402 643 TRUE 1 859.81 1091 J-403 644.36 TRUE 1 859.81 1094 J-404 645.97 TRUE 1 859.82 1096 J-405 646.02 TRUE 1 859.81	67.5
401 J-401 741 TRUE 1 859.72 1084 J-401 643 TRUE 1 859.81 1087 J-402 643 TRUE 1 859.81 1091 J-403 644.36 TRUE 1 859.81 1094 J-404 645.97 TRUE 1 859.82 1096 J-405 646.02 TRUE 1 859.81	91.9
1084 J-401 643 TRUE 1 859.81 1087 J-402 643 TRUE 1 859.81 1091 J-403 644.36 TRUE 1 859.81 1094 J-404 645.97 TRUE 1 859.82 1096 J-405 646.02 TRUE 1 859.81	
1087 J-402 643 TRUE 1 859.81 1091 J-403 644.36 TRUE 1 859.81 1094 J-404 645.97 TRUE 1 859.82 1096 J-405 646.02 TRUE 1 859.81	51.4
1091 J-403 644.36 TRUE 1 859.81 1094 J-404 645.97 TRUE 1 859.82 1096 J-405 646.02 TRUE 1 859.81	93.8
1094 J-404 645.97 TRUE 1 859.82 1096 J-405 646.02 TRUE 1 859.81	93.8
1096 J-405 646.02 TRUE 1 859.81	93.2
	92.5
1098 J-400 044 IRUE 1 839.81	92.5
	93.4
1100 J-407 642.63 TRUE 1 859.81	94
1104 J-408 659 TRUE 1 859.81	86.9
1106 J-409 660.11 TRUE 1 859.81	86.4
1108 J-410 656.39 TRUE 1 859.81	88
1110 J-411 655.19 TRUE 1 859.81	88.5
1112 J-412 656 TRUE 1 859.81	88.2
1114 J-413 653.83 TRUE 1 859.81	89.1
1117 J-414 643.01 TRUE 1 859.8	93.8
1119 J-415 646.63 TRUE 1 859.8	92.2
1124 J-416 661.4 TRUE 1 859.81	85.8
1127 J-417 658.92 TRUE 1 859.81	86.9
1130 J-418 657.74 TRUE 1 859.81	87.4
1132 J-419 658.05 TRUE 1 859.81	87.3
1134 J-420 660 TRUE 1 859.81	86.4
1136 J-421 704.97 TRUE 1 859.81	67
1138 J-422 711.86 TRUE 1 859.81	64
1140 J-423 710.29 TRUE 1 859.81	64.7
1143 J-424 709.58 TRUE 1 859.81	65
1145 J-425 706 TRUE 1 859.81	66.5
1147 J-426 659.3 TRUE 1 859.81	200
1152 J-427 707.92 TRUE 1 859.81	86.8

1154 -428						
1159 J-430 705.06 TRUE	1154 J-428	711.64	TRUE	1	859.81	64.1
1165 J-431 709 TRUE	1157 J-429	711	TRUE	1	859.81	64.4
1167 J-432 706.97 TRUE	1159 J-430	705.06	TRUE	1	859.81	67
1171 J-433	1165 J-431	709	TRUE	1	859.81	65.2
1175 J-434	1167 J-432	706.97	TRUE	1	859.81	66.1
1177 J-435 711.08 TRUE 1 859.99 64.5 1180 J-436 710.97 TRUE 1 859.99 64.5 1182 J-437 704.85 TRUE 1 859.98 67.1 1186 J-439 698.88 TRUE 1 859.96 69.7 1183 J-440 696 TRUE 1 859.93 73.5 1195 J-443 695.82 TRUE 1 859.93 73.5 1199 J-445 699 TRUE 1 859.93 70.9 1203 J-447 694 TRUE 1 859.91 71.8 1205 J-448 693.12 TRUE 1 859.91 70.9 1207 J-449 696 TRUE 1 859.91 70.9 1207 J-449 696 TRUE 1 859.91 62.7 1210 J-450 711 TRUE 1 859.91	1171 J-433	715.92	TRUE	1	859.76	62.2
1177 J-435 711.08 TRUE 1 859.99 64.5 1180 J-436 710.97 TRUE 1 859.99 64.5 1182 J-437 704.85 TRUE 1 859.98 67.1 1186 J-439 698.88 TRUE 1 859.96 69.7 1183 J-440 696 TRUE 1 859.93 73.5 1195 J-443 695.82 TRUE 1 859.93 73.5 1199 J-445 699 TRUE 1 859.93 70.9 1203 J-447 694 TRUE 1 859.91 71.8 1205 J-448 693.12 TRUE 1 859.91 70.9 1207 J-449 696 TRUE 1 859.91 70.9 1207 J-449 696 TRUE 1 859.91 62.7 1210 J-450 711 TRUE 1 859.91	1175 J-434	710	TRUE	1	860	64.9
1180 J-436 710.97 TRUE 1 859.99 64.5 1182 J-437 704.85 TRUE 1 859.98 67.1 1186 J-439 698.88 TRUE 1 859.96 69.7 1188 J-440 696 TRUE 1 859.93 73.5 1195 J-442 690 TRUE 1 859.93 73.5 1195 J-443 695.82 TRUE 1 859.93 73.5 1199 J-445 699 TRUE 1 859.93 69.6 1203 J-447 694 TRUE 1 859.91 71.8 1205 J-448 693.12 TRUE 1 859.91 70.9 1207 J-449 696 TRUE 1 859.91 70.9 1207 J-449 696 TRUE 1 859.91 60.7 1213 J-452 715 TRUE 1 859.91 <td>1177 J-435</td> <td></td> <td></td> <td></td> <td></td> <td></td>	1177 J-435					
1182 J-437 704.85 TRUE				1		
1186 J-439 698.88 TRUE 1 859.96 69.7 1188 J-440 696 TRUE 1 859.95 70.9 1193 J-442 690 TRUE 1 859.93 73.5 1195 J-443 695.82 TRUE 1 859.93 70.1 1199 J-445 699 TRUE 1 859.93 71.1 1203 J-447 694 TRUE 1 859.91 71.8 1205 J-448 693.12 TRUE 1 859.91 72.2 1207 J-449 696 TRUE 1 859.91 70.9 1209 J-450 711 TRUE 1 859.91 64.4 1211 J-451 709.88 TRUE 1 859.99 62.7 1215 J-453 705.41 TRUE 1 859.91 65.7 1220 J-455 717.85 TRUE 1 859.91						
1188 J-440 696 TRUE 1 859.95 70.9 1193 J-442 690 TRUE 1 859.93 73.5 1195 J-443 695.82 TRUE 1 859.93 71 1199 J-445 699 TRUE 1 859.91 71.8 1203 J-447 694 TRUE 1 859.91 71.8 1205 J-448 693.12 TRUE 1 859.91 72.2 1207 J-449 696 TRUE 1 859.91 70.9 1207 J-449 696 TRUE 1 859.91 70.9 1207 J-449 696 TRUE 1 859.91 64.4 1211 J-451 709.88 TRUE 1 859.91 64.9 1213 J-452 715 TRUE 1 859.91 66.8 1215 J-453 705.41 TRUE 1 859.91						
1193 J-442 690 TRUE 1 859.93 73.5 1195 J-443 695.82 TRUE 1 859.93 71 1199 J-445 699 TRUE 1 859.93 69.6 1203 J-447 694 TRUE 1 859.91 71.8 1205 J-448 693.12 TRUE 1 859.91 70.9 1207 J-449 696 TRUE 1 859.91 70.9 1209 J-450 711 TRUE 1 859.91 64.4 1211 J-451 709.88 TRUE 1 859.91 64.9 1213 J-452 715 TRUE 1 859.9 62.7 1213 J-452 715 TRUE 1 859.9 62.7 1213 J-452 70.98 TRUE 1 859.91 65.7 1220 J-455 717.85 TRUE 1 859.91 65.7 1223 J-456 703.5 TRUE 1 859.9						
1195 J-443 695.82 TRUE 1 859.93 71 1199 J-445 699 TRUE 1 859.93 69.6 1203 J-447 694 TRUE 1 859.91 71.8 1205 J-448 693.12 TRUE 1 859.91 70.9 1207 J-449 696 TRUE 1 859.91 70.9 1209 J-450 711 TRUE 1 859.91 64.4 1211 J-451 709.88 TRUE 1 859.9 64.7 1213 J-452 715 TRUE 1 859.9 62.7 1215 J-453 705.41 TRUE 1 859.9 66.8 1217 J-454 707.98 TRUE 1 859.91 65.7 1220 J-455 717.85 TRUE 1 859.91 65.7 1223 J-456 703.5 TRUE 1 859.9 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
1199 J-445 699 TRUE 1 859.93 69.6 1203 J-447 694 TRUE 1 859.91 71.8 1205 J-448 693.12 TRUE 1 859.91 70.9 1207 J-449 696 TRUE 1 859.91 70.9 1209 J-450 711 TRUE 1 859.91 64.4 1211 J-451 709.88 TRUE 1 859.91 64.9 1213 J-452 715 TRUE 1 859.9 62.7 1215 J-453 705.41 TRUE 1 859.9 66.7 1221 J-454 707.98 TRUE 1 859.91 65.7 1220 J-455 717.85 TRUE 1 859.91 65.7 1222 J-456 703.5 TRUE 1 859.9 67.7 1223 J-456 701.71 TRUE 1 859.89<						
1203 J-447 694 TRUE						
1205						
1207 J-449 696 TRUE						
1209 J-450 711 TRUE 1 859.91 64.4 1211 J-451 709.88 TRUE 1 859.9 64.9 1213 J-452 715 TRUE 1 859.9 62.7 1215 J-453 705.41 TRUE 1 859.9 66.8 1217 J-454 707.98 TRUE 1 859.91 65.7 1220 J-455 717.85 TRUE 1 859.91 61.5 1223 J-456 703.5 TRUE 1 859.9 67.7 1225 J-457 712.71 TRUE 1 859.9 63.7 1228 J-458 710.81 TRUE 1 859.9 63.7 1230 J-459 712.3 TRUE 1 859.89 63.9 1230 J-469 699.24 TRUE 1 859.88 69.5 1234 J-461 703.17 TRUE 1 859.88 67.2 1238 J-463 704.51 TRUE 1 859.88 67.2						
1211 J-451 709.88 TRUE 1 859.9 64.9 1213 J-452 715 TRUE 1 859.9 62.7 1215 J-453 705.41 TRUE 1 859.9 66.8 1217 J-454 707.98 TRUE 1 859.91 65.7 1220 J-455 717.85 TRUE 1 859.91 61.5 1223 J-456 703.5 TRUE 1 859.9 67.7 1225 J-457 712.71 TRUE 1 859.9 63.7 1228 J-458 710.81 TRUE 1 859.9 63.7 1230 J-459 712.3 TRUE 1 859.89 63.9 1230 J-469 712.3 TRUE 1 859.89 63.9 1232 J-460 699.24 TRUE 1 859.88 67.8 1234 J-461 703.17 TRUE 1 859.88 67.2 1240 J-464 705.31 TRUE 1						
1213 J-452 715 TRUE 1 859.9 66.8 1215 J-453 705.41 TRUE 1 859.9 66.8 1217 J-454 707.98 TRUE 1 859.91 65.7 1220 J-455 717.85 TRUE 1 859.91 61.5 1223 J-456 703.5 TRUE 1 859.9 67.7 1225 J-457 712.71 TRUE 1 859.9 63.7 1228 J-458 710.81 TRUE 1 859.9 63.7 1230 J-459 712.3 TRUE 1 859.89 63.9 1230 J-459 712.3 TRUE 1 859.89 63.9 1230 J-459 712.3 TRUE 1 859.89 63.9 1230 J-459 712.3 TRUE 1 859.88 69.5 1230 J-469 692.4 TRUE 1 859.88 69.5 1231 J-461 703.17 TRUE 1 <						
1215 J-453 705.41 TRUE 1 859.9 66.8 1217 J-454 707.98 TRUE 1 859.91 65.7 1220 J-455 717.85 TRUE 1 859.91 61.5 1223 J-456 703.5 TRUE 1 859.9 67.7 1225 J-457 712.71 TRUE 1 859.9 63.7 1228 J-458 710.81 TRUE 1 859.9 63.7 1230 J-459 712.3 TRUE 1 859.89 63.9 1230 J-459 712.3 TRUE 1 859.89 63.9 1230 J-460 699.24 TRUE 1 859.88 69.5 1234 J-461 703.17 TRUE 1 859.88 67.8 1236 J-462 698 TRUE 1 859.88 67.2 1240 J-464 705.31 TRUE 1 859.89 68.8 1240 J-465 700.79 TRUE 1						
1217 J-454 707.98 TRUE 1 859.91 65.7 1220 J-455 717.85 TRUE 1 859.91 61.5 1223 J-456 703.5 TRUE 1 859.9 67.7 1225 J-457 712.71 TRUE 1 859.9 63.7 1228 J-458 710.81 TRUE 1 859.9 64.5 1230 J-459 712.3 TRUE 1 859.89 63.9 1232 J-460 699.24 TRUE 1 859.88 69.5 1234 J-461 703.17 TRUE 1 859.88 67.8 1236 J-462 698 TRUE 1 859.88 67.2 1240 J-464 705.31 TRUE 1 859.88 67.2 1240 J-464 705.31 TRUE 1 859.89 68.8 1242 J-465 700.79 TRUE 1 859.88 70.6 1246 J-467 690.75 TRUE 1						
1220 J-455 717.85 TRUE 1 859.91 61.5 1223 J-456 703.5 TRUE 1 859.9 67.7 1225 J-457 712.71 TRUE 1 859.9 63.7 1228 J-458 710.81 TRUE 1 859.9 64.5 1230 J-459 712.3 TRUE 1 859.89 63.9 1232 J-460 699.24 TRUE 1 859.88 69.5 1234 J-461 703.17 TRUE 1 859.88 69.5 1236 J-462 698 TRUE 1 859.88 70.8 1238 J-463 704.51 TRUE 1 859.88 67.2 1240 J-464 705.31 TRUE 1 859.89 66.9 1242 J-465 700.79 TRUE 1 859.89 68.8 1244 J-466 696.64 TRUE 1 859.88 70.6 1246 J-467 690.75 TRUE 1 859.88 74.9 1251 J-469 686.71 TRUE 1 859.87 72.6 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
1223 J-456 703.5 TRUE 1 859.9 67.7 1225 J-457 712.71 TRUE 1 859.9 63.7 1228 J-458 710.81 TRUE 1 859.9 64.5 1230 J-459 712.3 TRUE 1 859.89 63.9 1232 J-460 699.24 TRUE 1 859.88 69.5 1234 J-461 703.17 TRUE 1 859.88 67.8 1236 J-462 698 TRUE 1 859.88 67.2 1238 J-463 704.51 TRUE 1 859.88 67.2 1240 J-464 705.31 TRUE 1 859.88 67.2 1240 J-464 705.31 TRUE 1 859.89 68.8 1242 J-465 700.79 TRUE 1 859.88 70.6 1246 J-467 690.75 TRUE 1 859.88 74.9 1251 J-469 686.71 TRUE 1						
1225 J-457 712.71 TRUE 1 859.9 63.7 1228 J-458 710.81 TRUE 1 859.9 64.5 1230 J-459 712.3 TRUE 1 859.89 63.9 1232 J-460 699.24 TRUE 1 859.88 69.5 1234 J-461 703.17 TRUE 1 859.88 67.8 1236 J-462 698 TRUE 1 859.88 67.2 1240 J-463 704.51 TRUE 1 859.88 67.2 1240 J-464 705.31 TRUE 1 859.89 66.9 1242 J-465 700.79 TRUE 1 859.89 68.8 1244 J-466 696.64 TRUE 1 859.88 70.6 1246 J-467 690.75 TRUE 1 859.88 74.9 1251 J-468 688.79 TRUE 1 859.88 74.9 1253 J-470 692.02 TRUE 1 859.87 72.6 1255 J-471 694.13 TRUE 1 859.87 71.7 1257 J-472						
1228 J-458 710.81 TRUE 1 859.9 64.5 1230 J-459 712.3 TRUE 1 859.89 63.9 1232 J-460 699.24 TRUE 1 859.88 69.5 1234 J-461 703.17 TRUE 1 859.88 67.8 1236 J-462 698 TRUE 1 859.88 70 1238 J-463 704.51 TRUE 1 859.88 67.2 1240 J-464 705.31 TRUE 1 859.89 66.9 1242 J-465 700.79 TRUE 1 859.89 68.8 1244 J-466 696.64 TRUE 1 859.88 70.6 1249 J-468 688.79 TRUE 1 859.88 74.9 1251 J-469 686.71 TRUE 1 859.88 74.9 1253 J-470 692.02 TRUE 1 859.87 72.6 1255 J-471 694.13 TRUE 1 859.87 68.4 1259 J-473 709.01 TRUE 1 859.88 65.3 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
1230 J-459 712.3 TRUE 1 859.89 63.9 1232 J-460 699.24 TRUE 1 859.88 69.5 1234 J-461 703.17 TRUE 1 859.88 67.8 1236 J-462 698 TRUE 1 859.88 70 1238 J-463 704.51 TRUE 1 859.88 67.2 1240 J-464 705.31 TRUE 1 859.89 66.9 1242 J-465 700.79 TRUE 1 859.89 68.8 1244 J-466 696.64 TRUE 1 859.88 70.6 1246 J-467 690.75 TRUE 1 859.88 73.2 1249 J-468 688.79 TRUE 1 859.88 74.9 1251 J-469 686.71 TRUE 1 859.88 74.9 1253 J-470 692.02 TRUE 1 859.87 71.7 1257 J-472 701.74 TRUE 1						
1232 J-460 699.24 TRUE 1 859.88 69.5 1234 J-461 703.17 TRUE 1 859.88 67.8 1236 J-462 698 TRUE 1 859.88 70 1238 J-463 704.51 TRUE 1 859.88 67.2 1240 J-464 705.31 TRUE 1 859.89 66.9 1242 J-465 700.79 TRUE 1 859.89 68.8 1244 J-466 696.64 TRUE 1 859.88 70.6 1246 J-467 690.75 TRUE 1 859.88 74 1251 J-469 686.71 TRUE 1 859.88 74.9 1253 J-470 692.02 TRUE 1 859.87 72.6 1255 J-471 694.13 TRUE 1 859.87 71.7 1257 J-472 701.74 TRUE 1 859.88 65.3 1261 J-474 686.83 TRUE 1						
1234 J-461 703.17 TRUE 1 859.88 67.8 1236 J-462 698 TRUE 1 859.88 70 1238 J-463 704.51 TRUE 1 859.88 67.2 1240 J-464 705.31 TRUE 1 859.89 66.9 1242 J-465 700.79 TRUE 1 859.89 68.8 1244 J-466 696.64 TRUE 1 859.88 70.6 1246 J-467 690.75 TRUE 1 859.88 73.2 1249 J-468 688.79 TRUE 1 859.88 74.9 1251 J-469 686.71 TRUE 1 859.88 74.9 1253 J-470 692.02 TRUE 1 859.87 72.6 1255 J-471 694.13 TRUE 1 859.87 71.7 1257 J-472 701.74 TRUE 1 859.88 65.3 1261 J-474 686.83 TRUE 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
1236 J-462 698 TRUE 1 859.88 70 1238 J-463 704.51 TRUE 1 859.88 67.2 1240 J-464 705.31 TRUE 1 859.89 66.9 1242 J-465 700.79 TRUE 1 859.89 68.8 1244 J-466 696.64 TRUE 1 859.88 70.6 1246 J-467 690.75 TRUE 1 859.88 73.2 1249 J-468 688.79 TRUE 1 859.88 74 1251 J-469 686.71 TRUE 1 859.88 74.9 1253 J-470 692.02 TRUE 1 859.87 72.6 1255 J-471 694.13 TRUE 1 859.87 71.7 1257 J-472 701.74 TRUE 1 859.88 65.3 1261 J-474 686.83 TRUE 1 859.88 74.9 1264 J-475 711.41 TRUE 1						
1238 J-463 704.51 TRUE 1 859.88 67.2 1240 J-464 705.31 TRUE 1 859.89 66.9 1242 J-465 700.79 TRUE 1 859.89 68.8 1244 J-466 696.64 TRUE 1 859.88 70.6 1246 J-467 690.75 TRUE 1 859.88 73.2 1249 J-468 688.79 TRUE 1 859.88 74.2 1251 J-469 686.71 TRUE 1 859.88 74.9 1253 J-470 692.02 TRUE 1 859.87 72.6 1255 J-471 694.13 TRUE 1 859.87 71.7 1257 J-472 701.74 TRUE 1 859.88 65.3 1261 J-474 686.83 TRUE 1 859.88 74.9 1264 J-475 711.41 TRUE 1 859.88 74.9 1266 J-476 691.23 TRUE						
1240 J-464 705.31 TRUE 1 859.89 66.9 1242 J-465 700.79 TRUE 1 859.89 68.8 1244 J-466 696.64 TRUE 1 859.88 70.6 1246 J-467 690.75 TRUE 1 859.88 73.2 1249 J-468 688.79 TRUE 1 859.88 74 1251 J-469 686.71 TRUE 1 859.88 74.9 1253 J-470 692.02 TRUE 1 859.87 72.6 1255 J-471 694.13 TRUE 1 859.87 71.7 1257 J-472 701.74 TRUE 1 859.87 68.4 1259 J-473 709.01 TRUE 1 859.88 65.3 1261 J-474 686.83 TRUE 1 859.88 74.9 1264 J-475 711.41 TRUE 1 859.88 73 1266 J-476 691.23 TRUE 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
1242 J-465 700.79 TRUE 1 859.89 68.8 1244 J-466 696.64 TRUE 1 859.88 70.6 1246 J-467 690.75 TRUE 1 859.88 73.2 1249 J-468 688.79 TRUE 1 859.88 74 1251 J-469 686.71 TRUE 1 859.88 74.9 1253 J-470 692.02 TRUE 1 859.87 72.6 1255 J-471 694.13 TRUE 1 859.87 71.7 1257 J-472 701.74 TRUE 1 859.87 68.4 1259 J-473 709.01 TRUE 1 859.88 65.3 1261 J-474 686.83 TRUE 1 859.88 74.9 1264 J-475 711.41 TRUE 1 859.88 64.2 1266 J-476 691.23 TRUE 1 859.88 73.4 1268 J-477 687.9 TRUE 1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
1244 J-466 696.64 TRUE 1 859.88 70.6 1246 J-467 690.75 TRUE 1 859.88 73.2 1249 J-468 688.79 TRUE 1 859.88 74 1251 J-469 686.71 TRUE 1 859.88 74.9 1253 J-470 692.02 TRUE 1 859.87 72.6 1255 J-471 694.13 TRUE 1 859.87 71.7 1257 J-472 701.74 TRUE 1 859.87 68.4 1259 J-473 709.01 TRUE 1 859.88 65.3 1261 J-474 686.83 TRUE 1 859.88 74.9 1264 J-475 711.41 TRUE 1 859.88 64.2 1266 J-476 691.23 TRUE 1 859.88 73.4 1268 J-477 687.9 TRUE 1 859.88 74.4						
1246 J-467 690.75 TRUE 1 859.88 73.2 1249 J-468 688.79 TRUE 1 859.88 74 1251 J-469 686.71 TRUE 1 859.88 74.9 1253 J-470 692.02 TRUE 1 859.87 72.6 1255 J-471 694.13 TRUE 1 859.87 71.7 1257 J-472 701.74 TRUE 1 859.87 68.4 1259 J-473 709.01 TRUE 1 859.88 65.3 1261 J-474 686.83 TRUE 1 859.88 74.9 1264 J-475 711.41 TRUE 1 859.88 64.2 1266 J-476 691.23 TRUE 1 859.88 73 1268 J-477 687.9 TRUE 1 859.88 74.4						
1249 J-468 688.79 TRUE 1 859.88 74 1251 J-469 686.71 TRUE 1 859.88 74.9 1253 J-470 692.02 TRUE 1 859.87 72.6 1255 J-471 694.13 TRUE 1 859.87 71.7 1257 J-472 701.74 TRUE 1 859.87 68.4 1259 J-473 709.01 TRUE 1 859.88 65.3 1261 J-474 686.83 TRUE 1 859.88 74.9 1264 J-475 711.41 TRUE 1 859.88 64.2 1266 J-476 691.23 TRUE 1 859.88 73 1268 J-477 687.9 TRUE 1 859.88 74.4						
1251 J-469 686.71 TRUE 1 859.88 74.9 1253 J-470 692.02 TRUE 1 859.87 72.6 1255 J-471 694.13 TRUE 1 859.87 71.7 1257 J-472 701.74 TRUE 1 859.87 68.4 1259 J-473 709.01 TRUE 1 859.88 65.3 1261 J-474 686.83 TRUE 1 859.88 74.9 1264 J-475 711.41 TRUE 1 859.88 64.2 1266 J-476 691.23 TRUE 1 859.88 73 1268 J-477 687.9 TRUE 1 859.88 74.4						
1253 J-470 692.02 TRUE 1 859.87 72.6 1255 J-471 694.13 TRUE 1 859.87 71.7 1257 J-472 701.74 TRUE 1 859.87 68.4 1259 J-473 709.01 TRUE 1 859.88 65.3 1261 J-474 686.83 TRUE 1 859.88 74.9 1264 J-475 711.41 TRUE 1 859.88 64.2 1266 J-476 691.23 TRUE 1 859.88 73 1268 J-477 687.9 TRUE 1 859.88 74.4						
1255 J-471 694.13 TRUE 1 859.87 71.7 1257 J-472 701.74 TRUE 1 859.87 68.4 1259 J-473 709.01 TRUE 1 859.88 65.3 1261 J-474 686.83 TRUE 1 859.88 74.9 1264 J-475 711.41 TRUE 1 859.88 64.2 1266 J-476 691.23 TRUE 1 859.88 73 1268 J-477 687.9 TRUE 1 859.88 74.4						
1257 J-472 701.74 TRUE 1 859.87 68.4 1259 J-473 709.01 TRUE 1 859.88 65.3 1261 J-474 686.83 TRUE 1 859.88 74.9 1264 J-475 711.41 TRUE 1 859.88 64.2 1266 J-476 691.23 TRUE 1 859.88 73 1268 J-477 687.9 TRUE 1 859.88 74.4						
1259 J-473 709.01 TRUE 1 859.88 65.3 1261 J-474 686.83 TRUE 1 859.88 74.9 1264 J-475 711.41 TRUE 1 859.88 64.2 1266 J-476 691.23 TRUE 1 859.88 73 1268 J-477 687.9 TRUE 1 859.88 74.4						
1261 J-474 686.83 TRUE 1 859.88 74.9 1264 J-475 711.41 TRUE 1 859.88 64.2 1266 J-476 691.23 TRUE 1 859.88 73 1268 J-477 687.9 TRUE 1 859.88 74.4						
1264 J-475 711.41 TRUE 1 859.88 64.2 1266 J-476 691.23 TRUE 1 859.88 73 1268 J-477 687.9 TRUE 1 859.88 74.4						
1266 J-476 691.23 TRUE 1 859.88 73 1268 J-477 687.9 TRUE 1 859.88 74.4						
1268 J-477 687.9 TRUE 1 859.88 74.4						
1271 J-478 706 TRUE 1 859.88 66.6						
	1271 J-478	706	TRUE	1	859.88	66.6

1274	J-479	703	TRUE	1	859.89	67.9
1277	J-480	702	TRUE	1	859.89	68.3
1280	J-481	702.43	TRUE	1	859.9	68.1
1283	J-482	699	TRUE	1	859.9	69.6
1285	J-483	706	TRUE	1	859.9	66.6
1287	J-484	706	TRUE	1	859.9	66.6
1289	J-485	708.74	TRUE	1	859.9	65.4
1291	J-486	699.56	TRUE	1	859.91	69.4
1293	J-487	702.41	TRUE	1	859.93	68.2
1298	J-489	699	TRUE	1	859.97	69.6
1300	J-490	698.55	TRUE	1	859.97	69.8
1304	J-491	711.02	TRUE	1	860	64.5
1308	J-492	695.43	TRUE	1	859.95	71.2
1310	J-493	701	TRUE	1	859.95	68.8
1312	J-494	699.99	TRUE	1	859.95	69.2
1321	J-497	702	TRUE	1	859.89	68.3
1323	J-498	697.73	TRUE	1	859.93	70.2
	J-499	697.78	TRUE	1	859.94	70.2
1328	J-500	699.87	TRUE	1	859.94	69.3
1330	J-501	711.45	TRUE	1	859.94	64.2
1332	J-502	716.07	TRUE	1	859.93	62.2
1336	J-504	712.63	TRUE	1	859.93	63.7
1338	J-505	716	TRUE	1	859.92	62.3
1342	J-507	726.32	TRUE	1	859.88	57.8
1344	J-508	728.98	TRUE	1	859.88	56.6
1346	J-509	720.16	TRUE	1	859.88	60.5
1349	J-510	712.17	TRUE	1	859.93	63.9
1352	J-511	703.84	TRUE	1	859.93	67.5
1355	J-513	706.1	TRUE	1	859.93	66.6
1356	J-514	704.45	TRUE	1	859.93	67.3
1361	J-516	720	TRUE	1	859.89	60.5
1364	J-517	704.52	TRUE	1	859.88	67.2
1366	J-518	705.4	TRUE	1	859.88	66.8
	J-519	718.85	TRUE	1	859.88	61
1370	J-520	719	TRUE	1	859.83	60.9
1372	J-521	725.53	TRUE	1	859.82	58.1
1374	J-522	713.21	TRUE	1	859.82	63.4
1376	J-523	712	TRUE	1	859.82	64
1378	J-524	717.43	TRUE	1	859.82	61.6
	J-525	712	TRUE	1	859.82	64
	J-526	721	TRUE	1	859.82	60.1
1386	J-527	712.24	TRUE	1	859.82	63.9
1388	J-528	718.08	TRUE	1	859.82	61.3
	J-529	714	TRUE	1	859.82	63.1
	J-530	716.43	TRUE	1	859.82	62
	J-531	719.03	TRUE	1	859.82	60.9
	J-532	721.4	TRUE	1	859.82	59.9
1337		, = = 1			000.02	33.3

1400 J-533	707.68	TRUE	1	859.82	65.8
1402 J-534	700.93	TRUE	1	859.82	68.7
1404 J-535	703	TRUE	1	859.82	67.9
1406 J-536	701	TRUE	1	859.82	68.7
1408 J-537	707.65	TRUE	1	859.82	65.8
1410 J-538	710.4	TRUE	1	859.82	64.7
1412 J-539	708	TRUE	1	859.82	65.7
1414 J-540	707.89	TRUE	1	859.83	65.7
1416 J-541	703.02	TRUE	1	859.83	67.8
1418 J-542	703.23	TRUE	1	859.84	67.8
1420 J-543	701	TRUE	1	859.85	68.7
1422 J-544	701.26	TRUE	1	859.87	68.6
1424 J-545	705.25	TRUE	1	859.87	66.9
1426 J-546	706.16	TRUE	1	859.87	66.5
1428 J-547	698.82	TRUE	1	859.87	69.7
1430 J-548	697.26	TRUE	1	859.87	70.4
1433 J-549	714.13	TRUE	1	859.88	63.1
1436 J-550	714.13	TRUE	1	859.88	61.2
1438 J-551	717.77	TRUE	1	859.88	61.5
1440 J-552	717.77	TRUE	1	859.88	61.3
			1		
1444 J-553	714.74	TRUE		859.93	62.8
1446 J-554	714.94	TRUE	1	859.93	62.7
1449 J-555	705.15	TRUE	1	859.87	66.9
1451 J-556	714.39	TRUE	1	859.87	62.9
1454 J-557	710.61	TRUE	1	859.87	64.6
1456 J-558	708.63	TRUE	1	859.87	65.4
1458 J-559	705.13	TRUE	1	859.88	67
1460 J-560	703	TRUE	1	859.89	67.9
1464 J-561	702.51	TRUE	1	859.86	68.1
1466 J-562	708.23	TRUE	1	859.87	65.6
1471 J-563	713.49	TRUE	1	859.84	63.3
1473 J-564	699.24	TRUE	1	859.84	69.5
1475 J-565	693	TRUE	1	859.86	72.2
1477 J-566	690	TRUE	1	859.84	73.5
1480 J-567	707.3	TRUE	1	859.83	66
1482 J-568	702	TRUE	1	859.83	68.3
1484 J-569	691.8	TRUE	1	859.83	72.7
1486 J-570	688	TRUE	1	859.83	74.3
1489 J-571	688.25	TRUE	1	859.83	74.2
1491 J-572	630	TRUE	1	859.83	99.4
1493 J-573	610	TRUE	1	859.83	108.1
1495 J-574	687.29	TRUE	1	859.83	74.6
1501 J-576	695.89	TRUE	1	859.83	70.9
1503 J-577	709.22	TRUE	1	859.83	65.2
1505 J-578	719.76	TRUE	1	859.83	60.6
1507 J-579	712.27	TRUE	1	859.83	63.8
1509 J-580	704.76	TRUE	1	859.84	67.1

1511 J-581 TOQ							
1516 J-583 705 TRUE	1511	J-581	702	TRUE	1	859.83	68.3
1518 J-584 712.25 TRUE	1513	J-582	704.19	TRUE	1	859.82	67.3
1520 J-585 711.92 TRUE	1516	J-583	705	TRUE	1	859.82	67
1523 J-587 711.97 TRUE	1518	J-584	712.25	TRUE	1	859.82	63.8
1525 J-588 715.65 TRUE	1520	J-585	711.92	TRUE	1	859.82	64
1527 J-589 708.24 TRUE	1523	J-587	711.97	TRUE	1	859.82	64
1529 J-590 698.07 TRUE	1525	J-588	715.65	TRUE	1	859.82	62.4
1531 J-591 701.26 TRUE 1 859.82 68.6 1533 J-592 713 TRUE 1 859.82 63.5 1535 J-593 717 TRUE 1 859.82 61.8 1537 J-594 711 TRUE 1 859.82 64.4 1539 J-595 714 TRUE 1 859.82 63.1 1541 J-596 724.05 TRUE 1 859.82 60.4 1543 J-597 720.14 TRUE 1 859.82 60.4 1545 J-598 718 TRUE 1 859.82 60.4 1547 J-599 715 TRUE 1 859.82 63.5 1554 J-601 713 TRUE 1 859.82 63.5 1555 J-601 713 TRUE 1 859.82 63.5 1555 J-602 711 TRUE 1 859.82 64.4 1557 J-603 718.89 TRUE 1 859.82 64.4 1559 J-604 711 TRUE 1 859.82 64.4 1560 J-605 714.84 TRUE 1 859.82 62.7 1565 J-606 716 TRUE 1 859.82 62.7 1565 J-606 716 TRUE 1 859.82 63.5 1571 J-608 709 TRUE 1 859.82 63.9 1573 J-609 712.1 TRUE 1 859.82 63.9 1575 J-610 718.5 TRUE 1 859.82 63.9 1577 J-611 712 TRUE 1 859.82 64.1 1579 J-612 716.69 TRUE 1 859.82 64.1 1579 J-615 711.8 TRUE 1 859.82 63.9 1584 J-613 715.08 TRUE 1 859.82 64.1 1597 J-616 712.23 TRUE 1 859.82 63.9 1602 J-617 708.95 TRUE 1 859.82 63.9 1603 J-620 699.49 TRUE 1 859.82 63.9 1604 J-622 703.7 TRUE 1 859.82 69.5 1614 J-622 703.7 TRUE 1 859.82 69.5 1614 J-623 677.55 TRUE 1 859.82 69.5 1626 J-627 711.43 TRUE 1 859.82 65.9 1628 J-626 707.6 TRUE 1 859.82 65.5 1630 J-625 674.68 TRUE 1 859.82 65.5 1632 J-630 701.54 TRUE 1 859.82 66.5 1634 J-631 707.26 T	1527	J-589	708.24	TRUE	1	859.82	65.6
1531 J-591 701.26 TRUE 1 859.82 68.6 1533 J-592 713 TRUE 1 859.82 63.5 1535 J-593 717 TRUE 1 859.82 61.8 1537 J-594 711 TRUE 1 859.82 64.4 1539 J-595 714 TRUE 1 859.82 63.1 1541 J-596 724.05 TRUE 1 859.82 60.4 1543 J-597 720.14 TRUE 1 859.82 60.4 1545 J-598 718 TRUE 1 859.82 60.4 1547 J-599 715 TRUE 1 859.82 63.5 1554 J-601 713 TRUE 1 859.82 63.5 1555 J-601 713 TRUE 1 859.82 63.5 1555 J-602 711 TRUE 1 859.82 64.4 1557 J-603 718.89 TRUE 1 859.82 64.4 1559 J-604 711 TRUE 1 859.82 64.4 1560 J-605 714.84 TRUE 1 859.82 62.7 1565 J-606 716 TRUE 1 859.82 62.7 1565 J-606 716 TRUE 1 859.82 63.5 1571 J-608 709 TRUE 1 859.82 63.9 1573 J-609 712.1 TRUE 1 859.82 63.9 1575 J-610 718.5 TRUE 1 859.82 63.9 1577 J-611 712 TRUE 1 859.82 64.1 1579 J-612 716.69 TRUE 1 859.82 64.1 1579 J-615 711.8 TRUE 1 859.82 63.9 1584 J-613 715.08 TRUE 1 859.82 64.1 1597 J-616 712.23 TRUE 1 859.82 63.9 1602 J-617 708.95 TRUE 1 859.82 63.9 1603 J-620 699.49 TRUE 1 859.82 63.9 1604 J-622 703.7 TRUE 1 859.82 69.5 1614 J-622 703.7 TRUE 1 859.82 69.5 1614 J-623 677.55 TRUE 1 859.82 69.5 1626 J-627 711.43 TRUE 1 859.82 65.9 1628 J-626 707.6 TRUE 1 859.82 65.5 1630 J-625 674.68 TRUE 1 859.82 65.5 1632 J-630 701.54 TRUE 1 859.82 66.5 1634 J-631 707.26 T	1529	J-590	698.07	TRUE	1	859.82	70
1533 1-592 713 TRUE	1531	J-591		TRUE	1		
1535 J-593 717 TRUE							
1537 J-594 711 TRUE							
1539 J-595 714 TRUE							
1541 J-596 724.05 TRUE 1 859.82 58.7 1543 J-597 720.14 TRUE 1 859.82 60.4 1545 J-598 718 TRUE 1 859.82 61.4 1547 J-599 715 TRUE 1 859.82 62.7 1551 J-601 713 TRUE 1 859.82 63.5 1554 J-602 711 TRUE 1 859.82 64.4 1557 J-603 718.89 TRUE 1 859.82 64.4 1559 J-604 711 TRUE 1 859.82 64.4 1560 J-605 714.84 TRUE 1 859.82 62.7 1560 J-606 716 TRUE 1 859.82 62.7 1560 J-607 711 TRUE 1 859.82 62.7 1561 J-608 709 TRUE 1 859.82 63.9 1573 J-609 712.1 TRUE 1 859.82 63.9 1575 J-610 718.5 TRUE 1 859.82 63.9 1575 J-611 712 TRUE 1 859.82 64.4 1577 J-611 712 TRUE 1 859.82 64.9 1584 J-613 715.08 TRUE 1 859.82 64.9 1591 J-614 714.83 TRUE 1 859.82 64.9 1592 J-615 711.8 TRUE 1 859.82 64.9 1593 J-616 712.23 TRUE 1 859.82 63.9 1602 J-617 708.95 TRUE 1 859.82 63.9 1603 J-620 699.49 TRUE 1 859.82 69.5 1614 J-622 703.7 TRUE 1 859.82 69.5 1615 J-616 TRUE 1 859.82 69.5 1616 J-626 670.5 TRUE 1 859.82 69.5 1617 J-623 677.55 TRUE 1 859.82 69.5 1626 J-627 711.43 TRUE 1 859.82 65.9 1628 J-628 712.35 TRUE 1 859.82 66.9 1629 703.7 TRUE 1 859.82 66.5 1634 J-631 707.26 TRUE 1 859.82 66.5							
1543 J-597 720.14 TRUE							
1545 J-598 718 TRUE							
1547 J-599 715 TRUE							
1551 J-601 713 TRUE 1 859.82 63.5 1554 J-602 711 TRUE 1 859.82 64.4 1557 J-603 718.89 TRUE 1 859.82 61 1559 J-604 711 TRUE 1 859.82 62.7 1565 J-605 714.84 TRUE 1 859.82 62.2 1569 J-606 716 TRUE 1 859.82 62.2 1569 J-607 711 TRUE 1 859.82 62.2 1571 J-608 709 TRUE 1 859.82 65.3 1573 J-609 712.1 TRUE 1 859.82 63.9 1575 J-610 718.5 TRUE 1 859.82 61.1 1577 J-611 712 TRUE 1 859.82 61.9 1584 J-613 715.08 TRUE 1 859.82							
1554 J-602 711 TRUE 1 859.82 64.4 1557 J-603 718.89 TRUE 1 859.82 61 1559 J-604 711 TRUE 1 859.82 62.7 1565 J-605 714.84 TRUE 1 859.82 62.7 1565 J-606 716 TRUE 1 859.82 62.2 1569 J-607 711 TRUE 1 859.82 64.4 1571 J-608 709 TRUE 1 859.82 65.3 1573 J-609 712.1 TRUE 1 859.82 63.9 1575 J-610 718.5 TRUE 1 859.82 61.1 1577 J-611 712 TRUE 1 859.82 61.1 1579 J-612 716.69 TRUE 1 859.82 61.9 1584 J-613 715.08 TRUE 1 859.82 62.6 1591 J-614 714.83 TRUE 1 859.8							
1557 J-603 718.89 TRUE 1 859.82 64.4 1559 J-604 711 TRUE 1 859.82 62.7 1562 J-605 714.84 TRUE 1 859.82 62.2 1565 J-606 716 TRUE 1 859.82 62.2 1569 J-607 711 TRUE 1 859.82 64.4 1571 J-608 709 TRUE 1 859.82 65.3 1573 J-609 712.1 TRUE 1 859.82 63.9 1575 J-610 718.5 TRUE 1 859.82 61.1 1577 J-611 712. TRUE 1 859.82 61.1 1577 J-612 716.69 TRUE 1 859.82 61.1 1579 J-612 716.69 TRUE 1 859.82 62.6 1591 J-614 714.83 TRUE 1 859.82 62.7 1594 J-615 711.8 TRUE 1							
1559 J-604 711 TRUE 1 859.82 64.4 1562 J-605 714.84 TRUE 1 859.82 62.7 1565 J-606 716 TRUE 1 859.82 62.2 1569 J-607 711 TRUE 1 859.82 64.4 1571 J-608 709 TRUE 1 859.82 65.3 1573 J-609 712.1 TRUE 1 859.82 63.9 1575 J-610 718.5 TRUE 1 859.82 63.9 1577 J-611 712 TRUE 1 859.82 61.1 1577 J-611 712 TRUE 1 859.82 61.9 1584 J-613 715.08 TRUE 1 859.82 61.9 1584 J-613 715.08 TRUE 1 859.82 62.6 1591 J-614 714.83 TRUE 1 859.82 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
1562 J-605 714.84 TRUE 1 859.82 62.7 1565 J-606 716 TRUE 1 859.82 62.2 1569 J-607 711 TRUE 1 859.82 64.4 1571 J-608 709 TRUE 1 859.82 65.3 1573 J-609 712.1 TRUE 1 859.82 63.9 1575 J-610 718.5 TRUE 1 859.82 61.1 1577 J-611 712 TRUE 1 859.82 64.1 1579 J-612 716.69 TRUE 1 859.82 61.9 1584 J-613 715.08 TRUE 1 859.82 62.6 1591 J-614 714.83 TRUE 1 859.82 62.7 1594 J-615 711.8 TRUE 1 859.82 63.9 1602 J-617 708.95 TRUE 1 859.82 65.3 1608 J-620 699.49 TRUE 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
1565 J-606 716 TRUE 1 859.82 62.2 1569 J-607 711 TRUE 1 859.82 64.4 1571 J-608 709 TRUE 1 859.82 65.3 1573 J-609 712.1 TRUE 1 859.82 63.9 1575 J-610 718.5 TRUE 1 859.82 61.1 1577 J-611 712 TRUE 1 859.82 64 1579 J-612 716.69 TRUE 1 859.82 61.9 1584 J-613 715.08 TRUE 1 859.82 62.6 1591 J-614 714.83 TRUE 1 859.82 62.7 1594 J-615 711.8 TRUE 1 859.82 63.9 1602 J-617 708.95 TRUE 1 859.82 65.3 1608 J-620 699.49 TRUE 1 859.8							
1569 J-607 711 TRUE 1 859.82 64.4 1571 J-608 709 TRUE 1 859.82 65.3 1573 J-609 712.1 TRUE 1 859.82 63.9 1575 J-610 718.5 TRUE 1 859.82 61.1 1577 J-611 712 TRUE 1 859.82 64.4 1579 J-612 716.69 TRUE 1 859.82 61.9 1584 J-613 715.08 TRUE 1 859.82 62.6 1591 J-614 714.83 TRUE 1 859.82 62.7 1594 J-615 711.8 TRUE 1 859.82 63.9 1602 J-617 708.95 TRUE 1 859.82 63.9 1602 J-617 708.95 TRUE 1 859.82 65.3 1608 J-620 699.49 TRUE 1 859.82 69.5 1611 J-621 699.21 TRUE 1							
1571 J-608 709 TRUE 1 859.82 65.3 1573 J-609 712.1 TRUE 1 859.82 63.9 1575 J-610 718.5 TRUE 1 859.82 61.1 1577 J-611 712 TRUE 1 859.82 64 1579 J-612 716.69 TRUE 1 859.82 61.9 1584 J-613 715.08 TRUE 1 859.82 62.6 1591 J-614 714.83 TRUE 1 859.82 62.7 1594 J-615 711.8 TRUE 1 859.82 62.7 1597 J-616 712.23 TRUE 1 859.82 63.9 1602 J-617 708.95 TRUE 1 859.82 65.3 1608 J-620 699.49 TRUE 1 859.82 69.4 1611 J-621 699.21 TRUE 1 859.82 67.5 1614 J-622 703.7 TRUE 1							
1573 J-609 712.1 TRUE 1 859.82 63.9 1575 J-610 718.5 TRUE 1 859.82 61.1 1577 J-611 712 TRUE 1 859.82 64 1579 J-612 716.69 TRUE 1 859.82 61.9 1584 J-613 715.08 TRUE 1 859.82 62.6 1591 J-614 714.83 TRUE 1 859.82 62.7 1594 J-615 711.8 TRUE 1 859.82 62.7 1597 J-616 712.23 TRUE 1 859.82 63.9 1602 J-617 708.95 TRUE 1 859.82 65.3 1608 J-620 699.49 TRUE 1 859.82 69.5 1611 J-621 699.21 TRUE 1 859.82 67.5 1614 J-622 703.7 TRUE 1 859.81 78.9 1620 J-625 674.68 TRUE 1							
1575 J-610 718.5 TRUE 1 859.82 61.1 1577 J-611 712 TRUE 1 859.82 64 1579 J-612 716.69 TRUE 1 859.82 61.9 1584 J-613 715.08 TRUE 1 859.82 62.6 1591 J-614 714.83 TRUE 1 859.82 62.7 1594 J-615 711.8 TRUE 1 859.82 62.7 1597 J-616 712.23 TRUE 1 859.82 63.9 1602 J-617 708.95 TRUE 1 859.82 65.3 1608 J-620 699.49 TRUE 1 859.82 69.5 1611 J-621 699.21 TRUE 1 859.82 69.5 1614 J-622 703.7 TRUE 1 859.82 67.5 1617 J-623 677.55 TRUE 1 859.81 80.1 1624 J-626 707.6 TRUE 1							
1577 J-611 712 TRUE 1 859.82 64 1579 J-612 716.69 TRUE 1 859.82 61.9 1584 J-613 715.08 TRUE 1 859.82 62.6 1591 J-614 714.83 TRUE 1 859.82 62.7 1594 J-615 711.8 TRUE 1 859.82 64 1597 J-616 712.23 TRUE 1 859.82 63.9 1602 J-617 708.95 TRUE 1 859.82 65.3 1608 J-620 699.49 TRUE 1 859.82 69.4 1611 J-621 699.21 TRUE 1 859.82 69.5 1614 J-622 703.7 TRUE 1 859.82 67.5 1617 J-623 677.55 TRUE 1 859.81 78.9 1620 J-625 674.68 TRUE 1 859.82 65.9 1626 J-627 711.43 TRUE 1							
1579 J-612 716.69 TRUE 1 859.82 61.9 1584 J-613 715.08 TRUE 1 859.82 62.6 1591 J-614 714.83 TRUE 1 859.82 62.7 1594 J-615 711.8 TRUE 1 859.82 64 1597 J-616 712.23 TRUE 1 859.82 63.9 1602 J-617 708.95 TRUE 1 859.82 65.3 1608 J-620 699.49 TRUE 1 859.82 69.4 1611 J-621 699.21 TRUE 1 859.82 69.5 1614 J-622 703.7 TRUE 1 859.82 67.5 1617 J-623 677.55 TRUE 1 859.81 78.9 1620 J-625 674.68 TRUE 1 859.81 80.1 1624 J-626 707.6 TRUE 1 859.82 65.9 1628 J-628 712.35 TRUE 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
1584 J-613 715.08 TRUE 1 859.82 62.6 1591 J-614 714.83 TRUE 1 859.82 62.7 1594 J-615 711.8 TRUE 1 859.82 64 1597 J-616 712.23 TRUE 1 859.82 63.9 1602 J-617 708.95 TRUE 1 859.82 65.3 1608 J-620 699.49 TRUE 1 859.82 69.4 1611 J-621 699.21 TRUE 1 859.82 69.5 1614 J-621 699.21 TRUE 1 859.82 67.5 1614 J-622 703.7 TRUE 1 859.82 67.5 1617 J-623 677.55 TRUE 1 859.81 78.9 1620 J-625 674.68 TRUE 1 859.82 65.9 1624 J-626 707.6 TRUE 1 859.82 64.2 1628 J-628 712.35 TRUE 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
1591 J-614 714.83 TRUE 1 859.82 62.7 1594 J-615 711.8 TRUE 1 859.82 64 1597 J-616 712.23 TRUE 1 859.82 63.9 1602 J-617 708.95 TRUE 1 859.82 65.3 1608 J-620 699.49 TRUE 1 859.82 69.4 1611 J-621 699.21 TRUE 1 859.82 69.5 1614 J-622 703.7 TRUE 1 859.82 67.5 1617 J-623 677.55 TRUE 1 859.81 78.9 1620 J-625 674.68 TRUE 1 859.81 80.1 1624 J-626 707.6 TRUE 1 859.82 65.9 1626 J-627 711.43 TRUE 1 859.82 64.2 1628 J-628 712.35 TRUE 1 859.82 67.5 1632 J-630 701.54 TRUE 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
1594 J-615 711.8 TRUE 1 859.82 64 1597 J-616 712.23 TRUE 1 859.82 63.9 1602 J-617 708.95 TRUE 1 859.82 65.3 1608 J-620 699.49 TRUE 1 859.82 69.4 1611 J-621 699.21 TRUE 1 859.82 69.5 1614 J-622 703.7 TRUE 1 859.82 67.5 1617 J-623 677.55 TRUE 1 859.81 78.9 1620 J-625 674.68 TRUE 1 859.81 80.1 1624 J-626 707.6 TRUE 1 859.82 65.9 1626 J-627 711.43 TRUE 1 859.82 64.2 1628 J-628 712.35 TRUE 1 859.82 67.5 1632 J-630 701.54 TRUE 1 859.82 68.5 1634 J-631 707.26 TRUE 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
1597 J-616 712.23 TRUE 1 859.82 63.9 1602 J-617 708.95 TRUE 1 859.82 65.3 1608 J-620 699.49 TRUE 1 859.82 69.4 1611 J-621 699.21 TRUE 1 859.82 69.5 1614 J-622 703.7 TRUE 1 859.82 67.5 1617 J-623 677.55 TRUE 1 859.81 78.9 1620 J-625 674.68 TRUE 1 859.81 80.1 1624 J-626 707.6 TRUE 1 859.82 65.9 1626 J-627 711.43 TRUE 1 859.82 64.2 1628 J-628 712.35 TRUE 1 859.82 67.5 1630 J-629 703.7 TRUE 1 859.82 67.5 1632 J-630 701.54 TRUE 1 859.82 68.5 1634 J-631 707.26 TRUE 1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
1602 J-617 708.95 TRUE 1 859.82 65.3 1608 J-620 699.49 TRUE 1 859.82 69.4 1611 J-621 699.21 TRUE 1 859.82 69.5 1614 J-622 703.7 TRUE 1 859.82 67.5 1617 J-623 677.55 TRUE 1 859.81 78.9 1620 J-625 674.68 TRUE 1 859.81 80.1 1624 J-626 707.6 TRUE 1 859.82 65.9 1626 J-627 711.43 TRUE 1 859.82 64.2 1628 J-628 712.35 TRUE 1 859.82 63.8 1630 J-629 703.7 TRUE 1 859.82 67.5 1632 J-630 701.54 TRUE 1 859.82 68.5 1634 J-631 707.26 TRUE 1 859.82 66.5							
1608 J-620 699.49 TRUE 1 859.82 69.4 1611 J-621 699.21 TRUE 1 859.82 69.5 1614 J-622 703.7 TRUE 1 859.82 67.5 1617 J-623 677.55 TRUE 1 859.81 78.9 1620 J-625 674.68 TRUE 1 859.81 80.1 1624 J-626 707.6 TRUE 1 859.82 65.9 1626 J-627 711.43 TRUE 1 859.82 64.2 1628 J-628 712.35 TRUE 1 859.82 63.8 1630 J-629 703.7 TRUE 1 859.82 67.5 1632 J-630 701.54 TRUE 1 859.82 68.5 1634 J-631 707.26 TRUE 1 859.82 66							
1611 J-621 699.21 TRUE 1 859.82 69.5 1614 J-622 703.7 TRUE 1 859.82 67.5 1617 J-623 677.55 TRUE 1 859.81 78.9 1620 J-625 674.68 TRUE 1 859.81 80.1 1624 J-626 707.6 TRUE 1 859.82 65.9 1626 J-627 711.43 TRUE 1 859.82 64.2 1628 J-628 712.35 TRUE 1 859.82 63.8 1630 J-629 703.7 TRUE 1 859.82 67.5 1632 J-630 701.54 TRUE 1 859.82 68.5 1634 J-631 707.26 TRUE 1 859.82 66							
1614 J-622 703.7 TRUE 1 859.82 67.5 1617 J-623 677.55 TRUE 1 859.81 78.9 1620 J-625 674.68 TRUE 1 859.81 80.1 1624 J-626 707.6 TRUE 1 859.82 65.9 1626 J-627 711.43 TRUE 1 859.82 64.2 1628 J-628 712.35 TRUE 1 859.82 63.8 1630 J-629 703.7 TRUE 1 859.82 67.5 1632 J-630 701.54 TRUE 1 859.82 68.5 1634 J-631 707.26 TRUE 1 859.82 66							
1617 J-623 677.55 TRUE 1 859.81 78.9 1620 J-625 674.68 TRUE 1 859.81 80.1 1624 J-626 707.6 TRUE 1 859.82 65.9 1626 J-627 711.43 TRUE 1 859.82 64.2 1628 J-628 712.35 TRUE 1 859.82 63.8 1630 J-629 703.7 TRUE 1 859.82 67.5 1632 J-630 701.54 TRUE 1 859.82 68.5 1634 J-631 707.26 TRUE 1 859.82 66							
1620 J-625 674.68 TRUE 1 859.81 80.1 1624 J-626 707.6 TRUE 1 859.82 65.9 1626 J-627 711.43 TRUE 1 859.82 64.2 1628 J-628 712.35 TRUE 1 859.82 63.8 1630 J-629 703.7 TRUE 1 859.82 67.5 1632 J-630 701.54 TRUE 1 859.82 68.5 1634 J-631 707.26 TRUE 1 859.82 66							
1624 J-626 707.6 TRUE 1 859.82 65.9 1626 J-627 711.43 TRUE 1 859.82 64.2 1628 J-628 712.35 TRUE 1 859.82 63.8 1630 J-629 703.7 TRUE 1 859.82 67.5 1632 J-630 701.54 TRUE 1 859.82 68.5 1634 J-631 707.26 TRUE 1 859.82 66							
1626 J-627 711.43 TRUE 1 859.82 64.2 1628 J-628 712.35 TRUE 1 859.82 63.8 1630 J-629 703.7 TRUE 1 859.82 67.5 1632 J-630 701.54 TRUE 1 859.82 68.5 1634 J-631 707.26 TRUE 1 859.82 66							
1628 J-628 712.35 TRUE 1 859.82 63.8 1630 J-629 703.7 TRUE 1 859.82 67.5 1632 J-630 701.54 TRUE 1 859.82 68.5 1634 J-631 707.26 TRUE 1 859.82 66							
1630 J-629 703.7 TRUE 1 859.82 67.5 1632 J-630 701.54 TRUE 1 859.82 68.5 1634 J-631 707.26 TRUE 1 859.82 66							
1632 J-630 701.54 TRUE 1 859.82 68.5 1634 J-631 707.26 TRUE 1 859.82 66							
1634 J-631 707.26 TRUE 1 859.82 66							
1636 J-632 708.25 TRUE 1 859.82 65.6							
	1636	J-632	708.25	TRUE	1	859.82	65.6

1640							
1644	1638	J-633	708.28	TRUE	1	859.82	65.6
1647	1640	J-634	695.11	TRUE	1	859.82	71.3
1651 1-638 705.91 TRUE	1644	J-636	704.58	TRUE	1	859.82	67.2
1653 1-639 701 TRUE	1647	J-637	703.8	TRUE	1	859.82	67.5
1655 J-640 706.73 TRUE	1651	J-638	705.91	TRUE	1	859.82	66.6
1657 J-641 711.54 TRUE	1653	J-639	701	TRUE	1	859.82	68.7
1659 1-642 709.2 TRUE	1655	J-640	706.73	TRUE	1	859.82	66.2
1663 1-643 713.23 TRUE	1657	J-641	711.54	TRUE	1	859.82	64.2
1665 J-644 707.77 TRUE	1659	J-642	709.2	TRUE	1	859.83	65.2
1667 J-645 716.73 TRUE	1663	J-643	713.23	TRUE	1	859.84	63.4
1674 J-646 705.03 TRUE	1665	J-644	707.77	TRUE	1	859.84	65.8
1674 J-646 705.03 TRUE	1667	J-645	716.73	TRUE	1	859.84	61.9
1676 J-647 707.83 TRUE	1674	J-646		TRUE	1		67
1679 J-648 720.04 TRUE							65.8
1682 J-649 701.18 TRUE 1 859.83 68. 1685 J-650 701.62 TRUE 1 859.83 68. 1687 J-651 701.9 TRUE 1 859.84 68. 1690 J-652 703.24 TRUE 1 859.84 67. 1699 J-655 703.9 TRUE 1 859.83 67. 1699 J-656 700.26 TRUE 1 859.83 67. 1702 J-657 676.37 TRUE 1 859.82 79. 1499 J-659 695.33 TRUE 1 859.82 79. 1499 J-659 641 TRUE 1 859.82 79. 1499 J-659 641 TRUE 1 859.82 79. 1499 J-659 641 TRUE 1 859.82 93. 1701 J-660 643.52 TRUE 1 859.82 <td>1679</td> <td>J-648</td> <td></td> <td></td> <td></td> <td></td> <td>60.5</td>	1679	J-648					60.5
1685 J-650 701.62 TRUE 1 859.83 68. 1687 J-651 701.9 TRUE 1 859.84 68. 1690 J-652 703.24 TRUE 1 859.84 67. 1699 J-655 703.9 TRUE 1 859.83 67. 1699 J-656 700.26 TRUE 1 859.83 67. 1702 J-657 676.37 TRUE 1 859.82 79. 1499 J-659 695.33 TRUE 1 859.82 79. 1499 J-659 641 TRUE 1 859.82 79. 1499 J-659 641 TRUE 1 859.82 79. 1499 J-669 641 TRUE 1 859.82 93. 1706 J-669 641 TRUE 1 859.81 102. 1714 J-662 663.25 TRUE 1 859.81							68.6
1687 J-651 701.9 TRUE 1 859.84 68. 1690 J-652 703.24 TRUE 1 859.84 67. 1696 J-655 703.9 TRUE 1 859.83 67. 1699 J-656 700.26 TRUE 1 859.83 67. 1699 J-657 676.37 TRUE 1 859.82 79. 1499 J-659 695.33 TRUE 1 859.83 71. 1706 J-659 641 TRUE 1 859.82 94. 1708 J-660 643.52 TRUE 1 859.82 93. 1712 J-661 623.71 TRUE 4 859.81 102. 1714 J-662 663.25 TRUE 1 859.81 80. 1721 J-664 681.97 TRUE 1 859.82 76. 1723 J-665 700.54 TRUE 1 859.82 68. 1736 J-666 713 TRUE 1 859.92 63.							68.5
1690 J-652 703.24 TRUE 1 859.84 67. 1696 J-655 703.9 TRUE 1 859.83 67. 1699 J-656 700.26 TRUE 1 859.83 68. 1702 J-657 676.37 TRUE 1 859.82 79. 1499 J-659 695.33 TRUE 1 859.82 94. 1706 J-659 641 TRUE 1 859.82 94. 1708 J-660 643.52 TRUE 1 859.82 93. 1712 J-661 623.71 TRUE 4 859.81 102. 1714 J-662 663.25 TRUE 1 859.82 80. 1717 J-663 672.85 TRUE 1 859.82 80. 1721 J-664 681.97 TRUE 1 859.82 76. 1723 J-665 700.54 TRUE 1 859.82 68. 1736 J-666 713 TRUE 1 859.92 63. 1740 J-667 712 TRUE 1 859.95 62.							68.3
1696 J-655 703.9 TRUE 1 859.83 67. 1699 J-656 700.26 TRUE 1 859.83 6 1702 J-657 676.37 TRUE 1 859.82 79. 1499 J-659 695.33 TRUE 1 859.82 94. 1706 J-659 641 TRUE 1 859.82 93. 1708 J-660 643.52 TRUE 1 859.82 93. 1712 J-661 623.71 TRUE 4 859.81 102. 1714 J-662 663.25 TRUE 1 859.82 80. 1717 J-663 672.85 TRUE 1 859.82 80. 1721 J-664 681.97 TRUE 1 859.82 76. 1723 J-665 700.54 TRUE 1 859.82 68. 1736 J-666 713 TRUE 1 859.92 63. 1740 J-667 712 TRUE 1 859.92							67.8
1699 J-656 700.26 TRUE 1 859.83 6 1702 J-657 676.37 TRUE 1 859.82 79. 1499 J-659 695.33 TRUE 1 859.83 71. 1706 J-659 641 TRUE 1 859.82 94. 1708 J-660 643.52 TRUE 1 859.82 93. 1712 J-661 623.71 TRUE 4 859.81 102. 1714 J-662 663.25 TRUE 1 859.81 102. 1717 J-663 672.85 TRUE 1 859.81 102. 1721 J-663 672.85 TRUE 1 859.82 80. 1721 J-664 681.97 TRUE 1 859.82 80. 1721 J-665 700.54 TRUE 1 859.82 68. 1736 J-666 713 TRUE 1 859.82 68. 1740 J-667 712 TRUE 1 859							67.5
1702 J-657 676.37 TRUE 1 859.82 79. 1499 J-659 695.33 TRUE 1 859.83 71. 1706 J-659 641 TRUE 1 859.82 94. 1708 J-660 643.52 TRUE 1 859.82 93. 1712 J-661 623.71 TRUE 4 859.81 102. 1714 J-662 663.25 TRUE 1 859.81 8 1717 J-663 672.85 TRUE 1 859.82 80. 1721 J-664 681.97 TRUE 1 859.82 76. 1723 J-665 700.54 TRUE 1 859.82 68. 1736 J-666 713 TRUE 1 859.92 63. 1740 J-667 712 TRUE 1 859.92 63. 1741 J-668 715.96 TRUE 1 859.95 62. 1747 J-669 721 TRUE 1 859.85 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>69</td>							69
1499 J-659 695.33 TRUE 1 859.83 71. 1706 J-659 641 TRUE 1 859.82 94. 1708 J-660 643.52 TRUE 1 859.82 93. 1712 J-661 623.71 TRUE 4 859.81 102. 1714 J-662 663.25 TRUE 1 859.81 8 1717 J-663 672.85 TRUE 1 859.82 80. 1721 J-664 681.97 TRUE 1 859.82 76. 1723 J-665 700.54 TRUE 1 859.82 68. 1736 J-666 713 TRUE 1 859.82 68. 1740 J-667 712 TRUE 1 859.92 63. 1741 J-668 715.96 TRUE 1 859.95 62. 1747 J-669 721 TRUE 1 859.85 61. 1750 J-670 718.36 TRUE 1 859.85 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>79.4</td>							79.4
1706 J-659 641 TRUE 1 859.82 94. 1708 J-660 643.52 TRUE 1 859.82 93. 1712 J-661 623.71 TRUE 4 859.81 102. 1714 J-662 663.25 TRUE 1 859.81 8 1717 J-663 672.85 TRUE 1 859.82 80. 1721 J-664 681.97 TRUE 1 859.82 76. 1723 J-665 700.54 TRUE 1 859.82 68. 1736 J-666 713 TRUE 1 859.82 68. 1740 J-667 712 TRUE 1 859.92 63. 1741 J-667 712 TRUE 1 859.92 66. 1743 J-668 715.96 TRUE 1 859.95 62. 1747 J-669 721 TRUE 1 859.85 61. 1761 J-670 718.36 TRUE 1 859.82							71.2
1708 J-660 643.52 TRUE 1 859.82 93. 1712 J-661 623.71 TRUE 4 859.81 102. 1714 J-662 663.25 TRUE 1 859.81 8 1717 J-663 672.85 TRUE 1 859.82 80. 1721 J-664 681.97 TRUE 1 859.82 76. 1723 J-665 700.54 TRUE 1 859.82 68. 1736 J-666 713 TRUE 1 859.82 68. 1740 J-667 712 TRUE 1 859.92 63. 1741 J-667 712 TRUE 1 859.92 63. 1741 J-667 712 TRUE 1 859.92 63. 1747 J-668 715.96 TRUE 1 859.85 61. 1750 J-670 718.36 TRUE 1 859.85 61. 1761 J-673 641.28 TRUE 1 859.82 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>94.7</td>							94.7
1712 J-661 623.71 TRUE 4 859.81 102. 1714 J-662 663.25 TRUE 1 859.81 8 1717 J-663 672.85 TRUE 1 859.82 80. 1721 J-664 681.97 TRUE 1 859.82 76. 1723 J-665 700.54 TRUE 1 859.82 68. 1736 J-666 713 TRUE 1 859.82 63. 1740 J-667 712 TRUE 1 859.92 63. 1743 J-668 715.96 TRUE 1 859.92 66. 1744 J-669 721 TRUE 1 859.86 60. 1750 J-670 718.36 TRUE 1 859.85 61. 1761 J-673 641.28 TRUE 1 859.82 94. 1764 J-674 640.35 TRUE 1 859.81 83. 1767 J-676 657.65 TRUE 1 859.8							93.6
1714 J-662 663.25 TRUE 1 859.81 8 1717 J-663 672.85 TRUE 1 859.82 80. 1721 J-664 681.97 TRUE 1 859.82 76. 1723 J-665 700.54 TRUE 1 859.82 68. 1736 J-666 713 TRUE 1 859.92 63. 1740 J-667 712 TRUE 1 859.92 6 1743 J-668 715.96 TRUE 1 859.92 6 1747 J-669 721 TRUE 1 859.86 60. 1750 J-670 718.36 TRUE 1 859.85 61. 1761 J-673 641.28 TRUE 1 859.82 94. 1764 J-674 640.35 TRUE 1 859.82 9 1765 J-675 655.35 TRUE 1 859.81 85. 1771 J-676 657.65 TRUE 1 859.81							102.1
1717 J-663 672.85 TRUE 1 859.82 80. 1721 J-664 681.97 TRUE 1 859.82 76. 1723 J-665 700.54 TRUE 1 859.82 68. 1736 J-666 713 TRUE 1 859.92 63. 1740 J-667 712 TRUE 1 859.92 6 1743 J-668 715.96 TRUE 1 859.92 6 1747 J-669 721 TRUE 1 859.86 60. 1750 J-670 718.36 TRUE 1 859.85 61. 1761 J-673 641.28 TRUE 1 859.85 61. 1764 J-674 640.35 TRUE 1 859.82 9 1766 J-675 655.35 TRUE 1 859.81 88. 1767 J-676 657.65 TRUE 1 859.81 65. 1774 J-678 709.38 TRUE 1 859.81 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>85</td>							85
1721 J-664 681.97 TRUE 1 859.82 76. 1723 J-665 700.54 TRUE 1 859.82 68. 1736 J-666 713 TRUE 1 859.92 63. 1740 J-667 712 TRUE 1 859.92 6 1743 J-668 715.96 TRUE 1 859.95 62. 1747 J-669 721 TRUE 1 859.86 60. 1750 J-670 718.36 TRUE 1 859.85 61. 1761 J-673 641.28 TRUE 1 859.85 61. 1764 J-674 640.35 TRUE 1 859.82 94. 1766 J-675 655.35 TRUE 1 859.81 88. 1767 J-676 657.65 TRUE 1 859.81 87. 1771 J-678 709.38 TRUE 1 859.81 65. 1786 J-680 725.36 TRUE 0 859.73							80.9
1723 J-665 700.54 TRUE 1 859.82 68. 1736 J-666 713 TRUE 1 859.92 63. 1740 J-667 712 TRUE 1 859.92 6 1743 J-668 715.96 TRUE 1 859.95 62. 1747 J-669 721 TRUE 1 859.86 60. 1750 J-670 718.36 TRUE 1 859.85 61. 1761 J-673 641.28 TRUE 1 859.82 94. 1764 J-674 640.35 TRUE 1 859.82 9 1766 J-675 655.35 TRUE 1 859.81 88. 1767 J-676 657.65 TRUE 1 859.81 87. 1771 J-677 707.71 TRUE 1 859.81 65. 1774 J-678 709.38 TRUE 1 859.81 65. 1786 J-680 725.36 TRUE 0 859.73 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
1736 J-666 713 TRUE 1 859.92 63. 1740 J-667 712 TRUE 1 859.92 6 1743 J-668 715.96 TRUE 1 859.95 62. 1747 J-669 721 TRUE 1 859.86 60. 1750 J-670 718.36 TRUE 1 859.85 61. 1761 J-673 641.28 TRUE 1 859.82 94. 1764 J-674 640.35 TRUE 1 859.82 9 1766 J-675 655.35 TRUE 1 859.81 88. 1767 J-676 657.65 TRUE 1 859.81 87. 1771 J-677 707.71 TRUE 1 859.81 65. 1774 J-678 709.38 TRUE 1 859.81 65. 1786 J-680 725.36 TRUE 0 859.73 58. 1792 J-682 726.32 TRUE 0 859.73 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>68.9</td>							68.9
1740 J-667 712 TRUE 1 859.92 6 1743 J-668 715.96 TRUE 1 859.95 62. 1747 J-669 721 TRUE 1 859.86 60. 1750 J-670 718.36 TRUE 1 859.85 61. 1761 J-673 641.28 TRUE 1 859.82 94. 1764 J-674 640.35 TRUE 1 859.82 9 1766 J-675 655.35 TRUE 1 859.81 88. 1767 J-676 657.65 TRUE 1 859.81 87. 1771 J-677 707.71 TRUE 1 859.81 65. 1774 J-678 709.38 TRUE 1 859.81 65. 1786 J-680 725.36 TRUE 0 859.73 58. 1792 J-682 726.32 TRUE 0 859.73 57. 1809 J-685 792 FALSE (N/A) (N/							
1743 J-668 715.96 TRUE 1 859.95 62. 1747 J-669 721 TRUE 1 859.86 60. 1750 J-670 718.36 TRUE 1 859.85 61. 1761 J-673 641.28 TRUE 1 859.82 94. 1764 J-674 640.35 TRUE 1 859.82 9 1766 J-675 655.35 TRUE 1 859.81 88. 1767 J-676 657.65 TRUE 1 859.81 87. 1771 J-677 707.71 TRUE 1 859.81 65. 1774 J-678 709.38 TRUE 1 859.81 65. 1786 J-680 725.36 TRUE 0 859.73 58. 1792 J-682 726.32 TRUE 0 859.73 57. 1809 J-685 792 FALSE (N/A) (N/A) (N/A) 1813 J-687 699 FALSE (N/A)							64
1747 J-669 721 TRUE 1 859.86 60. 1750 J-670 718.36 TRUE 1 859.85 61. 1761 J-673 641.28 TRUE 1 859.82 94. 1764 J-674 640.35 TRUE 1 859.82 9 1766 J-675 655.35 TRUE 1 859.81 88. 1767 J-676 657.65 TRUE 1 859.81 87. 1771 J-677 707.71 TRUE 1 859.81 65. 1774 J-678 709.38 TRUE 1 859.81 65. 1786 J-680 725.36 TRUE 0 859.73 58. 1792 J-682 726.32 TRUE 0 859.73 57. 1809 J-685 792 FALSE (N/A) (N/A) (N/A) 1813 J-687 699 FALSE (N/A) (N/A) (N/A)							
1750 J-670 718.36 TRUE 1 859.85 61. 1761 J-673 641.28 TRUE 1 859.82 94. 1764 J-674 640.35 TRUE 1 859.82 9 1766 J-675 655.35 TRUE 1 859.81 88. 1767 J-676 657.65 TRUE 1 859.81 87. 1771 J-677 707.71 TRUE 1 859.81 65. 1774 J-678 709.38 TRUE 1 859.81 65. 1786 J-680 725.36 TRUE 0 859.73 58. 1792 J-682 726.32 TRUE 0 859.73 57. 1809 J-685 792 FALSE (N/A) (N/A) (N/A) 1811 J-686 740 FALSE (N/A) (N/A) (N/A) 1813 J-687 699 FALSE (N/A) (N/A) (N/A)							
1761 J-673 641.28 TRUE 1 859.82 94. 1764 J-674 640.35 TRUE 1 859.82 9 1766 J-675 655.35 TRUE 1 859.81 88. 1767 J-676 657.65 TRUE 1 859.81 87. 1771 J-677 707.71 TRUE 1 859.81 65. 1774 J-678 709.38 TRUE 1 859.81 65. 1786 J-680 725.36 TRUE 0 859.73 58. 1792 J-682 726.32 TRUE 0 859.73 57. 1809 J-685 792 FALSE (N/A) (N/A) (N/A) 1811 J-686 740 FALSE (N/A) (N/A) (N/A) 1813 J-687 699 FALSE (N/A) (N/A) (N/A)							
1764 J-674 640.35 TRUE 1 859.82 9 1766 J-675 655.35 TRUE 1 859.81 88 1767 J-676 657.65 TRUE 1 859.81 87 1771 J-677 707.71 TRUE 1 859.81 65 1774 J-678 709.38 TRUE 1 859.81 65 1786 J-680 725.36 TRUE 0 859.73 58 1792 J-682 726.32 TRUE 0 859.73 57 1809 J-685 792 FALSE (N/A) (N/A) (N/A) 1811 J-686 740 FALSE (N/A) (N/A) (N/A) 1813 J-687 699 FALSE (N/A) (N/A) (N/A)							
1766 J-675 655.35 TRUE 1 859.81 88. 1767 J-676 657.65 TRUE 1 859.81 87. 1771 J-677 707.71 TRUE 1 859.81 65. 1774 J-678 709.38 TRUE 1 859.81 65. 1786 J-680 725.36 TRUE 0 859.73 58. 1792 J-682 726.32 TRUE 0 859.73 57. 1809 J-685 792 FALSE (N/A) (N/A) (N/A) 1811 J-686 740 FALSE (N/A) (N/A) (N/A) 1813 J-687 699 FALSE (N/A) (N/A) (N/A)							94.6
1767 J-676 657.65 TRUE 1 859.81 87. 1771 J-677 707.71 TRUE 1 859.81 65. 1774 J-678 709.38 TRUE 1 859.81 65. 1786 J-680 725.36 TRUE 0 859.73 58. 1792 J-682 726.32 TRUE 0 859.73 57. 1809 J-685 792 FALSE (N/A) (N/A) (N/A) 1811 J-686 740 FALSE (N/A) (N/A) (N/A) 1813 J-687 699 FALSE (N/A) (N/A) (N/A)							
1771 J-677 707.71 TRUE 1 859.81 65. 1774 J-678 709.38 TRUE 1 859.81 65. 1786 J-680 725.36 TRUE 0 859.73 58. 1792 J-682 726.32 TRUE 0 859.73 57. 1809 J-685 792 FALSE (N/A) (N/A) (N/A) 1811 J-686 740 FALSE (N/A) (N/A) (N/A) 1813 J-687 699 FALSE (N/A) (N/A) (N/A)							
1774 J-678 709.38 TRUE 1 859.81 65. 1786 J-680 725.36 TRUE 0 859.73 58. 1792 J-682 726.32 TRUE 0 859.73 57. 1809 J-685 792 FALSE (N/A) (N/A) (N/A) 1811 J-686 740 FALSE (N/A) (N/A) (N/A) 1813 J-687 699 FALSE (N/A) (N/A) (N/A)							
1786 J-680 725.36 TRUE 0 859.73 58. 1792 J-682 726.32 TRUE 0 859.73 57. 1809 J-685 792 FALSE (N/A) (N/A) (N/A) 1811 J-686 740 FALSE (N/A) (N/A) (N/A) 1813 J-687 699 FALSE (N/A) (N/A) (N/A)							
1792 J-682 726.32 TRUE 0 859.73 57. 1809 J-685 792 FALSE (N/A) (N/A) (N/A) (N/A) (N/A) (N/A) 1811 J-686 740 FALSE (N/A) (N/A) (N/A) (N/A) 1813 J-687 699 FALSE (N/A) (N/A) (N/A)							
1809 J-685 792 FALSE (N/A) (N/A) (N/A) (N/A) 1811 J-686 740 FALSE (N/A) (N/A) (N/A) (N/A) 1813 J-687 699 FALSE (N/A) (N/A) (N/A) (N/A)							
1811 J-686 740 FALSE (N/A) (N/A) (N/A) 1813 J-687 699 FALSE (N/A) (N/A) (N/A)					-		
1813 J-687 699 FALSE (N/A) (N/A) (N/A)							
181/ J-089 094.06 IKUE 25 859.77 /1.							
	181/	אס-נן	694.06	IKUE	25	859.//	71.7

4024	1.600	coc	FALCE	(81/8)		(51/5)		/A1/A)
	J-690	696	FALSE	(N/A)		(N/A)		(N/A)
	J-691	720	FALSE	(N/A)		(N/A)		(N/A)
	J-692	802	FALSE	(N/A)		(N/A)		(N/A)
	J-693	740	FALSE	(N/A)		(N/A)		(N/A)
	J-694	742	FALSE	(N/A)		(N/A)		(N/A)
	J-695	798	FALSE	(N/A)		(N/A)		(N/A)
	J-696	746.01	TRUE		5		859.8	49.2
	J-697	725.84	TRUE		0		859.73	57.9
	J-698	663	FALSE	(N/A)		(N/A)		(N/A)
	J-699	626.33	FALSE	(N/A)		(N/A)		(N/A)
	J-700	677	FALSE	(N/A)		(N/A)		(N/A)
1906	J-702	735	FALSE	(N/A)		(N/A)		(N/A)
1927	J-707	714	FALSE	(N/A)		(N/A)		(N/A)
1929	J-708	724	FALSE	(N/A)		(N/A)		(N/A)
1943	J-714	709	FALSE	(N/A)		(N/A)		(N/A)
1945	J-715	0	FALSE	(N/A)		(N/A)		(N/A)
1947	J-716	0	FALSE	(N/A)		(N/A)		(N/A)
1949	J-717	0	FALSE	(N/A)		(N/A)		(N/A)
1952	J-718	94.23	FALSE	(N/A)		(N/A)		(N/A)
1956	J-719	698.05	TRUE		0		859.95	70
1959	J-720	0	FALSE	(N/A)		(N/A)		(N/A)
1962	J-721	322.39	FALSE	(N/A)		(N/A)		(N/A)
1966	J-722	0	FALSE	(N/A)		(N/A)		(N/A)
1969	J-723	160.87	FALSE	(N/A)		(N/A)		(N/A)
1973	J-724	697.19	TRUE		0		859.95	70.4
1977	J-725	717	FALSE	(N/A)		(N/A)		(N/A)
1981	J-726	714.1	TRUE		0		859.93	63.1
1985	J-727	708.51	TRUE		0		859.98	65.5
1990	J-729	709	FALSE	(N/A)		(N/A)		(N/A)
731	J-731	713	TRUE		1		859.86	63.5
904	J-904	710.34	TRUE		1		859.81	64.7
1031	J-1031	713.26	TRUE		1		859.81	63.4
1082	J-1082	649.29	TRUE		1		859.81	91.1
1184	J-1184	696.23	TRUE		1		859.97	70.8
1201	J-1201	697	TRUE		1		859.91	70.5
1296	J-1296	700.72	TRUE		1		859.95	68.9
1334	J-1334	712.37	TRUE		1		859.93	63.8
1340	J-1340	714.13	TRUE		1		859.89	63.1
1549	J-1549	717.5	TRUE		1		859.82	61.6
1642	J-1642	699.3	TRUE		1		859.82	69.4
1704	J-1704	666.38	TRUE		1		859.82	83.7
1780	J-1780	697.01	TRUE		0		859.95	70.5
1806	J-1806	727.59	TRUE		0		859.73	57.2
	-			1	-			

Table 2: Fire Flow Results

BASE SO	CENARIO							
Junction Label	Fire Flow (Available) (gpm)	Satisfies Fire Flow Constraints?	Fire Flow Status	Flow (Needed) (gpm)	Flow (Available) (gpm)	Pressure (Calculated Residual) (psi)	Pressure (Calculated System Lower Limit) (psi)	Junction w/ Minimum Pressure
1-FLOW	8,625	TRUE	Passed	500	8,626	30	1 11 1	1-RES
1-RES	3,068	TRUE	Passed	500	3,071	30		J-51
2-FLOW	7,371	TRUE	Passed	500	7,372	30		
2-RES	4,072	TRUE	Passed	500	4,073	30		J-51
3-FLOW	2,802	TRUE	Passed	500	2,803	30		
3-RES	2,395	TRUE	Passed	500	2,396	30	39.7	3-FLOW
4-FLOW	3,288	TRUE	Passed	500	3,289	30	30.7	4-RES
4-RES	2,386	TRUE	Passed	500	2,387	30		
5-FLOW	2,737	TRUE	Passed	500	2,738	30	27.7	J-51
5-RES	1,669	TRUE	Passed	500	1,670	30		J-51
6-FLOW	1,955	TRUE	Passed	500	1,956	30	30.8	6-RES
6-RES	1,272	TRUE	Passed	500	1,273	30	44.8	J-51
7-FLOW	2,064	TRUE	Passed	500	2,065	30	29.1	J-196
7-RES	1,859	TRUE	Passed	500	1,860	30		
J-1	4,846	TRUE	Passed	500	4,847	30	34.3	J-128
J-2	6,881	TRUE	Passed	500	6,882	30	31.8	J-128
J-3	7,655	TRUE	Passed	500	7,656	30	35	J-51
J-11	8,084	TRUE	Passed	500	8,085	30	30.2	J-51
J-12	7,762	TRUE	Passed	500	7,763	30	30.3	J-51
J-13	4,488	TRUE	Passed	500	4,489	30	34.5	J-51
J-14	3,671	TRUE	Passed	500	3,672	30	40.6	J-51
J-15	7,178	TRUE	Passed	500	7,179	30	32.1	J-14
J-17	5,465	TRUE	Passed	500	5,466	30	28.1	J-51
J-18	10,000	TRUE	Passed	500	10,001	58.5	42.3	J-51
J-19	9,082	TRUE	Passed	500	9,083	30	29.4	J-51
J-20	4,037	TRUE	Passed	500	4,038	30	33.6	J-23
J-21	4,134	TRUE	Passed	500	4,135	30	35.6	J-20
J-22	1,995	TRUE	Passed	500	1,996	30	43.9	J-51
J-23	3,660	TRUE	Passed	500	3,661	30	30.2	J-22
J-24	1,861	TRUE	Passed	500	1,862	30	44	J-51
J-25	3,235	TRUE	Passed	500	3,236	30	30.1	J-24
J-26	1,804	TRUE	Passed	500	1,805	30	43.9	J-51
J-27	3,352	TRUE	Passed	500	3,353	30	29.2	J-26
J-28	2,085	TRUE	Passed	500	2,086	30	43.4	J-51
J-29	3,651	TRUE	Passed	500	3,652	30	29.5	J-28
J-30	6,156	TRUE	Passed	500	6,157	30	29.6	J-51
J-31	2,455	TRUE	Passed	500	2,456	30	33.5	J-33
J-33	2,657	TRUE	Passed	500	2,658	30	31	J-31

J-34	2,565	TRUE	Passed	500	2,566	30	37	J-51
J-35	3,124	TRUE	Passed	500	3,125	30	28.5	J-34
J-36	4,025	TRUE	Passed	500	4,026	30	26.9	J-51
J-37	4,543	TRUE	Passed	500	4,544	30	26.1	J-51
J-38	3,963	TRUE	Passed	500	3,964	30	25.9	J-51
J-39	3,810	TRUE	Passed	500	3,811	30	30.1	J-51
J-40	3,743	TRUE	Passed	500	3,744	30	30.3	J-51
J-41	4,045	TRUE	Passed	500	4,046	30	24.6	J-51
J-42	2,588	TRUE	Passed	500	2,589	30	32.1	J-51
J-43	3,259	TRUE	Passed	500	3,260	30	25.3	J-51
J-44	1,938	TRUE	Passed	500	1,939	30	37.4	J-51
J-45	2,051	TRUE	Passed	500	2,052	30	35.7	J-46
J-46	2,493	TRUE	Passed	500	2,494	30	30.3	J-45
J-47	1,772	TRUE	Passed	500	1,773	30	38	J-48
J-48	2,290	TRUE	Passed	500	2,291	30	27.2	J-47
J-49	2,668	TRUE	Passed	500	2,669	30	30.5	J-50
J-50	2,161	TRUE	Passed	500	2,162	30	36.5	J-51
J-51	927	TRUE	Passed	500	928	30	43.2	J-55
J-52	2,100	TRUE	Passed	500	2,101	30	26.6	J-51
J-53	1,807	TRUE	Passed	500	1,808	30	32	J-54
J-54	1,929	TRUE	Passed	500	1,930	30	29.5	J-53
J-55	1,610	TRUE	Passed	500	1,611	30	34	J-56
J-56	1,854	TRUE	Passed	500	1,855	30	28.7	J-55
J-57	1,792	TRUE	Passed	500	1,793	30	37.2	J-51
J-58	1,977	TRUE	Passed	500	1,978	30	31.3	J-55
J-59	2,181	TRUE	Passed	500	2,182	30	28.4	J-55
J-60	2,024	TRUE	Passed	500	2,025	30	28.6	J-55
J-61	2,858	TRUE	Passed	500	2,859	30	26.7	J-51
J-64	2,735	TRUE	Passed	500	2,736	30	26.6	J-51
J-65	2,856	TRUE	Passed	500	2,857	30	27.5	J-51
J-66	3,655	TRUE	Passed	500	3,656	30	23.5	J-51
J-67	3,202	TRUE	Passed	500	3,203	30	28.1	J-51
J-68	3,477	TRUE	Passed	500	3,478	30	25.6	J-51
J-69	2,212	TRUE	Passed	500	2,213	30	36.9	J-51
J-70	2,960	TRUE	Passed	500	2,961	30	31.2	J-51
J-71	2,684	TRUE	Passed	500	2,685	30	30.9	J-72
J-72	2,618	TRUE	Passed	500	2,619	30	33.5	J-71
J-73	1,104	TRUE	Passed	500	1,105	30	43	J-51
J-74	2,546	TRUE	Passed	500	2,547	30	31.1	J-73
J-75	3,771	TRUE	Passed	500	3,772	30	25.8	J-74
J-76	3,514	TRUE	Passed	500	3,515	30	27.1	J-51
J-77	3,248	TRUE	Passed	500	3,249	30	27.7	J-51

J-78	4,035	TRUE	Passed	500	4,036	30	23.5	J-51
J-79	3,323	TRUE	Passed	500	3,324	30	30	J-51
J-80	3,634	TRUE	Passed	500	3,635	30	28.1	J-51
J-81	3,779	TRUE	Passed	500	3,780	30	24.3	J-51
J-82	4,631	TRUE	Passed	500	4,633	30	22.3	J-51
J-83	4,689	TRUE	Passed	500	4,690	30	22.1	J-51
J-84	4,676	TRUE	Passed	500	4,677	30	21.9	J-51
J-85	4,251	TRUE	Passed	500	4,252	30	23.6	J-51
J-86	4,034	TRUE	Passed	500	4,035	30	25	J-51
J-87	3,720	TRUE	Passed	500	3,722	30	29	J-51
J-88	3,303	TRUE	Passed	500	3,304	30	31.7	J-51
J-89	3,891	TRUE	Passed	500	3,892	30	25.6	J-51
J-90	3,117	TRUE	Passed	500	3,118	30	29.3	J-91
J-91	1,601	TRUE	Passed	500	1,602	30	41.2	J-51
J-92	5,252	TRUE	Passed	500	5,253	30	30.5	J-94
J-93	3,680	TRUE	Passed	500	3,681	30	24.3	J-51
J-94	5,250	TRUE	Passed	500	5,251	30	30.3	J-92
J-95	6,421	TRUE	Passed	500	6,422	30	31.2	J-210
J-96	5,305	TRUE	Passed	500	5,306	30	31.5	J-209
J-97	5,280	TRUE	Passed	500	5,281	30	30.4	J-92
J-98	5,398	TRUE	Passed	500	5,399	30	28.1	J-128
J-99	2,570	TRUE	Passed	500	2,571	30	32.4	J-128
J-100	3,115	TRUE	Passed	500	3,116	30	25.6	J-128
J-101	2,377	TRUE	Passed	500	2,378	30	33.7	J-128
J-102	3,135	TRUE	Passed	500	3,136	30	23.9	J-128
J-103	2,790	TRUE	Passed	500	2,791	30	21.9	J-128
J-104	2,590	TRUE	Passed	500	2,591	30	25	J-128
J-105	2,602	TRUE	Passed	500	2,603	30	24.3	J-128
J-106	2,496	TRUE	Passed	500	2,497	30	26	J-128
J-107	2,682	TRUE	Passed	500	2,683	30	23.4	J-128
J-108	2,569	TRUE	Passed	500	2,570	30	24.7	J-128
J-109	2,650	TRUE	Passed	500	2,651	30	23.3	J-128
J-110	2,667	TRUE	Passed	500	2,668	30	23.9	J-128
J-111	2,468	TRUE	Passed	500	2,469	30	27.4	J-128
J-112	2,288	TRUE	Passed	500	2,289	30	30.6	J-128
J-113	2,086	TRUE	Passed	500	2,087	30	33	J-128
J-114	2,030	TRUE	Passed	500	2,031	30	32.4	J-128
J-115	2,225	TRUE	Passed	500	2,226	30	29.5	J-128
J-116	1,930	TRUE	Passed	500	1,931	30	33.3	J-128
J-117	2,099	TRUE	Passed	500	2,100	30	30.8	J-128
J-118	1,866	TRUE	Passed	500	1,867	30	40.6	J-51
J-118	1,951	TRUE	Passed	500	1,952	30	31.7	J-128

J-119	2,125	TRUE	Passed	500	2,126	30	28.9	J-128
J-121	1,693	TRUE	Passed	500	1,694	30	33.4	J-128
J-122	1,915	TRUE	Passed	500	1,916	30	29.5	J-128
J-124	1,780	TRUE	Passed	500	1,781	30	28.5	J-128
J-125	1,431	TRUE	Passed	500	1,432	30	29.5	J-180
J-126	1,712	TRUE	Passed	500	1,713	30	28.8	J-128
J-127	1,569	TRUE	Passed	500	1,570	30	28.6	J-128
J-128	962	TRUE	Passed	500	963	30	42.3	J-129
J-129	1,553	TRUE	Passed	500	1,554	30	27.9	J-128
J-130	1,622	TRUE	Passed	500	1,623	30	29.7	J-128
J-133	1,748	TRUE	Passed	500	1,749	30	29.2	J-128
J-134	1,610	TRUE	Passed	500	1,611	30	32.5	J-135
J-135	1,722	TRUE	Passed	500	1,723	30	29	J-134
J-136	1,948	TRUE	Passed	500	1,949	30	26.4	J-134
J-137	2,036	TRUE	Passed	500	2,037	30	25.5	J-128
J-138	2,192	TRUE	Passed	500	2,193	30	23.7	J-128
J-139	2,519	TRUE	Passed	500	2,520	30	29.4	J-128
J-140	2,180	TRUE	Passed	500	2,181	30	32.3	J-141
J-141	2,285	TRUE	Passed	500	2,286	30	30.5	J-140
J-142	2,707	TRUE	Passed	500	2,708	30	23.3	J-128
J-143	2,843	TRUE	Passed	500	2,844	30	20.7	J-128
J-144	2,665	TRUE	Passed	500	2,666	30	22.2	J-128
J-145	2,253	TRUE	Passed	500	2,254	30	29.2	J-128
J-146	2,747	TRUE	Passed	500	2,748	30	21.5	J-128
J-147	2,724	TRUE	Passed	500	2,725	30	22.1	J-128
J-148	2,916	TRUE	Passed	500	2,917	30	19.9	J-128
J-149	3,185	TRUE	Passed	500	3,186	30	21.9	J-128
J-150	3,241	TRUE	Passed	500	3,242	30	25.2	J-128
J-151	2,993	TRUE	Passed	500	2,994	30	23.8	J-128
J-152	2,200	TRUE	Passed	500	2,201	30	38.5	J-128
J-153	3,508	TRUE	Passed	500	3,509	30	24.4	J-128
J-154	3,441	TRUE	Passed	500	3,442	30	25.6	J-128
J-155	2,925	TRUE	Passed	500	2,926	30	30.9	J-196
J-156	2,921	TRUE	Passed	500	2,922	30	37.4	J-196
J-157	3,126	TRUE	Passed	500	3,127	30	28.4	J-237
J-158	2,443	TRUE	Passed	500	2,445	30	36.6	J-128
J-159	3,133	TRUE	Passed	500	3,134	30	28.9	J-163
J-160	3,058	TRUE	Passed	500	3,059	30	28.3	J-163
J-161	2,960	TRUE	Passed	500	2,961	30	29.3	J-163
J-162	3,035	TRUE	Passed	500	3,036	30	28.3	J-163
J-163	2,638	TRUE	Passed	500	2,639	30	32.8	J-169
J-164	2,851	TRUE	Passed	500	2,852	30	30.1	J-168

J-165	3,013	TRUE	Passed	500	3,014	30	28.6	J-163
J-166	3,263	TRUE	Passed	500	3,264	30	18.8	J-128
J-167	1,969	TRUE	Passed	500	1,970	30	35.2	J-168
J-168	2,294	TRUE	Passed	500	2,295	30	30.7	J-167
J-169	2,633	TRUE	Passed	500	2,634	30	31.8	J-168
J-170	2,955	TRUE	Passed	500	2,956	30	24.1	J-128
J-171	1,947	TRUE	Passed	500	1,948	30	37.2	J-128
J-172	2,530	TRUE	Passed	500	2,531	30	22.8	J-128
J-173	2,243	TRUE	Passed	500	2,244	30	27.7	J-128
J-174	2,305	TRUE	Passed	500	2,306	30	26.4	J-128
J-175	2,483	TRUE	Passed	500	2,484	30	22.5	J-128
J-176	2,242	TRUE	Passed	500	2,243	30	27	J-128
J-177	1,773	TRUE	Passed	500	1,774	30	34.6	J-128
J-178	2,038	TRUE	Passed	500	2,039	30	28.7	J-179
J-179	1,020	TRUE	Passed	500	1,021	30	43.7	J-128
J-180	1,040	TRUE	Passed	500	1,041	30	39.3	J-128
J-181	2,216	TRUE	Passed	500	2,217	30	27.4	J-128
J-183	7,998	TRUE	Passed	500	7,999	30	3.8	J-689
J-184	744	TRUE	Passed	500	745	30	45.1	J-51
J-185	6,517	TRUE	Passed	500	6,518	30	23.6	J-186
J-186	4,727	TRUE	Passed	500	4,728	30	40.8	J-128
J-187	4,990	TRUE	Passed	500	4,991	30	23.7	J-188
J-188	3,820	TRUE	Passed	500	3,821	30	42.5	J-128
J-189	4,622	TRUE	Passed	500	4,623	30	35.8	J-128
J-190	4,681	TRUE	Passed	500	4,682	30	36.1	J-128
J-191	4,040	TRUE	Passed	500	4,041	30	31.3	J-192
J-192	3,484	TRUE	Passed	500	3,485	30	37.3	J-196
J-193	3,357	TRUE	Passed	500	3,358	30	30.4	J-196
J-194	2,846	TRUE	Passed	500	2,847	30	26.7	J-196
J-195	2,252	TRUE	Passed	500	2,253	30	28	J-196
J-196	1,872	TRUE	Passed	500	1,873	30	33.9	J-197
J-197	2,024	TRUE	Passed	500	2,025	30	29.1	J-196
J-200	4,474	TRUE	Passed	500	4,475	30	30	J-201
J-201	3,982	TRUE	Passed	500	3,983	30	35.3	J-200
J-202	4,344	TRUE	Passed	500	4,345	30	31.2	J-206
J-203	4,325	TRUE	Passed	500	4,326	30	33.3	J-204
J-204	3,403	TRUE	Passed	500	3,404	30	30.5	J-205
J-205	2,797	TRUE	Passed	500	2,798	30	38.6	J-204
J-206	3,695	TRUE	Passed	500	3,696	30	31.8	J-207
J-207	3,094	TRUE	Passed	500	3,095	30	37.7	J-206
J-208	4,868	TRUE	Passed	500	4,869	30	29.9	J-209
J-209	3,766	TRUE	Passed	500	3,767	30	39.8	J-128
	5,. 55			555	-,,		55.5	

J-210	6,346	TRUE	Passed	500	6,347	30	32.2	J-95
J-211	5,607	TRUE	Passed	500	5,608	30	32.3	J-212
J-212	4,505	TRUE	Passed	500	4,506	30	30.4	J-213
J-213	3,477	TRUE	Passed	500	3,478	30	39.8	J-215
J-214	2,720	TRUE	Passed	500	2,721	30	29.5	J-215
J-215	2,269	TRUE	Passed	500	2,270	30	38.2	J-214
J-216	798	TRUE	Passed	500	799	30	45	J-51
J-217	3,276	TRUE	Passed	500	3,277	30	29.5	J-215
J-218	1,835	TRUE	Passed	500	1,836	30	44.3	J-51
J-219	3,983	TRUE	Passed	500	3,984	30	30	J-215
J-220	1,916	TRUE	Passed	500	1,917	30	44.2	J-51
J-221	2,304	TRUE	Passed	500	2,305	30	43.9	J-51
J-222	4,413	TRUE	Passed	500	4,414	30	33	J-221
J-223	4,857	TRUE	Passed	500	4,858	30	32	J-222
J-224	5,682	TRUE	Passed	500	5,683	30	36.8	J-223
J-225	5,895	TRUE	Passed	500	5,897	30	38.6	J-224
J-226	7,500	TRUE	Passed	500	7,501	30	32.6	J-334
J-227	6,261	TRUE	Passed	500	6,262	30	23.4	J-191
J-228	4,773	TRUE	Passed	500	4,774	30	32.6	J-229
J-229	4,718	TRUE	Passed	500	4,719	30	32.7	J-228
J-230	2,898	TRUE	Passed	500	2,899	30	43.5	J-51
J-231	4,420	TRUE	Passed	500	4,421	30	31	J-230
J-232	4,919	TRUE	Passed	500	4,920	30	34.5	J-231
J-233	6,445	TRUE	Passed	500	6,446	30	27.4	J-232
J-234	9,683	TRUE	Passed	500	9,684	30	6	J-689
J-235	10,000	TRUE	Passed	500	10,001	41	18.5	J-689
J-236	2,265	TRUE	Passed	500	2,266	30	28.7	J-237
J-237	1,898	TRUE	Passed	500	1,899	30	38.8	J-236
J-238	1,081	TRUE	Passed	500	1,082	30	44.8	J-51
J-239	9,923	TRUE	Passed	500	9,924	30	28.9	J-128
J-240	9,656	TRUE	Passed	500	9,657	30	30	J-128
J-241	8,011	TRUE	Passed	500	8,012	30	35.1	J-51
J-242	7,799	TRUE	Passed	500	7,800	30	35.3	J-51
J-243	9,325	TRUE	Passed	500	9,326	30	33.7	J-51
J-244	5,195	TRUE	Passed	500	5,196	30	41	J-51
J-245	9,577	TRUE	Passed	500	9,578	30	34.5	J-51
J-246	8,855	TRUE	Passed	500	8,856	30	37.6	J-51
J-247	10,000	TRUE	Passed	500	10,001	40	35.2	J-51
J-248	7,091	TRUE	Passed	500	7,092	30	33.2	J-318
J-249	2,424	TRUE	Passed	500	2,425	30	29.1	J-250
J-250	1,326	TRUE	Passed	500	1,327	30	44.8	J-51
J-251	7,307	TRUE	Passed	500	7,308	30	37.6	J-51

J-252	7,252	TRUE	Passed	500	7,253	30	38.7	J-51
J-253	3,136	TRUE	Passed	500	3,137	30	43.7	J-51
J-254	7,778	TRUE	Passed	500	7,779	30	26.5	J-324
J-255	7,134	TRUE	Passed	500	7,135	30	36.1	J-51
J-256	4,152	TRUE	Passed	500	4,153	30	41.7	J-51
J-257	7,102	TRUE	Passed	500	7,103	30	36.4	J-51
J-258	7,063	TRUE	Passed	500	7,064	30	36.4	J-51
J-259	4,413	TRUE	Passed	500	4,414	30	41.3	J-51
J-260	6,261	TRUE	Passed	500	6,262	30	33.7	J-731
J-262	7,158	TRUE	Passed	500	7,159	30	35.6	J-51
J-263	4,227	TRUE	Passed	500	4,228	30	40	J-266
J-264	7,629	TRUE	Passed	500	7,630	30	34	J-51
J-265	3,968	TRUE	Passed	500	3,969	30	29.5	J-266
J-266	2,788	TRUE	Passed	500	2,789	30	43.3	J-51
J-267	6,047	TRUE	Passed	500	6,048	30	32.6	J-268
J-268	5,308	TRUE	Passed	500	5,309	30	32.4	4-FLOW
J-269	6,196	TRUE	Passed	500	6,197	30	31.8	J-267
J-270	7,532	TRUE	Passed	500	7,533	30	32.8	J-272
J-271	6,451	TRUE	Passed	500	6,452	30	35.2	J-260
J-272	6,446	TRUE	Passed	500	6,447	30	30.4	J-276
J-273	4,918	TRUE	Passed	500	4,919	30	30.1	J-274
J-274	4,540	TRUE	Passed	500	4,541	30	34.2	J-273
J-275	6,094	TRUE	Passed	500	6,095	30	32.3	J-278
J-276	5,881	TRUE	Passed	500	5,882	30	35.2	J-275
J-277	5,909	TRUE	Passed	500	5,910	30	28.3	J-278
J-278	4,295	TRUE	Passed	500	4,296	30	38.4	J-283
J-279	3,864	TRUE	Passed	500	3,865	30	34	J-281
J-280	1,439	TRUE	Passed	500	1,440	30	44.7	J-51
J-281	3,170	TRUE	Passed	500	3,171	30	32.8	J-280
J-282	3,018	TRUE	Passed	500	3,019	30	29.9	J-283
J-283	2,395	TRUE	Passed	500	2,396	30	30.2	J-285
J-284	1,381	TRUE	Passed	500	1,382	30	44.8	J-51
J-285	2,027	TRUE	Passed	500	2,028	30	37.7	J-283
J-286	4,282	TRUE	Passed	500	4,283	30	27.1	J-292
J-287	3,487	TRUE	Passed	500	3,488	30	27.4	J-292
J-288	2,044	TRUE	Passed	500	2,045	30	35.3	J-290
J-289	2,306	TRUE	Passed	500	2,307	30	29.1	J-290
J-290	2,123	TRUE	Passed	500	2,124	30	34.4	J-289
J-291	1,148	TRUE	Passed	500	1,149	30	44.9	J-51
J-292	2,488	TRUE	Passed	500	2,489	30	33.9	6-FLOW
J-294	1,385	TRUE	Passed	500	1,386	30	44.3	6-FLOW
J-296	6,057	TRUE	Passed	500	6,058	30	30.1	J-292

J-297	6,212	TRUE	Passed	500	6,213	30	39.3	J-292
J-298	8,195	TRUE	Passed	500	8,196	30	36.1	J-51
J-299	9,128	TRUE	Passed	500	9,129	30	34.2	J-51
J-300	4,058	TRUE	Passed	500	4,059	30	29.9	J-301
J-301	3,275	TRUE	Passed	500	3,276	30	39.9	J-300
J-302	3,690	TRUE	Passed	500	3,691	30	30.6	J-303
J-303	3,039	TRUE	Passed	500	3,040	30	38.9	J-302
J-304	5,421	TRUE	Passed	500	5,422	30	36.1	J-302
J-305	5,640	TRUE	Passed	500	5,641	30	25.1	J-306
J-306	2,375	TRUE	Passed	500	2,376	30	44.1	J-51
J-307	7,596	TRUE	Passed	500	7,597	30	30	J-306
J-308	6,710	TRUE	Passed	500	6,711	30	39	J-51
J-309	3,578	TRUE	Passed	500	3,579	30	43	J-51
J-310	3,407	TRUE	Passed	500	3,408	30	43.1	J-51
J-311	3,874	TRUE	Passed	500	3,876	30	40.2	J-309
J-312	3,806	TRUE	Passed	500	3,807	30	42.7	J-51
J-313	4,303	TRUE	Passed	500	4,304	30	42.1	J-51
J-314	3,201	TRUE	Passed	500	3,202	30	43.3	J-51
J-315	2,585	TRUE	Passed	500	2,586	30	43.8	J-51
J-316	4,403	TRUE	Passed	500	4,404	30	41.7	J-51
J-317	3,261	TRUE	Passed	500	3,262	30	43.2	J-51
J-318	6,447	TRUE	Passed	500	6,448	30	34	J-319
J-319	6,156	TRUE	Passed	500	6,157	30	34.8	J-321
J-320	6,193	TRUE	Passed	500	6,194	30	34.3	J-319
J-321	3,227	TRUE	Passed	500	3,228	30	43.5	J-51
J-322	3,435	TRUE	Passed	500	3,436	30	41.7	J-323
J-323	3,034	TRUE	Passed	500	3,035	30	42.2	J-250
J-324	4,155	TRUE	Passed	500	4,156	30	41.8	J-51
J-325	10,000	TRUE	Passed	500	10,001	38.4	28.5	J-128
J-326	10,000	TRUE	Passed	500	10,001	39	28.8	J-128
J-327	6,741	TRUE	Passed	500	6,742	30	37.9	J-51
J-328	10,000	TRUE	Passed	500	10,001	39.8	28.9	J-128
J-329	9,858	TRUE	Passed	500	9,860	30	28.2	J-128
J-330	1,707	TRUE	Passed	500	1,708	30	44.5	J-51
J-331	5,824	TRUE	Passed	500	5,825	30	31.6	J-330
J-332	6,111	TRUE	Passed	500	6,112	30	39.2	J-51
J-333	4,438	TRUE	Passed	500	4,439	30	41.6	J-51
J-334	7,532	TRUE	Passed	500	7,533	30	33.3	J-226
J-336	6,426	TRUE	Passed	500	6,427	30	38	J-51
J-338	7,065	TRUE	Passed	500	7,066	30	35.8	J-339
J-339	6,105	TRUE	Passed	500	6,106	30	35.6	J-215
J-340	10,000	TRUE	Passed	500	10,001	32.7	28.5	J-128

J-341	7,296	TRUE	Passed	500	7,297	30	36	J-306
J-342	3,928	TRUE	Passed	500	3,929	30	42.6	J-51
J-343	6,997	TRUE	Passed	500	6,999	30	38.3	J-51
J-345	4,730	TRUE	Passed	500	4,731	30	41.7	J-51
J-346	3,554	TRUE	Passed	500	3,555	30	43	J-51
J-347	10,000	TRUE	Passed	500	10,001	46.3	29.8	J-128
J-348	10,000	TRUE	Passed	500	10,001	48	30	J-128
J-349	10,000	TRUE	Passed	500	10,001	43.1	30	J-128
J-350	10,000	TRUE	Passed	500	10,001	41.2	30	J-128
J-351	8,243	TRUE	Passed	500	8,244	30	35.4	J-128
J-352	8,499	TRUE	Passed	500	8,500	30	34.6	J-128
J-353	9,043	TRUE	Passed	500	9,044	30	32.9	J-128
J-354	10,000	TRUE	Passed	500	10,001	31.2	31	J-128
J-355	8,456	TRUE	Passed	500	8,457	30	35.5	J-51
J-356	7,948	TRUE	Passed	500	7,949	30	35.1	J-365
J-357	10,000	TRUE	Passed	500	10,001	43.3	29.3	J-128
J-358	9,878	TRUE	Passed	500	9,879	30	31.7	J-128
J-359	9,628	TRUE	Passed	500	9,629	30	26.7	J-360
J-360	1,495	TRUE	Passed	500	1,496	30	44.7	J-51
J-361	8,126	TRUE	Passed	500	8,127	30	36.2	J-51
J-362	10,000	TRUE	Passed	500	10,001	44.3	30.2	J-128
J-363	7,678	TRUE	Passed	500	7,679	30	37	J-51
J-364	6,847	TRUE	Passed	500	6,848	30	38.4	J-366
J-365	7,234	TRUE	Passed	500	7,235	30	37.7	J-51
J-366	6,709	TRUE	Passed	500	6,710	30	37.9	J-364
J-367	8,249	TRUE	Passed	500	8,250	30	35.6	J-128
J-368	5,711	TRUE	Passed	500	5,712	30	40.4	J-51
J-369	8,327	TRUE	Passed	500	8,328	30	36	J-51
J-370	10,000	TRUE	Passed	500	10,001	31.8	30.9	J-360
J-371	2,088	TRUE	Passed	500	2,089	30	28.6	J-128
J-371	10,000	TRUE	Passed	500	10,001	30.2	31.2	J-128
J-372	6,754	TRUE	Passed	500	6,755	30	38.7	J-51
J-373	10,000	TRUE	Passed	500	10,001	46.8	30.4	J-128
J-374	10,000	TRUE	Passed	500	10,001	47	30.5	J-128
J-375	10,000	TRUE	Passed	500	10,001	44.4	30.5	J-128
J-376	7,679	TRUE	Passed	500	7,680	30	37.2	J-51
J-377	10,000	TRUE	Passed	500	10,001	51	30.5	J-128
J-378	10,000	TRUE	Passed	500	10,001	40.3	30.7	J-128
J-379	10,000	TRUE	Passed	500	10,001	43.6	30.6	J-128
J-380	6,436	TRUE	Passed	500	6,437	30	39.4	J-51
J-382	6,944	TRUE	Passed	500	6,945	30	38.5	J-51
J-383	6,380	TRUE	Passed	500	6,381	30	39.5	J-51

J-384	6,657	TRUE	Passed	500	6,658	30	39.2	J-51
J-385	8,742	TRUE	Passed	500	8,743	30	35.2	J-128
J-386	9,417	TRUE	Passed	500	9,419	30	33	J-128
J-387	8,105	TRUE	Passed	500	8,106	30	35.6	J-388
J-388	6,105	TRUE	Passed	500	6,106	30	39.8	J-51
J-389	4,836	TRUE	Passed	500	4,837	30	33.8	J-390
J-390	1,826	TRUE	Passed	500	1,827	30	44.5	J-51
J-391	6,498	TRUE	Passed	500	6,499	30	39.2	J-51
J-392	10,000	TRUE	Passed	500	10,001	39.1	30.7	J-128
J-393	7,325	TRUE	Passed	500	7,326	30	37.7	J-430
J-394	8,606	TRUE	Passed	500	8,607	30	28.4	J-424
J-395	8,783	TRUE	Passed	500	8,784	30	26.1	J-425
J-396	10,000	TRUE	Passed	500	10,001	39.8	30.8	J-128
J-397	5,943	TRUE	Passed	500	5,944	30	27.8	J-398
J-398	1,617	TRUE	Passed	500	1,618	30	44.6	J-51
J-399	10,000	TRUE	Passed	500	10,001	63.7	30	J-128
J-401	1,627	TRUE	Passed	500	1,628	30	28.4	J-128
J-401	10,000	TRUE	Passed	500	10,001	61.4	32.2	J-128
J-402	10,000	TRUE	Passed	500	10,001	62	32.1	J-128
J-403	10,000	TRUE	Passed	500	10,001	40.8	32.4	J-128
J-404	9,579	TRUE	Passed	500	9,580	30	36.3	J-128
J-405	4,492	TRUE	Passed	500	4,493	30	42.7	J-51
J-406	10,000	TRUE	Passed	500	10,001	57.6	31.7	J-128
J-407	10,000	TRUE	Passed	500	10,001	63.9	31.7	J-128
J-408	10,000	TRUE	Passed	500	10,001	44.5	31	J-128
J-409	3,335	TRUE	Passed	500	3,336	30	43.4	J-51
J-410	10,000	TRUE	Passed	500	10,001	50.9	31	J-128
J-411	3,403	TRUE	Passed	500	3,404	30	43.3	J-51
J-412	10,000	TRUE	Passed	500	10,001	55.5	31	J-128
J-413	10,000	TRUE	Passed	500	10,001	61.6	30.4	J-128
J-414	10,000	TRUE	Passed	500	10,001	54.1	27.2	J-128
J-415	1,919	TRUE	Passed	500	1,920	30	44.4	J-51
J-416	10,000	TRUE	Passed	500	10,001	58.3	30.5	J-128
J-417	10,000	TRUE	Passed	500	10,001	54.7	30.9	J-128
J-418	5,259	TRUE	Passed	500	5,260	30	29.9	J-419
J-419	3,344	TRUE	Passed	500	3,345	30	43.5	J-51
J-420	10,000	TRUE	Passed	500	10,001	34.5	32	J-421
J-421	8,752	TRUE	Passed	500	8,753	30	31.8	J-423
J-422	6,428	TRUE	Passed	500	6,429	30	39.8	J-51
J-423	8,610	TRUE	Passed	500	8,611	30	32.7	J-422
J-424	4,523	TRUE	Passed	500	4,524	30	42.2	J-51
J-425	3,891	TRUE	Passed	500	3,892	30	42.8	J-51

J-426	8,928	TRUE	Passed	500	8,929	30	23.5	J-425
J-427	7,362	TRUE	Passed	500	7,363	30	34	J-424
J-428	8,701	TRUE	Passed	500	8,702	30	34.7	J-423
J-429	8,680	TRUE	Passed	500	8,681	30	34.7	J-428
J-430	3,746	TRUE	Passed	500	3,747	30	43	J-51
J-431	6,838	TRUE	Passed	500	6,839	30	30.9	J-432
J-432	2,184	TRUE	Passed	500	2,185	30	44.3	J-51
J-433	3,377	TRUE	Passed	500	3,378	30	30	J-237
J-434	10,000	TRUE	Passed	500	10,001	61.8	45	J-51
J-435	10,000	TRUE	Passed	500	10,001	63.1	45	J-51
J-436	10,000	TRUE	Passed	500	10,001	59.7	44.8	J-51
J-437	8,324	TRUE	Passed	500	8,325	30	44.5	J-51
J-439	6,582	TRUE	Passed	500	6,583	30	31.7	J-719
J-440	6,473	TRUE	Passed	500	6,474	30	32.1	J-1780
J-442	7,526	TRUE	Passed	500	7,527	30	27.5	J-443
J-443	2,062	TRUE	Passed	500	2,063	30	45.1	J-51
J-445	8,710	TRUE	Passed	500	8,711	30	30.8	J-455
J-447	5,980	TRUE	Passed	500	5,981	30	27.1	J-450
J-448	4,774	TRUE	Passed	500	4,775	30	39.8	J-450
-449	5,674	TRUE	Passed	500	5,675	30	23.5	J-450
I-450	3,875	TRUE	Passed	500	3,876	30	44.6	J-51
J-451	5,472	TRUE	Passed	500	5,473	30	35	J-452
J-452	4,984	TRUE	Passed	500	4,985	30	31.8	J-458
J-453	4,639	TRUE	Passed	500	4,640	30	39.8	J-454
I-454	4,465	TRUE	Passed	500	4,466	30	42.8	J-453
J-455	5,943	TRUE	Passed	500	5,944	30	38.1	J-454
J-456	5,994	TRUE	Passed	500	5,995	30	37.1	J-455
J-457	4,775	TRUE	Passed	500	4,776	30	39.9	J-452
I-458	2,780	TRUE	Passed	500	2,781	30	44.8	J-51
-459	2,707	TRUE	Passed	500	2,708	30	33.4	J-463
I-460	3,717	TRUE	Passed	500	3,718	30	33.5	J-459
J-461	1,536	TRUE	Passed	500	1,537	30	29.4	J-463
J-462	1,351	TRUE	Passed	500	1,352	30	37.4	J-463
J-463	1,236	TRUE	Passed	500	1,237	30	42.5	J-461
I-464	4,836	TRUE	Passed	500	4,837	30	38.1	J-457
J-465	4,989	TRUE	Passed	500	4,990	30	36.4	J-464
-466	5,282	TRUE	Passed	500	5,283	30	37.6	J-465
I-467	5,951	TRUE	Passed	500	5,952	30	29	J-460
J-468	5,878	TRUE	Passed	500	5,879	30	33.5	J-459
J-469	6,417	TRUE	Passed	500	6,418	30	35.4	J-474
J-470	7,639	TRUE	Passed	500	7,640	30	42	J-51
J-471	10,000	TRUE	Passed	500	10,001	36.7	33.7	J-556

J-472	6,516	TRUE	Passed	500	6,517	30	40.7	J-473
I-473	5,987	TRUE	Passed	500	5,988	30	36.6	J-475
-474	5,582	TRUE	Passed	500	5,583	30	43.6	J-51
-475	5,152	TRUE	Passed	500	5,153	30	40.9	J-478
-476	2,202	TRUE	Passed	500	2,203	30	41.3	J-477
-477	2,232	TRUE	Passed	500	2,233	30	39.1	J-476
-478	5,108	TRUE	Passed	500	5,109	30	39.4	J-475
-479	5,249	TRUE	Passed	500	5,250	30	39.6	J-478
-480	5,574	TRUE	Passed	500	5,575	30	37.7	J-479
-481	5,916	TRUE	Passed	500	5,917	30	35.7	J-480
-482	3,080	TRUE	Passed	500	3,081	30	25.8	J-485
-483	1,896	TRUE	Passed	500	1,897	30	28.8	J-485
484	1,743	TRUE	Passed	500	1,744	30	34.1	J-485
485	1,415	TRUE	Passed	500	1,416	30	45.1	J-51
-486	8,877	TRUE	Passed	500	8,878	30	41.1	1-FLOW
487	10,000	TRUE	Passed	500	10,001	38.4	43	J-51
489	10,000	TRUE	Passed	500	10,001	50.8	44.2	J-51
490	10,000	TRUE	Passed	500	10,001	36	38.5	J-437
491	10,000	TRUE	Passed	500	10,001	63	45.1	J-51
492	10,000	TRUE	Passed	500	10,001	48.3	43.4	J-51
493	9,463	TRUE	Passed	500	9,464	30	36.5	J-494
494	9,582	TRUE	Passed	500	9,583	30	35.2	J-493
497	10,000	TRUE	Passed	500	10,001	44.6	41.2	J-51
498	10,000	TRUE	Passed	500	10,001	47	42.6	J-51
499	10,000	TRUE	Passed	500	10,001	39.9	39	J-500
-500	6,429	TRUE	Passed	500	6,430	30	44	J-51
-501	10,000	TRUE	Passed	500	10,001	38.6	37.8	J-502
-502	4,732	TRUE	Passed	500	4,733	30	31.3	J-726
-504	3,021	TRUE	Passed	500	3,022	30	40.4	J-1334
505	3,720	TRUE	Passed	500	3,721	30	42.3	J-554
507	4,120	TRUE	Passed	500	4,121	30	33	J-508
508	4,119	TRUE	Passed	500	4,120	30	34	J-507
-509	4,841	TRUE	Passed	500	4,842	30	30.8	J-508
-510	5,490	TRUE	Passed	500	5,491	30	32.6	J-513
-511	2,209	TRUE	Passed	500	2,210	30	37.8	J-513
-513	2,251	TRUE	Passed	500	2,252	30	37.5	J-514
-514	2,543	TRUE	Passed	500	2,544	30	29.3	J-513
-516	4,806	TRUE	Passed	500	4,807	30	38	J-508
-517	5,252	TRUE	Passed	500	5,253	30	30.2	J-549
-518	4,776	TRUE	Passed	500	4,777	30	26.2	J-549
519	5,128	TRUE	Passed	500	5,129	30	29.7	J-508
-520	4,315	TRUE	Passed	500	4,316	30	32.5	J-521

J-521	3,551	TRUE	Passed	500	3,552	30	37	J-603
J-522	3,726	TRUE	Passed	500	3,727	30	27.5	J-603
J-523	4,064	TRUE	Passed	500	4,065	30	27.8	J-603
J-524	3,922	TRUE	Passed	500	3,923	30	29.7	J-521
J-525	4,363	TRUE	Passed	500	4,364	30	31.4	J-521
J-526	4,205	TRUE	Passed	500	4,206	30	33.5	J-521
J-527	4,292	TRUE	Passed	500	4,293	30	32.6	J-528
J-528	3,969	TRUE	Passed	500	3,970	30	35.4	J-610
J-529	4,184	TRUE	Passed	500	4,185	30	36.9	J-613
J-530	4,207	TRUE	Passed	500	4,208	30	38.1	J-596
J-531	2,700	TRUE	Passed	500	2,701	30	44.4	J-51
J-532	2,909	TRUE	Passed	500	2,910	30	44.4	J-51
J-533	7,597	TRUE	Passed	500	7,598	30	31.8	J-532
J-534	8,448	TRUE	Passed	500	8,449	30	29.7	J-535
J-535	7,863	TRUE	Passed	500	7,864	30	30.9	J-536
J-536	7,094	TRUE	Passed	500	7,095	30	36.5	J-535
J-537	8,045	TRUE	Passed	500	8,046	30	35.6	J-647
J-538	8,537	TRUE	Passed	500	8,538	30	36.5	J-648
J-539	9,672	TRUE	Passed	500	9,673	30	31	J-538
I-540	2,906	TRUE	Passed	500	2,907	30	42.4	J-648
I-541	3,142	TRUE	Passed	500	3,143	30	44.3	J-51
J-542	6,256	TRUE	Passed	500	6,257	30	40.9	J-644
I-543	8,426	TRUE	Passed	500	8,427	30	34.9	J-542
J-544	9,438	TRUE	Passed	500	9,439	30	33.7	J-546
J-545	5,219	TRUE	Passed	500	5,220	30	29.6	J-546
J-546	2,020	TRUE	Passed	500	2,021	30	44.9	J-51
J-547	4,897	TRUE	Passed	500	4,898	30	30.7	J-548
I-548	1,754	TRUE	Passed	500	1,755	30	45	J-51
I-549	1,603	TRUE	Passed	500	1,604	30	45	J-51
J-550	4,232	TRUE	Passed	500	4,233	30	29.7	J-552
l-551	2,824	TRUE	Passed	500	2,825	30	44.7	J-51
J-552	2,276	TRUE	Passed	500	2,277	30	44.9	J-51
J-553	3,756	TRUE	Passed	500	3,757	30	29.9	J-554
J-554	2,452	TRUE	Passed	500	2,453	30	45	J-51
J-555	10,000	TRUE	Passed	500	10,001	30.6	32.2	J-556
J-556	3,860	TRUE	Passed	500	3,861	30	44.2	J-51
I-557	3,423	TRUE	Passed	500	3,424	30	30.9	J-558
J-558	1,746	TRUE	Passed	500	1,748	30	44.9	J-51
J-559	10,000	TRUE	Passed	500	10,001	35.1	36.8	J-557
J-560	10,000	TRUE	Passed	500	10,001	43.9	41	J-51
J-561	3,550	TRUE	Passed	500	3,551	30	44.2	J-51
J-562	10,000	TRUE	Passed	500	10,001	30.6	34.4	J-556

J-563	2,727	TRUE	Passed	500	2,728	30	44.5	J-51
I-564	10,000	TRUE	Passed	500	10,001	30.7	33.8	J-563
-565	10,000	TRUE	Passed	500	10,001	33.6	37.4	J-556
-566	7,719	TRUE	Passed	500	7,720	30	41	J-51
-567	9,586	TRUE	Passed	500	9,587	30	36.4	J-578
-568	8,476	TRUE	Passed	500	8,477	30	37.1	J-574
-569	7,048	TRUE	Passed	500	7,049	30	37.8	J-570
-570	6,433	TRUE	Passed	500	6,434	30	41.8	J-51
-571	6,828	TRUE	Passed	500	6,829	30	38.9	J-574
-572	8,236	TRUE	Passed	500	8,237	30	19.6	J-574
-573	4,625	TRUE	Passed	500	4,626	30	43.1	J-51
·574	7,280	TRUE	Passed	500	7,281	30	33	J-571
-576	10,000	TRUE	Passed	500	10,001	31.3	34.5	J-568
·577	10,000	TRUE	Passed	500	10,001	31	33.6	J-578
·578	3,040	TRUE	Passed	500	3,041	30	44.2	J-51
-579	4,041	TRUE	Passed	500	4,042	30	43.7	J-51
-580	4,120	TRUE	Passed	500	4,121	30	43.7	J-51
-581	3,895	TRUE	Passed	500	3,896	30	43.7	J-51
582	6,090	TRUE	Passed	500	6,091	30	38.8	J-581
583	6,586	TRUE	Passed	500	6,587	30	41.3	J-51
584	7,397	TRUE	Passed	500	7,398	30	36.4	J-585
-585	5,725	TRUE	Passed	500	5,726	30	38.2	J-587
-587	5,319	TRUE	Passed	500	5,320	30	37.8	J-588
-588	4,970	TRUE	Passed	500	4,971	30	42.6	J-587
-589	5,140	TRUE	Passed	500	5,141	30	38.3	J-588
-590	6,506	TRUE	Passed	500	6,508	30	28.6	J-591
-591	5,967	TRUE	Passed	500	5,968	30	35.8	J-590
-592	5,697	TRUE	Passed	500	5,698	30	35.5	J-596
-593	4,202	TRUE	Passed	500	4,203	30	35.8	J-596
-594	4,097	TRUE	Passed	500	4,098	30	26	J-596
595	3,330	TRUE	Passed	500	3,331	30	27	J-596
596	2,795	TRUE	Passed	500	2,796	30	34.9	J-597
-597	2,906	TRUE	Passed	500	2,907	30	31.3	J-596
-598	2,990	TRUE	Passed	500	2,991	30	31.9	J-597
-599	3,177	TRUE	Passed	500	3,178	30	31.2	J-1549
601	2,801	TRUE	Passed	500	2,802	30	34.4	J-1549
-602	4,018	TRUE	Passed	500	4,019	30	31.7	J-1549
-603	2,135	TRUE	Passed	500	2,136	30	44.7	J-51
-604	4,030	TRUE	Passed	500	4,031	30	30.2	J-596
-605	2,972	TRUE	Passed	500	2,973	30	30.8	J-596
-606	3,075	TRUE	Passed	500	3,076	30	29.5	J-596
-607	3,882	TRUE	Passed	500	3,883	30	31	J-596

J-608	4,008	TRUE	Passed	500	4,009	30	31.1	J-596
J-609	4,008	TRUE	Passed	500	4,009	30	31.1	J-596
J-610	3,979	TRUE	Passed	500	3,980	30	34	J-596
J-610 J-611	4,281	TRUE	Passed	500	4,282	30	28.4	J-596
J-612	3,781	TRUE	Passed	500	3,782	30	35.6	J-596
	3,781	TRUE		500	3,782	30	38.5	J-596
J-613		TRUE	Passed	500		30		J-596 J-596
J-614	5,888		Passed		5,889		34.2	
J-615	6,167	TRUE	Passed	500	6,168	30	30.4	J-614
J-616	6,301	TRUE	Passed	500	6,302	30	32.2	J-615
J-617	6,222	TRUE	Passed	500	6,223	30	40.3	3-FLOW
J-620	7,153	TRUE	Passed	500	7,154	30	28.7	J-617
J-621	8,706	TRUE	Passed	500	8,707	30	28.7	J-617
J-622	8,319	TRUE	Passed	500	8,320	30	32.9	J-626
J-623	8,555	TRUE	Passed	500	8,556	30	34	J-617
J-625	9,435	TRUE	Passed	500	9,437	30	28	J-617
J-626	8,133	TRUE	Passed	500	8,134	30	33.1	J-627
J-627	8,049	TRUE	Passed	500	8,050	30	34.7	J-628
J-628	8,236	TRUE	Passed	500	8,237	30	33.4	J-627
J-629	8,712	TRUE	Passed	500	8,714	30	31.3	J-628
J-630	8,909	TRUE	Passed	500	8,910	30	32	J-629
J-631	8,920	TRUE	Passed	500	8,921	30	36	J-630
J-632	4,856	TRUE	Passed	500	4,857	30	30	J-633
J-633	2,921	TRUE	Passed	500	2,922	30	44.1	J-51
J-634	7,471	TRUE	Passed	500	7,472	30	30.1	J-633
J-636	9,506	TRUE	Passed	500	9,507	30	33.3	J-631
J-637	3,559	TRUE	Passed	500	3,560	30	43.8	J-51
J-638	9,900	TRUE	Passed	500	9,901	30	33.3	J-539
J-639	10,000	TRUE	Passed	500	10,001	34	36.5	J-640
J-640	10,000	TRUE	Passed	500	10,001	30.2	35.4	J-641
J-641	5,189	TRUE	Passed	500	5,190	30	42.7	J-51
J-642	3,794	TRUE	Passed	500	3,795	30	43.8	J-51
J-643	2,909	TRUE	Passed	500	2,910	30	44.4	J-51
J-644	4,989	TRUE	Passed	500	4,990	30	37.3	J-645
J-645	2,530	TRUE	Passed	500	2,531	30	44.6	J-51
J-646	6,886	TRUE	Passed	500	6,887	30	38.8	J-648
J-647	4,521	TRUE	Passed	500	4,522	30	43.4	J-51
J-648	2,754	TRUE	Passed	500	2,755	30	44.4	J-51
J-649	3,472	TRUE	Passed	500	3,473	30	29.8	J-650
J-650	1,755	TRUE	Passed	500	1,756	30	44.8	J-51
J-651	7,336	TRUE		500	7,337	30	29.4	J-652
J-651	2,864	TRUE	Passed	500	2,865	30	44.4	J-652 J-51
			Passed					
J-655	6,844	TRUE	Passed	500	6,846	30	31.6	J-656

J-656	3,347	TRUE	Passed	500	3,348	30	44.1	J-51
J-657	10,000	TRUE	Passed	500	10,001	32.1	35.6	J-128
J-659	10,000	TRUE	Passed	500	10,001	31.5	31.7	J-568
J-659	10,000	TRUE	Passed	500	10,001	36.6	35.6	J-128
J-660	10,000	TRUE	Passed	500	10,001	37.9	35.4	J-128
J-661	798	TRUE	Passed	500	803	30	45.1	J-51
J-662	10,000	TRUE	Passed	500	10,001	51.5	34.2	J-128
J-663	10,000	TRUE	Passed	500	10,001	42.6	35.1	J-128
J-664	10,000	TRUE	Passed	500	10,001	30.5	36.5	J-128
J-665	10,000	TRUE	Passed	500	10,001	32.9	36.8	J-639
J-666	10,000	TRUE	Passed	500	10,001	40.9	38.2	J-51
J-667	9,277	TRUE	Passed	500	9,278	30	34.4	J-51
J-668	10,000	TRUE	Passed	500	10,001	47.6	40.3	J-51
J-669	4,031	TRUE	Passed	500	4,032	30	40.7	J-21
J-670	4,582	TRUE	Passed	500	4,583	30	33.8	J-21
J-673	10,000	TRUE	Passed	500	10,001	37	36.3	J-128
J-674	4,065	TRUE	Passed	500	4,066	30	43.4	J-51
J-675	3,792	TRUE	Passed	500	3,793	30	43	J-51
J-676	5,325	TRUE	Passed	500	5,326	30	31	J-675
J-677	2,321	TRUE	Passed	500	2,322	30	29.3	J-678
J-678	1,734	TRUE	Passed	500	1,735	30	44.6	J-51
J-680	2,920	TRUE	Passed	500	2,920	30	24.2	J-128
J-682	2,567	TRUE	Passed	500	2,567	30	24.8	J-128
J-689	2,303	TRUE	Passed	500	2,328	30	44.1	J-51
J-696	2,670	TRUE	Passed	500	2,675	30	29.2	J-51
J-697	2,598	TRUE	Passed	500	2,598	30	22.5	J-128
J-719	4,427	TRUE	Passed	500	4,427	30	39.7	J-724
J-724	4,265	TRUE	Passed	500	4,265	30	34.1	J-1780
J-726	3,959	TRUE	Passed	500	3,959	30	31.6	J-504
J-727	7,584	TRUE	Passed	500	7,584	30	44.7	J-51
J-731	5,506	TRUE	Passed	500	5,507	30	39.3	J-51
J-904	6,508	TRUE	Passed	500	6,509	30	37.9	J-51
J-1031	8,911	TRUE	Passed	500	8,912	30	34.5	J-128
J-1082	10,000	TRUE	Passed	500	10,001	57.5	33.8	J-128
J-1184	9,001	TRUE	Passed	500	9,002	30	37.6	J-439
J-1201	7,844	TRUE	Passed	500	7,845	30	26.1	J-455
J-1296	10,000	TRUE	Passed	500	10,001	42.5	43.3	J-51
J-1334	3,683	TRUE	Passed	500	3,684	30	29.9	J-504
J-1340	3,788	TRUE	Passed	500	3,789	30	39.4	J-508
J-1549	2,827	TRUE	Passed	500	2,828	30	35.3	J-601
J-1642	8,335	TRUE	Passed	500	8,336	30	39.2	J-51
J-1704	10,000	TRUE	Passed	500	10,001	37.4	34.7	J-568

J-1780	4,346	TRUE	Passed	500	4,346	30	32.4	J-724
J-1806	2,252	TRUE	Passed	500	2,252	30	32.6	J-128
	o 1: Hillcrest Wate			300	2,232	30	32.0	3 120
1-FLOW	8,628	TRUE	Passed	500	8,629	30	30.8	1-RES
1-RES	3,068	TRUE		500	3,071	30	44.7	J-51
2-FLOW	7,372	TRUE	Passed Passed	500	7,373	30	30	2-RES
2-PLOVV 2-RES	4,072	TRUE		500	4,073	30	44.7	J-51
			Passed					
3-FLOW	2,802	TRUE	Passed	500	2,803	30	30.9	3-RES
3-RES	2,395	TRUE	Passed	500	2,396	30	39.7	3-FLOW
4-FLOW	3,288	TRUE	Passed	500	3,289	30	30.7	4-RES
4-RES	2,386	TRUE	Passed	500	2,387	30	42.5	4-FLOW
5-FLOW	2,741	TRUE	Passed	500	2,742	30	27.7	J-51
5-RES	1,670	TRUE	Passed	500	1,671	30	38	J-51
6-FLOW	1,955	TRUE	Passed	500	1,956	30	30.8	6-RES
6-RES	1,272	TRUE	Passed	500	1,273	30	44.8	J-51
7-FLOW	2,116	TRUE	Passed	500	2,117	30	29.1	J-196
7-RES	1,899	TRUE	Passed	500	1,900	30	34.4	J-196
J-1	5,017	TRUE	Passed	500	5,018	30	35.1	J-94
J-2	7,002	TRUE	Passed	500	7,003	30	33.3	J-95
J-3	7,676	TRUE	Passed	500	7,677	30	35.1	J-51
J-11	8,121	TRUE	Passed	500	8,123	30	30.4	J-51
J-12	7,813	TRUE	Passed	500	7,814	30	30.5	J-51
J-13	4,503	TRUE	Passed	500	4,504	30	34.6	J-51
J-14	3,690	TRUE	Passed	500	3,691	30	40.7	J-51
J-15	7,257	TRUE	Passed	500	7,258	30	32.4	J-14
J-17	5,485	TRUE	Passed	500	5,486	30	28.1	J-51
J-18	10,000	TRUE	Passed	500	10,001	58.5	42.3	J-51
J-19	9,085	TRUE	Passed	500	9,086	30	29.4	J-51
J-20	4,038	TRUE	Passed	500	4,039	30	33.6	J-23
J-21	4,134	TRUE	Passed	500	4,135	30	35.6	J-20
J-22	1,995	TRUE	Passed	500	1,996	30	43.9	J-51
J-23	3,660	TRUE	Passed	500	3,661	30	30.2	J-22
J-24	1,861	TRUE	Passed	500	1,862	30	44	J-51
J-25	3,236	TRUE	Passed	500	3,237	30	30.1	J-24
J-26	1,804	TRUE	Passed	500	1,805	30	43.9	J-51
J-27	3,352	TRUE	Passed	500	3,353	30	29.2	J-26
J-28	2,085	TRUE	Passed	500	2,086	30	43.4	J-51
J-29	3,652	TRUE	Passed	500	3,653	30	29.5	J-28
J-30	6,160	TRUE	Passed	500	6,161	30	29.6	J-51
J-31	2,457	TRUE	Passed	500	2,458	30	33.5	J-33
J-33	2,659	TRUE	Passed	500	2,660	30	31	J-31
J-34	2,567	TRUE	Passed	500	2,569	30	37.1	J-51
J J .	2,307	11.01	1 43364	300	2,303	30	37.1	

J-35	3,127	TRUE	Passed	500	3,128	30	28.5	J-34
J-36	4,031	TRUE	Passed	500	4,032	30	27	J-51
J-37	4,549	TRUE	Passed	500	4,550	30	26.2	J-51
J-38	3,970	TRUE	Passed	500	3,972	30	25.9	J-51
J-39	3,815	TRUE	Passed	500	3,816	30	30.1	J-51
J-40	3,748	TRUE	Passed	500	3,749	30	30.3	J-51
J-41	4,052	TRUE	Passed	500	4,053	30	24.6	J-51
J-42	2,590	TRUE	Passed	500	2,591	30	32.1	J-51
J-43	3,264	TRUE	Passed	500	3,265	30	25.3	J-51
J-44	1,939	TRUE	Passed	500	1,940	30	37.4	J-51
J-45	2,053	TRUE	Passed	500	2,054	30	35.7	J-46
J-46	2,496	TRUE	Passed	500	2,497	30	30.3	J-45
J-47	1,774	TRUE	Passed	500	1,775	30	38	J-48
J-48	2,292	TRUE	Passed	500	2,293	30	27.2	J-47
J-49	2,671	TRUE	Passed	500	2,672	30	30.5	J-50
J-50	2,162	TRUE	Passed	500	2,163	30	36.5	J-51
J-51	927	TRUE	Passed	500	928	30	43.2	J-55
J-52	2,102	TRUE	Passed	500	2,103	30	26.6	J-51
J-53	1,808	TRUE	Passed	500	1,809	30	32	J-54
J-54	1,931	TRUE	Passed	500	1,932	30	29.5	J-53
J-55	1,611	TRUE	Passed	500	1,612	30	34	J-56
J-56	1,855	TRUE	Passed	500	1,856	30	28.7	J-55
J-57	1,793	TRUE	Passed	500	1,794	30	37.3	J-51
J-58	1,979	TRUE	Passed	500	1,980	30	31.3	J-55
J-59	2,183	TRUE	Passed	500	2,184	30	28.4	J-55
J-60	2,026	TRUE	Passed	500	2,027	30	28.6	J-55
J-61	2,862	TRUE	Passed	500	2,863	30	26.7	J-51
J-64	2,739	TRUE	Passed	500	2,740	30	26.6	J-51
J-65	2,860	TRUE	Passed	500	2,861	30	27.5	J-51
J-66	3,662	TRUE	Passed	500	3,663	30	23.5	J-51
J-67	3,207	TRUE	Passed	500	3,208	30	28.1	J-51
J-68	3,483	TRUE	Passed	500	3,484	30	25.6	J-51
J-69	2,214	TRUE	Passed	500	2,215	30	36.9	J-51
J-70	2,965	TRUE	Passed	500	2,966	30	31.2	J-51
J-71	2,687	TRUE	Passed	500	2,688	30	30.9	J-72
J-72	2,621	TRUE	Passed	500	2,622	30	33.5	J-71
J-73	1,105	TRUE	Passed	500	1,106	30	43	J-51
J-74	2,550	TRUE	Passed	500	2,551	30	31.1	J-73
J-75	3,779	TRUE	Passed	500	3,780	30	25.8	J-74
J-76	3,521	TRUE	Passed	500	3,522	30	27.1	J-51
J-77	3,254	TRUE	Passed	500	3,255	30	27.7	J-51
J-78	4,042	TRUE	Passed	500	4,043	30	23.5	J-51

J-79	3,328	TRUE	Passed	500	3,329	30	30	J-51
J-80	3,641	TRUE	Passed	500	3,642	30	28.1	J-51
J-81	3,786	TRUE	Passed	500	3,787	30	24.3	J-51
J-82	4,641	TRUE	Passed	500	4,642	30	22.3	J-51
J-83	4,700	TRUE	Passed	500	4,701	30	22.1	J-51
J-84	4,686	TRUE	Passed	500	4,687	30	21.9	J-51
J-85	4,259	TRUE	Passed	500	4,260	30	23.6	J-51
J-86	4,041	TRUE	Passed	500	4,042	30	25	J-51
J-87	3,727	TRUE	Passed	500	3,728	30	29.1	J-51
J-88	3,308	TRUE	Passed	500	3,309	30	31.7	J-51
J-89	3,898	TRUE	Passed	500	3,899	30	25.6	J-51
J-90	3,121	TRUE	Passed	500	3,122	30	29.3	J-91
J-91	1,602	TRUE	Passed	500	1,603	30	41.2	J-51
J-92	5,508	TRUE	Passed	500	5,509	30	30.5	J-94
J-93	3,687	TRUE	Passed	500	3,688	30	24.3	J-51
J-94	5,496	TRUE	Passed	500	5,497	30	30.4	J-92
J-95	6,560	TRUE	Passed	500	6,561	30	31.3	J-210
J-96	5,483	TRUE	Passed	500	5,485	30	31.6	J-209
J-97	5,549	TRUE	Passed	500	5,550	30	30.4	J-92
J-98	5,713	TRUE	Passed	500	5,714	30	30.3	J-97
J-99	2,904	TRUE	Passed	500	2,905	30	35.3	J-128
J-100	3,750	TRUE	Passed	500	3,751	30	27.2	J-128
J-101	2,672	TRUE	Passed	500	2,673	30	36.5	J-128
J-102	3,789	TRUE	Passed	500	3,790	30	25.5	J-128
J-103	3,240	TRUE	Passed	500	3,241	30	23	J-128
J-104	2,954	TRUE	Passed	500	2,955	30	26.6	J-128
J-105	3,051	TRUE	Passed	500	3,052	30	24.6	J-128
J-106	2,921	TRUE	Passed	500	2,922	30	26.4	J-128
J-107	3,079	TRUE	Passed	500	3,080	30	24.9	J-128
J-108	2,998	TRUE	Passed	500	2,999	30	25.1	J-128
J-109	3,077	TRUE	Passed	500	3,078	30	24	J-128
J-110	3,069	TRUE	Passed	500	3,070	30	25.3	J-128
J-111	2,820	TRUE	Passed	500	2,821	30	28.9	J-128
J-112	2,584	TRUE	Passed	500	2,585	30	32.3	J-128
J-113	2,317	TRUE	Passed	500	2,318	30	34.9	J-128
J-114	2,213	TRUE	Passed	500	2,214	30	34.4	J-128
J-115	2,485	TRUE	Passed	500	2,486	30	31.1	J-128
J-116	2,086	TRUE	Passed	500	2,087	30	34.6	J-117
J-117	2,314	TRUE	Passed	500	2,315	30	31.5	J-116
J-118	1,867	TRUE	Passed	500	1,868	30	40.6	J-51
J-118	2,111	TRUE	Passed	500	2,112	30	33.5	J-128
J-119	2,334	TRUE	Passed	500	2,335	30	30.3	J-118

J-121	1,803	TDLIF	Dossad	500	1 904	20	34.9	J-128
J-121 J-122	2,090	TRUE TRUE	Passed Passed	500	1,804 2,091	30	30.5	J-128 J-128
J-122 J-124	1,922	TRUE		500	1,923	30	29.2	J-128
J-124 J-125	1,503	TRUE	Passed Passed	500	1,504	30	29.5	J-128 J-180
				500				
J-126	1,847	TRUE	Passed		1,848	30	29.3	J-128
J-127	1,689	TRUE	Passed	500	1,690	30	28.6	J-128
J-128	994	TRUE	Passed	500	995	30	42.9	J-129
J-129	1,667	TRUE	Passed	500	1,668	30	27.9	J-128
J-130	1,758	TRUE	Passed	500	1,759	30	29.9	J-128
J-133	1,907	TRUE	Passed	500	1,908	30	29.5	J-128
J-134	1,737	TRUE	Passed	500	1,738	30	32.8	J-135
J-135	1,869	TRUE	Passed	500	1,870	30	29	J-134
J-136	2,124	TRUE	Passed	500	2,125	30	26.6	J-134
J-137	2,229	TRUE	Passed	500	2,230	30	26.1	J-128
J-138	2,427	TRUE	Passed	500	2,428	30	24.2	J-134
J-139	2,882	TRUE	Passed	500	2,883	30	31.5	J-128
J-140	2,399	TRUE	Passed	500	2,400	30	32.8	J-141
J-141	2,544	TRUE	Passed	500	2,545	30	30.5	J-140
J-142	3,127	TRUE	Passed	500	3,128	30	24.6	J-128
J-143	3,360	TRUE	Passed	500	3,361	30	21	J-128
J-144	3,111	TRUE	Passed	500	3,112	30	22.5	J-128
J-145	2,518	TRUE	Passed	500	2,519	30	30.9	J-128
J-146	3,228	TRUE	Passed	500	3,229	30	21.6	J-128
J-147	3,199	TRUE	Passed	500	3,200	30	22.3	J-128
J-148	3,465	TRUE	Passed	500	3,466	30	20.1	J-128
J-149	3,894	TRUE	Passed	500	3,895	30	23	J-128
J-150	3,931	TRUE	Passed	500	3,932	30	26.5	J-128
J-151	3,587	TRUE	Passed	500	3,588	30	25.2	J-128
J-152	2,371	TRUE	Passed	500	2,373	30	41	J-128
J-153	4,258	TRUE	Passed	500	4,259	30	25.7	J-128
J-154	4,148	TRUE	Passed	500	4,149	30	27.2	J-128
J-155	3,071	TRUE	Passed	500	3,072	30	31	J-196
J-156	3,083	TRUE	Passed	500	3,084	30	37.9	J-196
J-157	5,203	TRUE	Passed	500	5,204	30	25.9	J-128
J-158	3,034	TRUE	Passed	500	3,035	30	37.4	J-128
J-159	4,676	TRUE	Passed	500	4,677	30	23.9	J-128
J-160	4,264	TRUE	Passed	500	4,265	30	25.8	J-128
J-161	4,045	TRUE	Passed	500	4,046	30	27.2	J-128
J-162	4,187	TRUE	Passed	500	4,188	30	26.3	J-128
J-163	3,254	TRUE	Passed	500	3,255	30	33.6	J-169
J-164	3,593	TRUE	Passed	500	3,594	30	30.3	J-168
J-165	4,040	TRUE	Passed	500	4,041	30	26.5	J-108 J-128

J-166	4,091	TRUE	Passed	500	4,092	30	18.8	J-128
J-167	2,173	TRUE	Passed	500	2,174	30	36.4	J-168
J-168	2,636	TRUE	Passed	500	2,637	30	30.7	J-167
J-169	3,129	TRUE	Passed	500	3,130	30	32.5	J-168
J-170	3,529	TRUE	Passed	500	3,530	30	25.6	J-128
J-171	2,099	TRUE	Passed	500	2,100	30	39.8	J-128
J-171	2,902	TRUE	Passed	500	2,903	30	23.2	J-128
J-172 J-173	2,506	TRUE	Passed	500	2,507	30	28.9	J-128
J-173	2,574	TRUE	Passed	500	2,575	30	27.7	J-128
J-175	2,823	TRUE	Passed	500	2,824	30	23.1	J-128
J-176	2,494	TRUE	Passed	500	2,495	30	27.6	J-179
J-170 J-177	1,904	TRUE	Passed	500	1,905	30	35.5	J-179
J-177	2,234	TRUE	Passed	500	2,235	30	28.7	J-179
J-178 J-179	1,048	TRUE	Passed	500	1,049	30	44.7	J-128
J-179 J-180	1,070	TRUE	Passed	500	1,043	30	40.1	J-128
J-180 J-181	2,430	TRUE	Passed	500	2,431	30	28.9	J-179
J-181 J-183	8,144	TRUE	Passed	500	8,145	30	3.8	J-689
J-184	744	TRUE	Passed	500	745	30	45.1	J-51
J-185		TRUE		500	6,629	30	23.6	J-186
J-185	6,628 4,775	TRUE	Passed Passed	500	4,776	30	39.3	J-186 J-128
J-187	5,155	TRUE	Passed	500	5,156	30	23.7	J-128
J-187 J-188	3,905	TRUE		500	3,906	30	41.8	J-128
J-188	6,635	TRUE	Passed	500	6,636	30	24.5	J-128
J-189 J-190	6,683	TRUE	Passed	500	6,685	30	24.5	J-128 J-128
			Passed		-			
J-191 J-192	4,221	TRUE	Passed	500	4,222	30	31.7	J-192 J-196
	3,621	TRUE	Passed	500	3,622		38.5	
J-193	3,524	TRUE	Passed	500	3,525	30	31	J-196
J-194	2,968	TRUE	Passed	500	2,969	30	26.7	J-196
J-195	2,317	TRUE	Passed	500	2,318	30	28	J-196
J-196	1,914	TRUE	Passed	500	1,915	30	34	J-197
J-197	2,074	TRUE	Passed	500	2,075	30	29.1	J-196
J-200	4,621	TRUE	Passed	500	4,622	30	30	J-201
J-201	4,089	TRUE	Passed	500	4,090	30	35.5	J-200
J-202	4,477	TRUE	Passed	500	4,478	30	31.2	J-206
J-203	4,451	TRUE	Passed	500	4,452	30	33.4	J-204
J-204	3,465	TRUE	Passed	500	3,466	30	30.5	J-205
J-205	2,832	TRUE	Passed	500	2,833	30	38.8	J-204
J-206	3,776	TRUE	Passed	500	3,777	30	31.8	J-207
J-207	3,140	TRUE	Passed	500	3,141	30	38	J-206
J-208	5,016	TRUE	Passed	500	5,017	30	29.9	J-209
J-209	3,838	TRUE	Passed	500	3,839	30	40.7	J-208
J-210	6,487	TRUE	Passed	500	6,488	30	32.3	J-95

J-211	5,633	TRUE	Passed	500	5,634	30	32.3	J-212
J-212	4,518	TRUE	Passed	500	4,519	30	30.4	J-213
J-213	3,483	TRUE	Passed	500	3,484	30	39.8	J-215
J-214	2,723	TRUE	Passed	500	2,724	30	29.5	J-215
J-215	2,271	TRUE	Passed	500	2,272	30	38.2	J-214
J-216	798	TRUE	Passed	500	799	30	45	J-51
J-217	3,281	TRUE	Passed	500	3,282	30	29.5	J-215
J-218	1,836	TRUE	Passed	500	1,837	30	44.3	J-51
J-219	3,991	TRUE	Passed	500	3,992	30	30	J-215
J-220	1,917	TRUE	Passed	500	1,918	30	44.3	J-51
J-221	2,305	TRUE	Passed	500	2,306	30	43.9	J-51
J-222	4,422	TRUE	Passed	500	4,423	30	33	J-221
J-223	4,868	TRUE	Passed	500	4,869	30	32	J-222
J-224	5,695	TRUE	Passed	500	5,696	30	36.9	J-223
J-225	5,909	TRUE	Passed	500	5,910	30	38.7	J-224
J-226	7,544	TRUE	Passed	500	7,545	30	32.6	J-334
J-227	6,585	TRUE	Passed	500	6,586	30	25.3	J-191
J-228	6,728	TRUE	Passed	500	6,729	30	26.8	J-128
J-229	6,835	TRUE	Passed	500	6,836	30	26.6	J-128
J-230	3,399	TRUE	Passed	500	3,401	30	42.9	J-128
J-231	7,049	TRUE	Passed	500	7,050	30	26.6	J-128
J-232	7,553	TRUE	Passed	500	7,554	30	25.3	J-128
J-233	9,230	TRUE	Passed	500	9,231	30	17.6	J-128
J-234	9,978	TRUE	Passed	500	9,979	30	5.8	J-689
J-235	10,000	TRUE	Passed	500	10,001	46	16.2	J-128
J-236	2,832	TRUE	Passed	500	2,834	30	28.7	J-237
J-237	2,225	TRUE	Passed	500	2,226	30	41.3	J-236
J-238	1,127	TRUE	Passed	500	1,128	30	44.8	J-51
J-239	9,956	TRUE	Passed	500	9,957	30	29.6	J-51
J-240	9,687	TRUE	Passed	500	9,688	30	30.3	J-51
J-241	8,021	TRUE	Passed	500	8,022	30	35.2	J-51
J-242	7,816	TRUE	Passed	500	7,817	30	35.5	J-51
J-243	9,330	TRUE	Passed	500	9,331	30	33.8	J-51
J-244	5,196	TRUE	Passed	500	5,197	30	41	J-51
J-245	9,580	TRUE	Passed	500	9,581	30	34.5	J-51
J-246	8,864	TRUE	Passed	500	8,865	30	37.8	J-51
J-247	10,000	TRUE	Passed	500	10,001	40	35.2	J-51
J-248	7,091	TRUE	Passed	500	7,092	30	33.2	J-318
J-249	2,424	TRUE	Passed	500	2,425	30	29.1	J-250
J-250	1,326	TRUE	Passed	500	1,327	30	44.8	J-51
J-251	7,308	TRUE	Passed	500	7,309	30	37.7	J-51
J-252	7,253	TRUE	Passed	500	7,254	30	38.7	J-51

J-253	3,136	TRUE	Passed	500	3,137	30	43.7	J-51
J-254	7,780	TRUE	Passed	500	7,781	30	26.5	J-324
-255	7,135	TRUE	Passed	500	7,136	30	36.1	J-51
-256	4,153	TRUE	Passed	500	4,154	30	41.7	J-51
-257	7,103	TRUE	Passed	500	7,104	30	36.5	J-51
-258	7,064	TRUE	Passed	500	7,065	30	36.4	J-51
-259	4,413	TRUE	Passed	500	4,414	30	41.3	J-51
-260	6,262	TRUE	Passed	500	6,263	30	33.7	J-731
-262	7,159	TRUE	Passed	500	7,160	30	35.6	J-51
-263	4,228	TRUE	Passed	500	4,229	30	40	J-266
-264	7,631	TRUE	Passed	500	7,632	30	34.1	J-51
-265	3,969	TRUE	Passed	500	3,970	30	29.5	J-266
-266	2,788	TRUE	Passed	500	2,789	30	43.3	J-51
-267	6,047	TRUE	Passed	500	6,049	30	32.6	J-268
-268	5,308	TRUE	Passed	500	5,309	30	32.4	4-FLOW
-269	6,197	TRUE	Passed	500	6,198	30	31.8	J-267
-270	7,533	TRUE	Passed	500	7,534	30	32.8	J-272
-271	6,451	TRUE	Passed	500	6,453	30	35.2	J-260
-272	6,447	TRUE	Passed	500	6,448	30	30.4	J-276
-273	4,918	TRUE	Passed	500	4,919	30	30.1	J-274
-274	4,540	TRUE	Passed	500	4,541	30	34.2	J-273
-275	6,094	TRUE	Passed	500	6,095	30	32.3	J-278
-276	5,881	TRUE	Passed	500	5,882	30	35.2	J-275
-277	5,909	TRUE	Passed	500	5,910	30	28.3	J-278
-278	4,295	TRUE	Passed	500	4,296	30	38.4	J-283
-279	3,864	TRUE	Passed	500	3,865	30	34	J-281
-280	1,439	TRUE	Passed	500	1,440	30	44.7	J-51
-281	3,170	TRUE	Passed	500	3,171	30	32.8	J-280
-282	3,018	TRUE	Passed	500	3,019	30	29.9	J-283
-283	2,395	TRUE	Passed	500	2,396	30	30.2	J-285
284	1,381	TRUE	Passed	500	1,382	30	44.8	J-51
-285	2,027	TRUE	Passed	500	2,028	30	37.7	J-283
-286	4,282	TRUE	Passed	500	4,283	30	27.1	J-292
-287	3,487	TRUE	Passed	500	3,488	30	27.4	J-292
-288	2,044	TRUE	Passed	500	2,045	30	35.3	J-290
289	2,306	TRUE	Passed	500	2,307	30	29.1	J-290
290	2,123	TRUE	Passed	500	2,124	30	34.4	J-289
-291	1,148	TRUE	Passed	500	1,149	30	44.9	J-51
-292	2,488	TRUE	Passed	500	2,489	30	33.9	6-FLOW
-294	1,385	TRUE	Passed	500	1,386	30	44.3	6-FLOW
-296	6,057	TRUE	Passed	500	6,058	30	30.1	J-292
-297	6,213	TRUE	Passed	500	6,214	30	39.3	J-292

1 200	0.100	TDUE	Descard	F00	0.200	30	20.4	1.51
J-298	8,199	TRUE	Passed	500	8,200	30	36.1	J-51
J-299	9,132	TRUE	Passed	500	9,133	30	34	J-128
J-300	4,058	TRUE	Passed	500	4,059	30	29.9	J-301
J-301	3,275	TRUE	Passed	500	3,276	30	39.9	J-300
J-302	3,690	TRUE	Passed	500	3,691	30	30.6	J-303
J-303	3,039	TRUE	Passed	500	3,040	30	38.9	J-302
J-304	5,421	TRUE	Passed	500	5,422	30	36.1	J-302
J-305	5,640	TRUE	Passed	500	5,641	30	25.1	J-306
J-306	2,375	TRUE	Passed	500	2,376	30	44.1	J-51
J-307	7,596	TRUE	Passed	500	7,597	30	30	J-306
J-308	6,710	TRUE	Passed	500	6,711	30	39	J-51
J-309	3,578	TRUE	Passed	500	3,579	30	43	J-51
J-310	3,407	TRUE	Passed	500	3,408	30	43.1	J-51
J-311	3,875	TRUE	Passed	500	3,876	30	40.2	J-309
J-312	3,806	TRUE	Passed	500	3,807	30	42.7	J-51
J-313	4,303	TRUE	Passed	500	4,304	30	42.1	J-51
J-314	3,201	TRUE	Passed	500	3,202	30	43.3	J-51
J-315	2,586	TRUE	Passed	500	2,587	30	43.8	J-51
J-316	4,404	TRUE	Passed	500	4,405	30	41.7	J-51
J-317	3,261	TRUE	Passed	500	3,262	30	43.2	J-51
J-318	6,447	TRUE	Passed	500	6,448	30	34	J-319
J-319	6,156	TRUE	Passed	500	6,158	30	34.8	J-321
J-320	6,193	TRUE	Passed	500	6,194	30	34.3	J-319
J-321	3,227	TRUE	Passed	500	3,228	30	43.5	J-51
J-322	3,435	TRUE	Passed	500	3,436	30	41.7	J-323
J-323	3,034	TRUE	Passed	500	3,035	30	42.2	J-250
J-324	4,155	TRUE	Passed	500	4,156	30	41.9	J-51
J-325	10,000	TRUE	Passed	500	10,001	38.5	29.3	J-128
J-326	10,000	TRUE	Passed	500	10,001	39	29.3	J-128
J-327	6,743	TRUE	Passed	500	6,744	30	38	J-51
J-328	10,000	TRUE	Passed	500	10,001	39.8	29.4	J-128
J-329	9,880	TRUE	Passed	500	9,881	30	28.9	J-128
J-330	1,707	TRUE	Passed	500	1,708	30	44.5	J-51
J-331	5,827	TRUE	Passed	500	5,828	30	31.6	J-330
J-332	6,112	TRUE	Passed	500	6,113	30	39.3	J-51
J-333	4,441	TRUE	Passed	500	4,442	30	41.7	J-51
J-334	7,569	TRUE	Passed	500	7,570	30	33.4	J-226
J-334	6,441	TRUE	Passed	500	6,442	30	38.1	J-51
J-338	7,085	TRUE	Passed	500	7,086	30	35.8	J-339
J-339	6,124	TRUE	Passed	500	6,125	30	35.7	J-215
J-339 J-340	10,000	TRUE	Passed	500	10,001	32.9	29.5	J-215 J-128
				500	7,297	32.9		
J-341	7,296	TRUE	Passed	500	7,297	30	36	J-306

J-342	3,929	TRUE	Passed	500	3,930	30	42.6	J-51
J-343	6,998	TRUE	Passed	500	6,999	30	38.3	J-51
J-345	4,730	TRUE	Passed	500	4,731	30	41.7	J-51
J-346	3,554	TRUE	Passed	500	3,555	30	43	J-51
J-347	10,000	TRUE	Passed	500	10,001	46.3	29.6	J-128
J-348	10,000	TRUE	Passed	500	10,001	48	29.5	J-128
J-349	10,000	TRUE	Passed	500	10,001	43.1	29.5	J-128
J-350	10,000	TRUE	Passed	500	10,001	41.2	29.4	J-128
J-351	8,246	TRUE	Passed	500	8,247	30	35	J-128
J-352	8,502	TRUE	Passed	500	8,503	30	34.2	J-128
J-353	9,046	TRUE	Passed	500	9,047	30	32.5	J-128
J-354	10,000	TRUE	Passed	500	10,001	31.3	30.4	J-128
J-355	8,459	TRUE	Passed	500	8,460	30	35.2	J-128
J-356	7,951	TRUE	Passed	500	7,952	30	35.1	J-365
J-357	10,000	TRUE	Passed	500	10,001	43.4	29.5	
J-358	9,884	TRUE	Passed	500	9,885	30	31.2	J-128
J-359	9,633	TRUE	Passed	500	9,634	30	26.7	J-360
J-360	1,495	TRUE	Passed	500	1,496	30	44.7	J-51
J-361	8,129	TRUE	Passed	500	8,130	30	36	J-128
J-362	10,000	TRUE	Passed	500	10,001	44.4	29.4	J-128
J-363	7,683	TRUE	Passed	500	7,684	30	36.6	J-128
J-364	6,850	TRUE	Passed	500	6,851	30	38.4	J-51
J-365	7,236	TRUE	Passed	500	7,237	30	37.6	J-51
J-366	6,711	TRUE	Passed	500	6,712	30	37.9	J-364
J-367	8,262	TRUE	Passed	500	8,263	30	34.8	J-128
J-368	5,712	TRUE	Passed	500	5,713	30	40.3	J-51
J-369	8,332	TRUE	Passed	500	8,333	30	35.8	J-128
J-370	10,000	TRUE	Passed	500	10,001	31.8	30.6	J-128
J-371	2,312	TRUE	Passed	500	2,313	30	29.7	J-128
J-371	10,000	TRUE	Passed	500	10,001	30.3	30.5	J-128
J-372	6,757	TRUE	Passed	500	6,758	30	38.7	J-51
J-373	10,000	TRUE	Passed	500	10,001	46.9	29.5	J-128
J-374	10,000	TRUE	Passed	500	10,001	47.1	29.4	J-128
J-375	10,000	TRUE	Passed	500	10,001	44.6	29.3	J-128
J-376	7,688	TRUE	Passed	500	7,689	30	36.6	J-128
J-377	10,000	TRUE	Passed	500	10,001	51.3	29.1	J-128
J-378	10,000	TRUE	Passed	500	10,001	40.5	29.5	J-128
J-379	10,000	TRUE	Passed	500	10,001	43.8	29.5	J-128
J-380	6,441	TRUE	Passed	500	6,442	30	39.4	J-51
J-382	6,948	TRUE	Passed	500	6,949	30	38.5	J-51
J-383	6,383	TRUE	Passed	500	6,384	30	39.4	J-51
J-384	6,662	TRUE	Passed	500	6,663	30	39.2	J-51

1 205	0.754	TDUE	Description	F00	0.755	30	24.5	1.120
J-385	8,754	TRUE	Passed	500	8,755	30	34.5	J-128
J-386	9,427	TRUE	Passed	500	9,428	30	32.3	J-128
J-387	8,110	TRUE	Passed	500	8,111	30	35.6	J-388
J-388	6,107	TRUE	Passed	500	6,108	30	39.8	J-51
J-389	4,836	TRUE	Passed	500	4,837	30	33.8	J-390
J-390	1,826	TRUE	Passed	500	1,827	30	44.5	J-51
J-391	6,501	TRUE	Passed	500	6,502	30	39.1	J-51
J-392	10,000	TRUE	Passed	500	10,001	39.3	29.5	J-128
J-393	7,333	TRUE	Passed	500	7,334	30	37.7	J-430
J-394	8,619	TRUE	Passed	500	8,620	30	28.5	J-424
J-395	8,796	TRUE	Passed	500	8,797	30	26.2	J-425
J-396	10,000	TRUE	Passed	500	10,001	40	29.6	J-128
J-397	5,949	TRUE	Passed	500	5,950	30	27.8	J-398
J-398	1,617	TRUE	Passed	500	1,618	30	44.6	J-51
J-399	10,000	TRUE	Passed	500	10,001	64.4	27.5	J-128
J-401	1,758	TRUE	Passed	500	1,759	30	28.5	J-128
J-401	10,000	TRUE	Passed	500	10,001	61.8	30.4	J-128
J-402	10,000	TRUE	Passed	500	10,001	62.5	30.3	J-128
J-403	10,000	TRUE	Passed	500	10,001	41.2	30.7	J-128
J-404	9,598	TRUE	Passed	500	9,599	30	35.1	J-128
J-405	4,495	TRUE	Passed	500	4,496	30	42.6	J-51
J-406	10,000	TRUE	Passed	500	10,001	58	29.8	J-128
J-407	10,000	TRUE	Passed	500	10,001	64.4	29.7	J-128
J-408	10,000	TRUE	Passed	500	10,001	44.8	29.4	J-128
J-409	3,336	TRUE	Passed	500	3,337	30	43.3	J-51
J-410	10,000	TRUE	Passed	500	10,001	51.2	29.5	J-128
J-411	3,404	TRUE	Passed	500	3,405	30	43.3	J-51
J-412	10,000	TRUE	Passed	500	10,001	55.8	29.5	J-128
J-413	10,000	TRUE	Passed	500	10,001	62	28.6	J-128
J-414	10,000	TRUE	Passed	500	10,001	56.2	22.7	J-128
J-415	1,921	TRUE	Passed	500	1,922	30	44.4	J-51
J-416	10,000	TRUE	Passed	500	10,001	58.6	29	J-128
J-417	10,000	TRUE	Passed	500	10,001	54.9	29.6	J-128
J-418	5,261	TRUE	Passed	500	5,262	30	29.9	J-419
J-419	3,345	TRUE	Passed	500	3,346	30	43.4	J-51
J-420	10,000	TRUE	Passed	500	10,001	34.6	32.2	J-421
J-421	8,766	TRUE	Passed	500	8,767	30	31.8	J-423
J-422	6,433	TRUE	Passed	500	6,434	30	39.8	J-51
J-423	8,624	TRUE	Passed	500	8,625	30	32.7	J-422
J-423	4,525	TRUE	Passed	500	4,526	30	42.1	J-51
J-425	3,893	TRUE	Passed	500	3,894	30	42.1	J-51
J-425 J-426	8,941	TRUE		500	8,942	30	23.6	J-425
J-420	8,941	IKUE	Passed	500	8,942	30	23.6	J-425

J-427	7,372	TRUE	Passed	500	7,373	30	34.1	J-424
J-427 J-428	8,715	TRUE	Passed	500	8,716	30	34.7	J-423
J-429	8,693	TRUE	Passed	500	8,694	30	34.8	J-428
J-429	3,747	TRUE	Passed	500	3,748	30	43	J-51
J-431	6,844	TRUE	Passed	500	6,845	30	30.9	J-432
J-432	2,185	TRUE	Passed	500	2,186	30	44.3	J-51
J-432 J-433	5,246	TRUE	Passed	500	5,247	30	25.8	J-128
J-433 J-434	10,000	TRUE	Passed	500	10,001	61.8	45	J-51
J-434 J-435	10,000	TRUE		500	10,001	63.1	45	J-51
J-435 J-436	10,000	TRUE	Passed Passed	500	10,001	59.7	44.8	J-51
J-430 J-437	8,324	TRUE		500	8,325	39.7	44.5	J-51
1-437 1-439	6,582	TRUE	Passed	500		30	31.7	J-719
	6,474		Passed	500	6,583 6,475	30	32.1	J-719 J-1780
-440		TRUE	Passed					
-442	7,527	TRUE	Passed	500	7,528	30	27.5	J-443
-443	2,062	TRUE	Passed	500	2,063	30	45.1	J-51
-445	8,711	TRUE	Passed	500	8,712	30	30.8	J-455
1-447	5,981	TRUE	Passed	500	5,982	30	27.1	J-450
-448	4,774	TRUE	Passed	500	4,775	30	39.8	J-450
-449	5,675	TRUE	Passed	500	5,676	30	23.5	J-450
-450	3,875	TRUE	Passed	500	3,876	30	44.6	J-51
-451	5,473	TRUE	Passed	500	5,474	30	35	J-452
-452	4,985	TRUE	Passed	500	4,986	30	31.8	J-458
-453	4,639	TRUE	Passed	500	4,640	30	39.8	J-454
-454	4,465	TRUE	Passed	500	4,466	30	42.8	J-453
-455	5,944	TRUE	Passed	500	5,945	30	38.1	J-454
-456	5,995	TRUE	Passed	500	5,996	30	37.1	J-455
-457	4,776	TRUE	Passed	500	4,777	30	39.9	J-452
-458	2,781	TRUE	Passed	500	2,782	30	44.8	J-51
-459	2,707	TRUE	Passed	500	2,708	30	33.4	J-463
-460	3,717	TRUE	Passed	500	3,718	30	33.5	J-459
-461	1,536	TRUE	Passed	500	1,537	30	29.4	J-463
-462	1,351	TRUE	Passed	500	1,352	30	37.4	J-463
-463	1,236	TRUE	Passed	500	1,237	30	42.5	J-461
-464	4,837	TRUE	Passed	500	4,838	30	38.1	J-457
-465	4,990	TRUE	Passed	500	4,991	30	36.4	J-464
I-466	5,283	TRUE	Passed	500	5,284	30	37.6	J-465
-467	5,952	TRUE	Passed	500	5,953	30	29	J-460
I-468	5,879	TRUE	Passed	500	5,880	30	33.5	J-459
I-469	6,419	TRUE	Passed	500	6,420	30	35.4	J-474
I-470	7,643	TRUE	Passed	500	7,644	30	42	J-51
J-471	10,000	TRUE	Passed	500	10,001	36.7	33.8	J-556
I-472	6,518	TRUE	Passed	500	6,519	30	40.8	J-473

J-473	5,989	TRUE	Passed	500	5,990	30	36.6	J-475
J-474	5,583	TRUE	Passed	500	5,584	30	43.6	J-51
J-475	5,153	TRUE	Passed	500	5,154	30	40.9	J-478
J-476	2,202	TRUE	Passed	500	2,203	30	41.3	J-477
J-477	2,232	TRUE	Passed	500	2,233	30	39.1	J-476
I-478	5,109	TRUE	Passed	500	5,110	30	39.4	J-475
J-479	5,250	TRUE	Passed	500	5,251	30	39.6	J-478
J-480	5,575	TRUE	Passed	500	5,576	30	37.7	J-479
-481	5,917	TRUE	Passed	500	5,918	30	35.7	J-480
-482	3,080	TRUE	Passed	500	3,081	30	25.8	J-485
-483	1,896	TRUE	Passed	500	1,897	30	28.8	J-485
-484	1,743	TRUE	Passed	500	1,744	30	34.1	J-485
-485	1,415	TRUE	Passed	500	1,416	30	45.1	J-51
-486	8,880	TRUE	Passed	500	8,881	30	41.1	1-FLOW
-487	10,000	TRUE	Passed	500	10,001	38.4	43	J-51
-489	10,000	TRUE	Passed	500	10,001	50.8	44.2	J-51
-490	10,000	TRUE	Passed	500	10,001	36	38.5	J-437
I-491	10,000	TRUE	Passed	500	10,001	63	45.1	J-51
-492	10,000	TRUE	Passed	500	10,001	48.3	43.4	J-51
-493	9,464	TRUE	Passed	500	9,465	30	36.5	J-494
-494	9,584	TRUE	Passed	500	9,585	30	35.2	J-493
-497	10,000	TRUE	Passed	500	10,001	44.7	41.2	J-51
-498	10,000	TRUE	Passed	500	10,001	47	42.6	J-51
-499	10,000	TRUE	Passed	500	10,001	39.9	39	J-500
-500	6,429	TRUE	Passed	500	6,430	30	44	J-51
-501	10,000	TRUE	Passed	500	10,001	38.6	37.8	J-502
-502	4,733	TRUE	Passed	500	4,734	30	31.3	J-726
-504	3,021	TRUE	Passed	500	3,022	30	40.4	J-1334
-505	3,720	TRUE	Passed	500	3,721	30	42.3	J-554
-507	4,120	TRUE	Passed	500	4,121	30	33	J-508
-508	4,119	TRUE	Passed	500	4,120	30	34	J-507
-509	4,842	TRUE	Passed	500	4,843	30	30.8	J-508
-510	5,490	TRUE	Passed	500	5,491	30	32.6	J-513
-511	2,209	TRUE	Passed	500	2,210	30	37.8	J-513
I-513	2,251	TRUE	Passed	500	2,252	30	37.5	J-514
-514	2,543	TRUE	Passed	500	2,544	30	29.3	J-513
-516	4,807	TRUE	Passed	500	4,808	30	38	J-508
-517	5,253	TRUE	Passed	500	5,254	30	30.2	J-549
I-518	4,776	TRUE	Passed	500	4,777	30	26.2	J-549
I-519	5,129	TRUE	Passed	500	5,130	30	29.7	J-508
1-520	4,316	TRUE	Passed	500	4,317	30	32.5	J-521
J-521	3,552	TRUE	Passed	500	3,553	30	37	J-603

	0 =0=				0.700	20	27.7	
J-522	3,727	TRUE	Passed	500	3,728	30	27.5	J-603
J-523	4,065	TRUE	Passed	500	4,066	30	27.8	J-603
J-524	3,923	TRUE	Passed	500	3,924	30	29.7	J-521
J-525	4,364	TRUE	Passed	500	4,365	30	31.4	J-521
J-526	4,206	TRUE	Passed	500	4,207	30	33.5	J-521
J-527	4,293	TRUE	Passed	500	4,294	30	32.6	J-528
J-528	3,970	TRUE	Passed	500	3,971	30	35.4	J-610
J-529	4,185	TRUE	Passed	500	4,186	30	36.9	J-613
J-530	4,209	TRUE	Passed	500	4,210	30	38.1	J-596
J-531	2,700	TRUE	Passed	500	2,701	30	44.4	J-51
J-532	2,910	TRUE	Passed	500	2,911	30	44.3	J-51
J-533	7,605	TRUE	Passed	500	7,606	30	31.8	J-532
J-534	8,459	TRUE	Passed	500	8,460	30	29.7	J-535
J-535	7,872	TRUE	Passed	500	7,873	30	30.9	J-536
J-536	7,100	TRUE	Passed	500	7,101	30	36.5	J-535
J-537	8,055	TRUE	Passed	500	8,056	30	35.6	J-647
J-538	8,551	TRUE	Passed	500	8,552	30	36.5	J-648
J-539	9,692	TRUE	Passed	500	9,693	30	31	J-538
J-540	2,906	TRUE	Passed	500	2,907	30	42.4	J-648
J-541	3,143	TRUE	Passed	500	3,144	30	44.2	J-51
J-542	6,260	TRUE	Passed	500	6,261	30	40.9	J-644
J-543	8,434	TRUE	Passed	500	8,435	30	34.9	J-542
J-544	9,447	TRUE	Passed	500	9,448	30	33.7	J-546
J-545	5,221	TRUE	Passed	500	5,222	30	29.6	J-546
J-546	2,020	TRUE	Passed	500	2,021	30	44.9	J-51
J-547	4,898	TRUE	Passed	500	4,899	30	30.7	J-548
J-548	1,754	TRUE	Passed	500	1,756	30	45	J-51
J-549	1,603	TRUE	Passed	500	1,604	30	45	J-51
J-550	4,233	TRUE	Passed	500	4,234	30	29.7	J-552
J-551	2,825	TRUE	Passed	500	2,826	30	44.7	J-51
J-552	2,276	TRUE	Passed	500	2,277	30	44.9	J-51
J-553	3,756	TRUE	Passed	500	3,757	30	29.9	J-554
J-554	2,452	TRUE	Passed	500	2,453	30	45	J-51
J-555	10,000	TRUE	Passed	500	10,001	30.7	32.3	J-556
J-556	3,861	TRUE	Passed	500	3,862	30	44.1	J-51
J-557	3,424	TRUE	Passed	500	3,425	30	30.9	J-558
J-558	1,747	TRUE	Passed	500	1,748	30	44.9	J-51
J-559	10,000	TRUE	Passed	500	10,001	35.2	36.8	J-557
J-560	10,000	TRUE	Passed	500	10,001	44	40.9	J-51
J-561	3,550	TRUE	Passed	500	3,551	30	44.2	J-51
J-562	10,000	TRUE	Passed	500	10,001	30.6	34.4	J-556
J-563	2,728	TRUE	Passed	500	2,729	30.0	44.5	J-530

J-564	10,000	TRUE	Passed	500	10,001	30.8	33.9	J-563
J-565	10,000	TRUE	Passed	500	10,001	33.7	37.4	J-556
J-566	7,727	TRUE	Passed	500	7,728	33.7	40.9	J-530 J-51
J-567	9,606	TRUE	Passed	500	9,607	30	36.4	J-578
J-568	8,490	TRUE	Passed	500	8,491	30	37.1	J-574
J-569	7,055			500		30	37.1	J-570
J-509 J-570		TRUE TRUE	Passed	500	7,056 6,439	30	41.8	J-570 J-51
	6,438		Passed		-			
J-571	6,835	TRUE	Passed	500	6,836	30	38.9	J-574
J-572	8,243	TRUE	Passed	500	8,244	30	19.6	J-574
J-573	4,626	TRUE	Passed	500	4,627	30	43.1	J-51
J-574	7,287	TRUE	Passed	500	7,288	30	33.1	J-571
1-576	10,000	TRUE	Passed	500	10,001	31.5	34.7	J-568
-577	10,000	TRUE	Passed	500	10,001	31.2	33.7	J-578
-578	3,040	TRUE	Passed	500	3,041	30	44.2	J-51
-579	4,043	TRUE	Passed	500	4,044	30	43.7	J-51
-580	4,121	TRUE	Passed	500	4,122	30	43.7	J-51
I-581	3,896	TRUE	Passed	500	3,897	30	43.7	J-51
-582	6,095	TRUE	Passed	500	6,096	30	38.8	J-581
-583	6,592	TRUE	Passed	500	6,593	30	41.2	J-51
-584	7,406	TRUE	Passed	500	7,407	30	36.4	J-585
-585	5,730	TRUE	Passed	500	5,731	30	38.3	J-587
-587	5,323	TRUE	Passed	500	5,324	30	37.8	J-588
-588	4,973	TRUE	Passed	500	4,974	30	42.6	J-51
-589	5,143	TRUE	Passed	500	5,144	30	38.3	J-588
-590	6,512	TRUE	Passed	500	6,513	30	28.6	J-591
-591	5,971	TRUE	Passed	500	5,972	30	35.8	J-590
-592	5,701	TRUE	Passed	500	5,702	30	35.5	J-596
-593	4,204	TRUE	Passed	500	4,205	30	35.8	J-596
-594	4,098	TRUE	Passed	500	4,099	30	26	J-596
-595	3,330	TRUE	Passed	500	3,331	30	27	J-596
-596	2,795	TRUE	Passed	500	2,796	30	34.9	J-597
-597	2,906	TRUE	Passed	500	2,907	30	31.3	J-596
-598	2,991	TRUE	Passed	500	2,992	30	31.9	J-597
-599	3,178	TRUE	Passed	500	3,179	30	31.2	J-1549
-601	2,801	TRUE	Passed	500	2,802	30	34.4	J-1549
-602	4,019	TRUE	Passed	500	4,020	30	31.7	J-1549
-603	2,135	TRUE	Passed	500	2,136	30	44.7	J-1349 J-51
-604	4,031	TRUE		500	4,032	30	30.2	J-596
			Passed		-			
-605	2,972	TRUE	Passed	500	2,973	30	30.8	J-596
-606	3,076	TRUE	Passed	500	3,077	30	29.5	J-596
-607	3,883	TRUE	Passed	500	3,884	30	31	J-596
-608	4,009	TRUE	Passed	500	4,010	30	31.1	J-596

I-609	4,076	TRUE	Passed	500	4,077	30	31.1	J-596
-610	3,980	TRUE	Passed	500	3,981	30	34	J-596
-611	4,282	TRUE	Passed	500	4,283	30	28.4	J-596
612	3,782	TRUE	Passed	500	3,783	30	35.6	J-596
613	3,906	TRUE	Passed	500	3,907	30	38.5	J-596
614	5,892	TRUE	Passed	500	5,893	30	34.2	J-596
615	6,171	TRUE	Passed	500	6,172	30	30.4	J-614
-616	6,306	TRUE	Passed	500	6,307	30	32.2	J-615
-617	6,228	TRUE	Passed	500	6,229	30	40.3	3-FLOW
-620	7,161	TRUE	Passed	500	7,162	30	28.7	J-617
-621	8,720	TRUE	Passed	500	8,721	30	28.7	J-617
-622	8,331	TRUE	Passed	500	8,332	30	32.9	J-626
-623	8,566	TRUE	Passed	500	8,567	30	34.1	J-617
625	9,449	TRUE	Passed	500	9,450	30	28	J-617
-626	8,145	TRUE	Passed	500	8,146	30	33.1	J-627
-627	8,062	TRUE	Passed	500	8,063	30	34.7	J-628
628	8,249	TRUE	Passed	500	8,250	30	33.4	J-627
-629	8,727	TRUE	Passed	500	8,728	30	31.3	J-628
630	8,924	TRUE	Passed	500	8,925	30	32	J-629
631	8,936	TRUE	Passed	500	8,937	30	36.1	J-630
632	4,859	TRUE	Passed	500	4,860	30	30	J-633
-633	2,922	TRUE	Passed	500	2,923	30	44.1	J-51
634	7,482	TRUE	Passed	500	7,483	30	30.1	J-633
-636	9,525	TRUE	Passed	500	9,526	30	33.3	J-631
-637	3,560	TRUE	Passed	500	3,561	30	43.8	J-51
-638	9,921	TRUE	Passed	500	9,922	30	33.3	J-539
-639	10,000	TRUE	Passed	500	10,001	34.2	35.9	J-128
640	10,000	TRUE	Passed	500	10,001	30.4	35.5	J-641
641	5,192	TRUE	Passed	500	5,193	30	42.7	J-51
642	3,795	TRUE	Passed	500	3,796	30	43.8	J-51
643	2,910	TRUE	Passed	500	2,911	30	44.4	J-51
644	4,991	TRUE	Passed	500	4,992	30	37.3	J-645
645	2,530	TRUE	Passed	500	2,531	30	44.6	J-51
-646	6,892	TRUE	Passed	500	6,893	30	38.8	J-648
-647	4,522	TRUE	Passed	500	4,523	30	43.3	J-51
-648	2,755	TRUE	Passed	500	2,756	30	44.4	J-51
649	3,473	TRUE	Passed	500	3,474	30	29.8	J-650
-650	1,755	TRUE	Passed	500	1,756	30	44.8	J-51
651	7,341	TRUE	Passed	500	7,342	30	29.4	J-652
-652	2,864	TRUE	Passed	500	2,865	30	44.4	J-51
-655	6,850	TRUE	Passed	500	6,851	30	31.6	J-656
-656	3,348	TRUE	Passed	500	3,349	30	44.1	J-51

L CEZ	10,000	TDUE	Dancad	Γ00	10.001	22.2	24.4	1.420
J-657	10,000	TRUE	Passed	500	10,001	32.3	34.4	
J-659	10,000	TRUE	Passed	500	10,001	31.6	31.9	
J-659	10,000	TRUE	Passed	500	10,001	36.8	34.3	
J-660	10,000	TRUE	Passed	500	10,001	38.1	34.1	
J-661	798	TRUE	Passed	500	803	30	45.1	
J-662	10,000	TRUE	Passed	500	10,001	51.8	32.8	
J-663	10,000	TRUE	Passed	500	10,001	42.8	33.8	
J-664	10,000	TRUE	Passed	500	10,001	30.7	35.3	
J-665	10,000	TRUE	Passed	500	10,001	33.1	35.7	
J-666	10,000	TRUE	Passed	500	10,001	40.9	38.3	
J-667	9,279	TRUE	Passed	500	9,280	30	34.5	
J-668	10,000	TRUE	Passed	500	10,001	47.7	40.4	J-51
J-669	4,031	TRUE	Passed	500	4,032	30	40.7	J-21
J-670	4,583	TRUE	Passed	500	4,584	30	33.8	J-21
J-673	10,000	TRUE	Passed	500	10,001	37.2	35.1	J-128
J-674	4,066	TRUE	Passed	500	4,067	30	43.3	J-51
J-675	3,793	TRUE	Passed	500	3,794	30	43	J-51
J-676	5,328	TRUE	Passed	500	5,329	30	31	
J-677	2,321	TRUE	Passed	500	2,322	30	29.3	
J-678	1,734	TRUE	Passed	500	1,735	30	44.6	
J-680	3,465	TRUE	Passed	500	3,465	30	25.7	
J-682	2,956	TRUE	Passed	500	2,956	30	25.9	
J-689	2,309	TRUE	Passed	500	2,334	30	44.1	
J-696	2,673	TRUE	Passed	500	2,678	30	29.2	
J-697	3,005	TRUE	Passed	500	3,005	30	22.9	
J-719	4,427	TRUE	Passed	500	4,427	30	39.7	J-724
J-724	4,265	TRUE	Passed	500	4,265	30	34.1	
J-726	3,959	TRUE	Passed	500	3,959	30	31.6	
J-727	7,584	TRUE	Passed	500	7,584	30	44.7	
J-731	5,506	TRUE	Passed	500	5,507	30	39.3	
J-904	6,521	TRUE	Passed	500	6,522	30	38	
J-1031	8,921	TRUE	Passed	500	8,922	30	33.8	
J-1082	10,000	TRUE	Passed	500	10,001	57.8	32.3	
J-1184	9,002	TRUE	Passed	500	9,003	30	37.6	
J-1104 J-1201	7,846	TRUE	Passed	500	7,847	30	26.1	
J-1201 J-1296	10,000	TRUE	Passed	500	10,001	42.5	43.2	
J-1296 J-1334	3,684	TRUE	Passed	500	3,685	30	29.9	
J-1334 J-1340	3,788	TRUE	Passed	500	3,789	30	39.4	
J-1340 J-1549	2,828	TRUE		500	2,829	30	35.3	
			Passed					
J-1642	8,350	TRUE	Passed	500	8,351	30	39	
J-1704	10,000	TRUE	Passed	500	10,001	37.6	34.9	
J-1780	4,346	TRUE	Passed	500	4,346	30	32.4	J-724

J-1806	2,504	TRUE	Passed	500	2,504	30	34.9	J-128
Scenario	2: Loop at Ever	green Drive						
1-FLOW	8,637	TRUE	Passed	500	8,638	30	30.8	1-RES
1-RES	3,069	TRUE	Passed	500	3,072	30	44.7	J-51
2-FLOW	7,373	TRUE	Passed	500	7,374	30	30	2-RES
2-RES	4,072	TRUE	Passed	500	4,073	30	44.7	J-51
3-FLOW	2,816	TRUE	Passed	500	2,817	30	30.9	3-RES
3-RES	2,404	TRUE	Passed	500	2,405	30	39.8	3-FLOW
4-FLOW	3,290	TRUE	Passed	500	3,291	30	30.7	4-RES
4-RES	2,387	TRUE	Passed	500	2,388	30	42.5	4-FLOW
5-FLOW	2,741	TRUE	Passed	500	2,742	30	27.7	J-51
5-RES	1,670	TRUE	Passed	500	1,671	30	38	J-51
6-FLOW	1,957	TRUE	Passed	500	1,958	30	30.8	6-RES
6-RES	1,273	TRUE	Passed	500	1,274	30	44.8	J-51
7-FLOW	2,066	TRUE	Passed	500	2,067	30	29.1	J-196
7-RES	1,860	TRUE	Passed	500	1,861	30	34.2	J-196
J-1	4,862	TRUE	Passed	500	4,863	30	34.4	J-128
J-2	6,916	TRUE	Passed	500	6,917	30	31.9	J-128
J-3	7,701	TRUE	Passed	500	7,702	30	35.2	J-51
J-11	8,115	TRUE	Passed	500	8,116	30	30.4	J-51
J-12	7,798	TRUE	Passed	500	7,799	30	30.4	J-51
J-13	4,498	TRUE	Passed	500	4,499	30	34.6	J-51
J-14	3,678	TRUE	Passed	500	3,679	30	40.7	J-51
J-15	7,211	TRUE	Passed	500	7,212	30	32.2	J-14
J-17	5,479	TRUE	Passed	500	5,480	30	28.1	J-51
J-18	10,000	TRUE	Passed	500	10,001	58.6	42.3	J-51
J-19	9,107	TRUE	Passed	500	9,108	30	29.5	J-51
J-20	4,042	TRUE	Passed	500	4,043	30	33.6	J-23
J-21	4,138	TRUE	Passed	500	4,139	30	35.6	J-20
J-22	1,996	TRUE	Passed	500	1,997	30	43.9	J-51
J-23	3,663	TRUE	Passed	500	3,664	30	30.2	J-22
J-24	1,862	TRUE	Passed	500	1,863	30	44	J-51
J-25	3,238	TRUE	Passed	500	3,239	30	30.1	J-24
J-26	1,805	TRUE	Passed	500	1,806	30	43.9	J-51
J-27	3,355	TRUE	Passed	500	3,356	30	29.2	J-26
J-28	2,086	TRUE	Passed	500	2,087	30	43.4	J-51
J-29	3,655	TRUE	Passed	500	3,656	30	29.5	J-28
J-30	6,168	TRUE	Passed	500	6,169	30	29.7	J-51
J-31	2,457	TRUE	Passed	500	2,458	30	33.5	J-33
J-33	2,659	TRUE	Passed	500	2,660	30	31	J-31
J-34	2,568	TRUE	Passed	500	2,569	30	37.1	J-51
J-35	3,127	TRUE	Passed	500	3,128	30	28.5	J-34

1.20	4.022	TDUE	Deseral	F00	4.022	20	20.0	1.51
J-36	4,032	TRUE	Passed	500	4,033	30	26.9	J-51
J-37	4,551	TRUE	Passed	500	4,552	30	26.2	J-51
J-38	3,970	TRUE	Passed	500	3,971	30	25.9	J-51
J-39	3,816	TRUE	Passed	500	3,817	30	30.1	J-51
J-40	3,748	TRUE	Passed	500	3,749	30	30.3	J-51
J-41	4,052	TRUE	Passed	500	4,053	30	24.6	J-51
J-42	2,590	TRUE	Passed	500	2,591	30	32.1	J-51
J-43	3,264	TRUE	Passed	500	3,265	30	25.3	J-51
J-44	1,939	TRUE	Passed	500	1,940	30	37.4	J-51
J-45	2,053	TRUE	Passed	500	2,054	30	35.7	J-46
J-46	2,496	TRUE	Passed	500	2,497	30	30.3	J-45
J-47	1,774	TRUE	Passed	500	1,775	30	38	J-48
J-48	2,292	TRUE	Passed	500	2,293	30	27.2	J-47
J-49	2,671	TRUE	Passed	500	2,672	30	30.5	J-50
J-50	2,162	TRUE	Passed	500	2,163	30	36.5	J-51
J-51	927	TRUE	Passed	500	928	30	43.2	J-55
J-52	2,102	TRUE	Passed	500	2,103	30	26.6	J-51
J-53	1,808	TRUE	Passed	500	1,809	30	32	J-54
J-54	1,931	TRUE	Passed	500	1,932	30	29.5	J-53
J-55	1,611	TRUE	Passed	500	1,612	30	34	J-56
J-56	1,855	TRUE	Passed	500	1,856	30	28.7	J-55
J-57	1,793	TRUE	Passed	500	1,794	30	37.3	J-51
J-58	1,979	TRUE	Passed	500	1,980	30	31.3	J-55
J-59	2,183	TRUE	Passed	500	2,184	30	28.4	J-55
J-60	2,026	TRUE	Passed	500	2,027	30	28.6	J-55
J-61	2,862	TRUE	Passed	500	2,863	30	26.7	J-51
J-64	2,739	TRUE	Passed	500	2,740	30	26.6	J-51
J-65	2,860	TRUE	Passed	500	2,861	30	27.5	J-51
J-66	3,661	TRUE	Passed	500	3,662	30	23.5	J-51
J-67	3,207	TRUE	Passed	500	3,208	30	28.1	J-51
J-68	3,483	TRUE	Passed	500	3,484	30	25.6	J-51
J-69	2,214	TRUE	Passed	500	2,215	30	36.9	J-51
J-70	2,965	TRUE	Passed	500	2,966	30	31.2	J-51
J-71	2,687	TRUE	Passed	500	2,688	30	30.9	J-72
J-72	2,621	TRUE	Passed	500	2,622	30	33.5	J-72 J-71
J-72 J-73		TRUE		500		30	43	J-71 J-51
J-73 J-74	1,105	TRUE	Passed	500	1,106	30	31.1	J-51 J-73
	2,550		Passed		2,551			
J-75	3,778	TRUE	Passed	500	3,779	30	25.8	J-74
J-76	3,520	TRUE	Passed	500	3,521	30	27.1	J-51
J-77	3,253	TRUE	Passed	500	3,254	30	27.7	J-51
J-78	4,042	TRUE	Passed	500	4,043	30	23.5	J-51
J-79	3,328	TRUE	Passed	500	3,329	30	30	J-51

J-80	3,641	TRUE	Passed	500	3,642	30	28.1	J-51
J-81	3,786	TRUE	Passed	500	3,787	30	24.3	J-51
J-82	4,641	TRUE	Passed	500	4,642	30	22.3	J-51
J-83	4,699	TRUE	Passed	500	4,700	30	22.1	J-51
J-84	4,686	TRUE	Passed	500	4,687	30	21.9	J-51
J-85	4,259	TRUE	Passed	500	4,260	30	23.6	J-51
J-86	4,041	TRUE	Passed	500	4,042	30	25	J-51
J-87	3,726	TRUE	Passed	500	3,727	30	29.1	J-51
J-88	3,308	TRUE	Passed	500	3,309	30	31.7	J-51
J-89	3,898	TRUE	Passed	500	3,899	30	25.6	J-51
J-90	3,120	TRUE	Passed	500	3,122	30	29.3	J-91
J-91	1,602	TRUE	Passed	500	1,603	30	41.2	J-51
J-92	5,273	TRUE	Passed	500	5,274	30	30.5	J-94
J-93	3,686	TRUE	Passed	500	3,687	30	24.3	J-51
J-94	5,270	TRUE	Passed	500	5,271	30	30.3	J-92
J-95	6,453	TRUE	Passed	500	6,454	30	31.2	J-210
J-96	5,325	TRUE	Passed	500	5,326	30	31.5	J-209
J-97	5,301	TRUE	Passed	500	5,302	30	30.4	J-92
J-98	5,419	TRUE	Passed	500	5,420	30	28.2	J-128
J-99	2,574	TRUE	Passed	500	2,575	30	32.5	J-128
J-100	3,122	TRUE	Passed	500	3,123	30	25.6	J-128
J-101	2,380	TRUE	Passed	500	2,381	30	33.8	J-128
J-102	3,141	TRUE	Passed	500	3,142	30	23.9	J-128
J-103	2,794	TRUE	Passed	500	2,795	30	21.9	J-128
J-104	2,594	TRUE	Passed	500	2,595	30	25	J-128
J-105	2,606	TRUE	Passed	500	2,607	30	24.3	J-128
J-106	2,500	TRUE	Passed	500	2,501	30	26	J-128
J-107	2,686	TRUE	Passed	500	2,687	30	23.4	J-128
J-108	2,573	TRUE	Passed	500	2,574	30	24.7	J-128
J-109	2,653	TRUE	Passed	500	2,654	30	23.3	J-128
J-110	2,671	TRUE	Passed	500	2,672	30	23.9	J-128
J-111	2,471	TRUE	Passed	500	2,472	30	27.4	J-128
J-112	2,291	TRUE	Passed	500	2,292	30	30.6	J-128
J-113	2,089	TRUE	Passed	500	2,090	30	33.1	J-128
J-114	2,032	TRUE	Passed	500	2,033	30	32.5	J-128
J-115	2,227	TRUE	Passed	500	2,228	30	29.5	J-128
J-116	1,932	TRUE	Passed	500	1,933	30	33.3	J-128
J-117	2,101	TRUE	Passed	500	2,102	30	30.8	J-128
J-118	1,867	TRUE	Passed	500	1,868	30	40.6	J-51
J-118	1,953	TRUE	Passed	500	1,954	30	31.8	J-128
J-119	2,127	TRUE	Passed	500	2,128	30	28.9	J-128
J-121	1,694	TRUE	Passed	500	1,695	30	33.4	J-128

J-122	1,917	TRUE	Passed	500	1,918	30	29.5	J-128
J-124	1,782	TRUE	Passed	500	1,783	30	28.5	J-128
J-125	1,432	TRUE	Passed	500	1,433	30	29.5	J-180
J-126	1,714	TRUE	Passed	500	1,715	30	28.8	J-128
J-127	1,571	TRUE	Passed	500	1,572	30	28.6	J-128
J-128	963	TRUE	Passed	500	964	30	42.3	J-129
J-129	1,554	TRUE	Passed	500	1,555	30	27.9	J-128
J-130	1,623	TRUE	Passed	500	1,624	30	29.7	J-128
J-133	1,750	TRUE	Passed	500	1,751	30	29.2	J-128
J-134	1,612	TRUE	Passed	500	1,613	30	32.5	J-135
J-135	1,724	TRUE	Passed	500	1,725	30	29	J-134
J-136	1,950	TRUE	Passed	500	1,951	30	26.4	J-134
J-137	2,038	TRUE	Passed	500	2,039	30	25.5	J-128
J-138	2,195	TRUE	Passed	500	2,196	30	23.7	J-128
J-139	2,523	TRUE	Passed	500	2,524	30	29.4	J-128
J-140	2,182	TRUE	Passed	500	2,183	30	32.3	J-141
J-141	2,288	TRUE	Passed	500	2,289	30	30.5	J-140
J-142	2,710	TRUE	Passed	500	2,711	30	23.3	J-128
J-143	2,847	TRUE	Passed	500	2,848	30	20.7	J-128
J-144	2,669	TRUE	Passed	500	2,670	30	22.2	J-128
J-145	2,256	TRUE	Passed	500	2,257	30	29.2	J-128
J-146	2,751	TRUE	Passed	500	2,752	30	21.5	J-128
J-147	2,728	TRUE	Passed	500	2,730	30	22.1	J-128
J-148	2,921	TRUE	Passed	500	2,922	30	19.9	J-128
J-149	3,191	TRUE	Passed	500	3,192	30	21.9	J-128
J-150	3,248	TRUE	Passed	500	3,249	30	25.2	J-128
J-151	2,999	TRUE	Passed	500	3,000	30	23.8	J-128
J-152	2,203	TRUE	Passed	500	2,204	30	38.6	J-128
J-153	3,517	TRUE	Passed	500	3,518	30	24.4	J-128
J-154	3,449	TRUE	Passed	500	3,450	30	25.6	J-128
J-155	2,930	TRUE	Passed	500	2,931	30	30.9	J-196
J-156	2,926	TRUE	Passed	500	2,927	30	37.5	J-196
J-157	3,131	TRUE	Passed	500	3,132	30	28.4	J-237
J-158	2,446	TRUE	Passed	500	2,447	30	36.6	J-128
J-159	3,138	TRUE	Passed	500	3,139	30	28.9	J-163
J-160	3,063	TRUE	Passed	500	3,064	30	28.3	J-163
J-161	2,966	TRUE	Passed	500	2,967	30	29.3	J-163
J-162	3,041	TRUE	Passed	500	3,042	30	28.3	J-163
J-163	2,643	TRUE	Passed	500	2,644	30	32.8	J-169
J-164	2,856	TRUE	Passed	500	2,857	30	30.1	J-168
J-165	3,019	TRUE	Passed	500	3,020	30	28.6	J-163
J-166	3,269	TRUE	Passed	500	3,270	30	18.8	J-128

J-167 J-168 J-169 J-170 J-171 J-172	1,971 2,298 2,638 2,960	TRUE TRUE TRUE	Passed Passed	500 500	1,972	30	35.2	J-168
J-169 J-170 J-171	2,638		Passeu		2 200		20.7	1 167
J-170 J-171			Passed	500	2,299 2,639	30	30.7 31.8	J-167 J-168
J-171		TRUE	Passed	500	2,961	30	24.2	J-108 J-128
				500				
J-1/2	1,949	TRUE	Passed		1,950	30	37.3	J-128
	2,533	TRUE	Passed	500	2,535	30	22.8	J-128
J-173	2,245	TRUE	Passed	500	2,246	30	27.7	J-128
J-174	2,307	TRUE	Passed	500	2,309	30	26.4	J-128
J-175	2,486	TRUE	Passed	500	2,487	30	22.5	J-128
J-176	2,245	TRUE	Passed	500	2,246	30	27	J-128
J-177	1,775	TRUE	Passed	500	1,776	30	34.6	J-128
J-178	2,040	TRUE	Passed	500	2,041	30	28.7	J-179
J-179	1,020	TRUE	Passed	500	1,021	30	43.7	J-128
J-180	1,041	TRUE	Passed	500	1,042	30	39.3	J-128
J-181	2,218	TRUE	Passed	500	2,219	30	27.5	J-128
J-183	8,034	TRUE	Passed	500	8,035	30	3.8	J-689
J-184	744	TRUE	Passed	500	745	30	45.1	J-51
J-185	6,538	TRUE	Passed	500	6,539	30	23.6	J-186
J-186	4,736	TRUE	Passed	500	4,737	30	41	J-128
J-187	5,001	TRUE	Passed	500	5,002	30	23.7	J-188
J-188	3,826	TRUE	Passed	500	3,827	30	42.6	J-128
J-189	4,637	TRUE	Passed	500	4,638	30	36	J-128
J-190	4,696	TRUE	Passed	500	4,697	30	36.2	J-128
J-191	4,049	TRUE	Passed	500	4,050	30	31.3	J-192
J-192	3,491	TRUE	Passed	500	3,492	30	37.4	J-196
J-193	3,363	TRUE	Passed	500	3,364	30	30.4	J-196
J-194	2,850	TRUE	Passed	500	2,851	30	26.7	J-196
J-195	2,255	TRUE	Passed	500	2,256	30	28	J-196
J-196	1,874	TRUE	Passed	500	1,875	30	33.9	J-197
J-197	2,026	TRUE	Passed	500	2,027	30	29.1	J-196
J-200	4,486	TRUE	Passed	500	4,487	30	30	J-201
J-201	3,992	TRUE	Passed	500	3,993	30	35.3	J-200
J-202	4,355	TRUE	Passed	500	4,356	30	31.2	J-206
J-203	4,336	TRUE	Passed	500	4,337	30	33.3	J-204
J-204	3,409	TRUE	Passed	500	3,410	30	30.5	J-205
J-205	2,800	TRUE	Passed	500	2,801	30	38.6	J-204
J-206	3,702	TRUE	Passed	500	3,703	30	31.8	J-207
J-207	3,099	TRUE	Passed	500	3,100	30	37.8	J-206
J-208	4,883	TRUE	Passed	500	4,884	30	29.9	J-209
J-209	3,774	TRUE	Passed	500	3,775	30	39.9	J-128
J-210	6,378	TRUE	Passed	500	6,379	30	32.2	J-95
J-211	5,628	TRUE	Passed	500	5,629	30	32.3	J-212

J-212	4,517	TRUE	Passed	500	4,518	30	30.4	J-213
J-213	3,483	TRUE	Passed	500	3,484	30	39.8	J-215
J-214	2,723	TRUE	Passed	500	2,724	30	29.5	J-215
J-215	2,271	TRUE	Passed	500	2,272	30	38.2	J-214
J-216	798	TRUE	Passed	500	799	30	45	J-51
J-217	3,282	TRUE	Passed	500	3,283	30	29.5	J-215
J-218	1,836	TRUE	Passed	500	1,837	30	44.3	J-51
J-219	3,993	TRUE	Passed	500	3,994	30	30	J-215
J-220	1,917	TRUE	Passed	500	1,918	30	44.3	J-51
J-221	2,306	TRUE	Passed	500	2,307	30	43.9	J-51
J-222	4,425	TRUE	Passed	500	4,426	30	33	J-221
J-223	4,873	TRUE	Passed	500	4,874	30	32	J-222
J-224	5,704	TRUE	Passed	500	5,705	30	36.9	J-223
J-225	5,920	TRUE	Passed	500	5,921	30	38.7	J-224
J-226	7,546	TRUE	Passed	500	7,548	30	32.6	J-334
J-227	6,280	TRUE	Passed	500	6,281	30	23.5	J-191
J-228	4,790	TRUE	Passed	500	4,791	30	32.6	J-229
J-229	4,734	TRUE	Passed	500	4,735	30	32.7	J-228
J-230	2,903	TRUE	Passed	500	2,904	30	43.6	J-51
J-231	4,432	TRUE	Passed	500	4,433	30	31	J-230
J-232	4,935	TRUE	Passed	500	4,936	30	34.5	J-231
J-233	6,471	TRUE	Passed	500	6,472	30	27.4	J-232
J-234	9,745	TRUE	Passed	500	9,747	30	6	J-689
J-235	10,000	TRUE	Passed	500	10,001	41.9	19.4	J-689
J-236	2,267	TRUE	Passed	500	2,268	30	28.7	J-237
J-237	1,899	TRUE	Passed	500	1,900	30	38.8	J-236
J-238	1,082	TRUE	Passed	500	1,083	30	44.9	J-51
J-239	10,000	TRUE	Passed	500	10,001	30.1	29.2	J-128
J-240	9,746	TRUE	Passed	500	9,747	30	30.2	J-51
J-241	8,051	TRUE	Passed	500	8,052	30	35.3	J-51
J-242	7,818	TRUE	Passed	500	7,819	30	35.4	J-51
J-243	9,373	TRUE	Passed	500	9,374	30	33.9	J-51
J-244	5,208	TRUE	Passed	500	5,209	30	41.1	J-51
J-245	9,621	TRUE	Passed	500	9,622	30	34.7	J-51
J-246	8,868	TRUE	Passed	500	8,869	30	37.8	J-51
J-247	10,000	TRUE	Passed	500	10,001	40.2	35.5	J-51
J-247 J-248	7,111	TRUE	Passed	500	7,112	30	33.2	J-318
J-248 J-249	2,426	TRUE	Passed	500	2,427	30	29.1	J-250
J-249 J-250	1,326	TRUE	Passed	500	1,327	30	44.9	J-51
J-250 J-251	7,326	TRUE	Passed	500	7,327	30	37.8	J-253
J-251 J-252	7,270	TRUE	Passed	500	7,327	30	38.9	J-51
J-253	3,138	TRUE	Passed	500	3,139	30	43.7	J-51

J-254	7,801	TRUE	Passed	500	7,802	30	26.5	J-324
J-255	7,151	TRUE	Passed	500	7,152	30	36.2	J-51
J-256	4,157	TRUE	Passed	500	4,158	30	41.7	J-51
J-257	7,120	TRUE	Passed	500	7,121	30	36.6	J-51
J-258	7,081	TRUE	Passed	500	7,082	30	36.5	J-51
J-259	4,418	TRUE	Passed	500	4,419	30	41.3	J-51
J-260	6,274	TRUE	Passed	500	6,275	30	33.7	J-731
J-262	7,175	TRUE	Passed	500	7,176	30	35.7	J-51
J-263	4,232	TRUE	Passed	500	4,233	30	40	J-266
J-264	7,647	TRUE	Passed	500	7,648	30	34.2	J-51
J-265	3,972	TRUE	Passed	500	3,973	30	29.5	J-266
J-266	2,789	TRUE	Passed	500	2,790	30	43.3	J-51
J-267	6,059	TRUE	Passed	500	6,060	30	32.6	J-268
J-268	5,316	TRUE	Passed	500	5,317	30	32.4	4-FLOW
J-269	6,209	TRUE	Passed	500	6,210	30	31.8	J-267
J-270	7,555	TRUE	Passed	500	7,556	30	32.9	J-272
J-271	6,465	TRUE	Passed	500	6,466	30	35.2	J-260
J-272	6,464	TRUE	Passed	500	6,466	30	30.4	J-276
J-273	4,927	TRUE	Passed	500	4,928	30	30.1	J-274
J-274	4,548	TRUE	Passed	500	4,549	30	34.2	J-273
J-275	6,112	TRUE	Passed	500	6,113	30	32.3	J-278
J-276	5,896	TRUE	Passed	500	5,897	30	35.2	J-275
J-277	5,928	TRUE	Passed	500	5,929	30	28.3	J-278
J-278	4,306	TRUE	Passed	500	4,307	30	38.4	J-283
J-279	3,871	TRUE	Passed	500	3,872	30	34	J-281
J-280	1,440	TRUE	Passed	500	1,441	30	44.7	J-51
J-281	3,174	TRUE	Passed	500	3,175	30	32.8	J-280
J-282	3,022	TRUE	Passed	500	3,023	30	29.9	J-283
J-283	2,397	TRUE	Passed	500	2,398	30	30.2	J-285
J-284	1,381	TRUE	Passed	500	1,382	30	44.8	J-51
J-285	2,028	TRUE	Passed	500	2,029	30	37.7	J-283
J-286	4,292	TRUE	Passed	500	4,293	30	27.1	J-292
J-287	3,493	TRUE	Passed	500	3,494	30	27.4	J-292
J-288	2,046	TRUE	Passed	500	2,047	30	35.3	J-290
J-289	2,308	TRUE	Passed	500	2,309	30	29.1	J-290
J-290	2,124	TRUE	Passed	500	2,125	30	34.4	J-289
J-291	1,149	TRUE	Passed	500	1,150	30	44.9	J-51
J-292	2,491	TRUE	Passed	500	2,492	30	33.9	6-FLOW
J-294	1,385	TRUE	Passed	500	1,386	30	44.3	6-FLOW
J-296	6,083	TRUE	Passed	500	6,085	30	30.1	J-292
J-297	6,242	TRUE	Passed	500	6,243	30	39.4	J-292
J-298	8,262	TRUE	Passed	500	8,263	30	36.3	J-51

1 200	0.210	TDLIF	Dossad	F00	9,219	30	34.4	
J-299 J-300	9,218	TRUE TRUE	Passed	500 500	-	30		J-51
	4,067		Passed	500	4,068	30	29.9	J-301
J-301	3,280	TRUE TRUE	Passed	500	3,281	30	40	J-300
J-302	3,697		Passed		3,698		30.6	J-303
J-303	3,043	TRUE	Passed	500	3,044	30	38.9	J-302
J-304	5,438	TRUE	Passed	500	5,439	30	36.1	J-302
J-305	5,656	TRUE	Passed	500	5,657	30	25.1	J-306
J-306	2,377	TRUE	Passed	500	2,378	30	44.2	J-51
J-307	7,631	TRUE	Passed	500	7,632	30	30.1	J-306
J-308	6,734	TRUE	Passed	500	6,735	30	39.2	J-51
J-309	3,583	TRUE	Passed	500	3,584	30	43.1	J-51
J-310	3,411	TRUE	Passed	500	3,412	30	43.2	J-51
J-311	3,881	TRUE	Passed	500	3,882	30	40.2	J-309
J-312	3,812	TRUE	Passed	500	3,813	30	42.8	J-51
J-313	4,312	TRUE	Passed	500	4,313	30	42.2	J-51
J-314	3,205	TRUE	Passed	500	3,206	30	43.4	J-51
J-315	2,588	TRUE	Passed	500	2,589	30	43.9	J-51
J-316	4,413	TRUE	Passed	500	4,414	30	41.8	J-51
J-317	3,265	TRUE	Passed	500	3,266	30	43.2	J-51
J-318	6,464	TRUE	Passed	500	6,465	30	34	J-319
J-319	6,173	TRUE	Passed	500	6,174	30	34.8	J-321
J-320	6,210	TRUE	Passed	500	6,211	30	34.3	J-319
J-321	3,230	TRUE	Passed	500	3,231	30	43.6	J-51
J-322	3,438	TRUE	Passed	500	3,439	30	41.8	J-323
J-323	3,037	TRUE	Passed	500	3,038	30	42.2	J-250
J-324	4,160	TRUE	Passed	500	4,161	30	41.9	J-51
J-325	10,000	TRUE	Passed	500	10,001	38.9	29.1	J-128
J-326	10,000	TRUE	Passed	500	10,001	39.6	29.4	J-128
J-327	6,774	TRUE	Passed	500	6,775	30	38.1	J-51
J-328	10,000	TRUE	Passed	500	10,001	40.4	29.6	J-128
J-329	9,958	TRUE	Passed	500	9,959	30	28.5	J-128
J-330	1,708	TRUE	Passed	500	1,709	30	44.5	J-51
J-331	5,848	TRUE	Passed	500	5,849	30	31.6	J-330
J-332	6,138	TRUE	Passed	500	6,139	30	39.4	J-51
J-333	4,448	TRUE	Passed	500	4,449	30	41.7	J-51
J-334	7,580	TRUE	Passed	500	7,581	30	33.4	J-226
J-336	6,455	TRUE	Passed	500	6,456	30	38.1	J-51
J-338	7,103	TRUE	Passed	500	7,104	30	35.8	J-339
J-339	6,131	TRUE	Passed	500	6,132	30	35.7	J-215
J-340	10,000	TRUE	Passed	500	10,001	33.3	29	J-213
J-340 J-341	7,329	TRUE	Passed	500	7,330	33.3	36.1	J-128 J-306
J-342	3,936	TRUE	Passed	500	3,937	30	42.7	J-51

J-343	7,035	TRUE	Passed	500	7,036	30	38.5	J-51
J-345	4,743	TRUE	Passed	500	4,744	30	41.8	J-51
J-346	3,560	TRUE	Passed	500	3,561	30	43.1	J-51
J-347	10,000	TRUE	Passed	500	10,001	47	30.5	J-128
J-348	10,000	TRUE	Passed	500	10,001	48.7	30.7	J-128
J-349	10,000	TRUE	Passed	500	10,001	43.8	30.7	J-128
J-350	10,000	TRUE	Passed	500	10,001	41.9	30.7	J-128
J-351	8,308	TRUE	Passed	500	8,309	30	35.7	J-128
J-352	8,571	TRUE	Passed	500	8,572	30	34.9	J-128
J-353	9,124	TRUE	Passed	500	9,125	30	33.2	J-128
J-354	10,000	TRUE	Passed	500	10,001	31.9	31.6	J-128
J-355	8,524	TRUE	Passed	500	8,525	30	35.7	J-51
J-356	8,009	TRUE	Passed	500	8,010	30	35.1	J-365
J-357	10,000	TRUE	Passed	500	10,001	44	29.9	J-128
J-358	9,996	TRUE	Passed	500	9,997	30	32	J-128
J-359	9,731	TRUE	Passed	500	9,732	30	26.7	J-360
J-360	1,495	TRUE	Passed	500	1,497	30	44.7	J-51
J-361	8,184	TRUE	Passed	500	8,185	30	36.4	J-51
J-362	10,000	TRUE	Passed	500	10,001	45.1	30.9	J-128
J-363	7,733	TRUE	Passed	500	7,734	30	37.2	J-51
J-364	6,891	TRUE	Passed	500	6,892	30	38.4	J-366
J-365	7,282	TRUE	Passed	500	7,283	30	37.9	J-51
J-366	6,748	TRUE	Passed	500	6,749	30	38	J-364
J-367	8,316	TRUE	Passed	500	8,317	30	35.9	J-128
J-368	5,736	TRUE	Passed	500	5,737	30	40.5	J-51
J-369	8,395	TRUE	Passed	500	8,396	30	36.2	J-51
J-370	10,000	TRUE	Passed	500	10,001	32.5	31.7	J-360
J-371	2,090	TRUE	Passed	500	2,091	30	28.7	J-128
J-371	10,000	TRUE	Passed	500	10,001	31	31.8	J-128
J-372	6,792	TRUE	Passed	500	6,793	30	38.9	J-51
J-373	10,000	TRUE	Passed	500	10,001	47.6	31.1	J-128
J-374	10,000	TRUE	Passed	500	10,001	47.8	31.2	J-128
J-375	10,000	TRUE	Passed	500	10,001	45.2	31.2	J-128
J-376	7,734	TRUE	Passed	500	7,735	30	37.4	J-51
J-377	10,000	TRUE	Passed	500	10,001	51.9	31.2	J-128
J-378	10,000	TRUE	Passed	500	10,001	41.2	31.4	J-128
J-379	10,000	TRUE	Passed	500	10,001	44.5	31.3	J-128
J-380	6,475	TRUE	Passed	500	6,476	30	39.6	J-51
J-382	6,990	TRUE	Passed	500	6,991	30	38.7	J-51
J-383	6,417	TRUE	Passed	500	6,418	30	39.6	J-51
J-384	6,705	TRUE	Passed	500	6,706	30	39.4	J-51
J-385	8,849	TRUE	Passed	500	8,850	30	35.5	J-128

J-386	9,526	TRUE	Passed	500	9,527	30	33.3	J-128
J-387	8,172	TRUE	Passed	500	8,173	30	35.7	J-388
J-388	6,138	TRUE	Passed	500	6,139	30	40	J-51
J-389	4,852	TRUE	Passed	500	4,853	30	33.8	J-390
J-390	1,827	TRUE	Passed	500	1,828	30	44.5	J-51
J-391	6,535	TRUE	Passed	500	6,536	30	39.3	J-51
J-392	10,000	TRUE	Passed	500	10,001	39.9	31.4	J-128
J-393	7,374	TRUE	Passed	500	7,375	30	37.9	J-430
J-394	8,680	TRUE	Passed	500	8,681	30	28.6	J-424
J-395	8,858	TRUE	Passed	500	8,859	30	26.3	J-425
J-396	10,000	TRUE	Passed	500	10,001	40.7	31.5	J-128
J-397	5,972	TRUE	Passed	500	5,973	30	27.8	J-398
J-398	1,618	TRUE	Passed	500	1,619	30	44.7	J-51
J-399	10,000	TRUE	Passed	500	10,001	64.6	30.7	J-128
J-401	1,629	TRUE	Passed	500	1,630	30	28.4	J-128
J-401	10,000	TRUE	Passed	500	10,001	62.4	33	J-128
J-402	10,000	TRUE	Passed	500	10,001	63.1	32.9	J-128
J-403	10,000	TRUE	Passed	500	10,001	41.9	33.2	J-128
J-404	9,673	TRUE	Passed	500	9,674	30	36.9	J-128
J-405	4,503	TRUE	Passed	500	4,504	30	42.8	J-51
J-406	10,000	TRUE	Passed	500	10,001	58.6	32.4	J-128
J-407	10,000	TRUE	Passed	500	10,001	65	32.4	J-128
J-408	10,000	TRUE	Passed	500	10,001	45.4	31.7	J-128
J-409	3,339	TRUE	Passed	500	3,340	30	43.4	J-51
J-410	10,000	TRUE	Passed	500	10,001	51.8	31.7	J-128
J-411	3,408	TRUE	Passed	500	3,409	30	43.4	J-51
J-412	10,000	TRUE	Passed	500	10,001	56.5	31.7	J-128
J-413	10,000	TRUE	Passed	500	10,001	62.5	31.1	J-128
J-414	10,000	TRUE	Passed	500	10,001	54.9	27.9	J-128
J-415	1,920	TRUE	Passed	500	1,921	30	44.5	J-51
J-416	10,000	TRUE	Passed	500	10,001	59.2	31.2	J-128
J-417	10,000	TRUE	Passed	500	10,001	55.6	31.6	J-128
J-418	5,278	TRUE	Passed	500	5,279	30	29.9	J-419
J-419	3,350	TRUE	Passed	500	3,351	30	43.5	J-51
J-420	10,000	TRUE	Passed	500	10,001	36	33.3	J-421
J-421	8,880	TRUE	Passed	500	8,881	30	31.8	J-423
J-422	6,481	TRUE	Passed	500	6,482	30	40	J-51
J-423	8,733	TRUE	Passed	500	8,734	30	32.8	J-422
J-424	4,541	TRUE	Passed	500	4,542	30	42.3	J-51
J-425	3,903	TRUE	Passed	500	3,904	30	42.9	J-51
J-426	8,996	TRUE	Passed	500	8,997	30	23.7	J-425
J-427	7,428	TRUE	Passed	500	7,429	30	34.1	J-424

1.420	0.024	TDUE		500	0.000	20	24.0	
J-428	8,821	TRUE	Passed	500	8,822	30	34.8	J-423
J-429	8,792	TRUE	Passed	500	8,793	30	34.9	J-428
J-430	3,756	TRUE	Passed	500	3,757	30	43.1	J-51
J-431	6,894	TRUE	Passed	500	6,895	30	30.9	J-432
J-432	2,187	TRUE	Passed	500	2,188	30	44.3	J-51
J-433	3,384	TRUE	Passed	500	3,385	30	30	J-237
J-434	10,000	TRUE	Passed	500	10,001	61.8	45	J-51
J-435	10,000	TRUE	Passed	500	10,001	63.1	45	J-51
J-436	10,000	TRUE	Passed	500	10,001	59.8	44.7	J-51
J-437	8,324	TRUE	Passed	500	8,325	30	44.5	J-51
J-439	6,583	TRUE	Passed	500	6,584	30	31.7	J-719
J-440	6,474	TRUE	Passed	500	6,475	30	32.1	J-1780
J-442	7,529	TRUE	Passed	500	7,530	30	27.5	J-443
J-443	2,062	TRUE	Passed	500	2,063	30	45.1	J-51
J-445	8,716	TRUE	Passed	500	8,717	30	30.8	J-455
J-447	5,984	TRUE	Passed	500	5,985	30	27.1	J-450
J-448	4,776	TRUE	Passed	500	4,777	30	39.8	J-450
J-449	5,678	TRUE	Passed	500	5,679	30	23.5	J-450
J-450	3,876	TRUE	Passed	500	3,877	30	44.6	J-51
J-451	5,476	TRUE	Passed	500	5,477	30	35	J-452
J-452	4,989	TRUE	Passed	500	4,990	30	31.8	J-458
J-453	4,641	TRUE	Passed	500	4,642	30	39.8	J-454
J-454	4,467	TRUE	Passed	500	4,469	30	42.9	J-453
J-455	5,948	TRUE	Passed	500	5,949	30	38.1	J-454
J-456	6,000	TRUE	Passed	500	6,001	30	37.1	J-455
J-457	4,779	TRUE	Passed	500	4,780	30	39.9	J-452
J-458	2,782	TRUE	Passed	500	2,783	30	44.8	J-51
J-459	2,708	TRUE	Passed	500	2,709	30	33.4	J-463
J-460	3,719	TRUE	Passed	500	3,720	30	33.5	J-459
J-461	1,536	TRUE	Passed	500	1,537	30	29.4	J-463
J-462	1,351	TRUE	Passed	500	1,352	30	37.4	J-463
J-463	1,236	TRUE	Passed	500	1,237	30	42.5	J-461
J-464	4,840	TRUE	Passed	500	4,841	30	38.1	J-457
J-465	4,994	TRUE	Passed	500	4,995	30	36.4	J-464
J-466	5,288	TRUE	Passed	500	5,289	30	37.6	J-465
J-467	5,959	TRUE	Passed	500	5,960	30	29	J-460
J-468	5,886	TRUE	Passed	500	5,887	30	33.5	J-459
J-469	6,429	TRUE	Passed	500	6,430	30	35.4	J-474
J-470	7,670	TRUE	Passed	500	7,671	30	42.2	J-51
J-470	10,000	TRUE	Passed	500	10,001	37.2	34.3	J-556
J-471 J-472	6,535	TRUE	Passed	500	6,536	30	40.8	J-473
J 7/4	0,333	INOL	rasseu	500	6,001	30	40.8	J-4/J

J-474	5,590	TRUE	Passed	500	5,591	30	43.7	J-51
J-475	5,160	TRUE	Passed	500	5,161	30	40.9	J-478
J-476	2,203	TRUE	Passed	500	2,204	30	41.3	J-477
J-477	2,232	TRUE	Passed	500	2,233	30	39.1	J-476
J-478	5,114	TRUE	Passed	500	5,115	30	39.5	J-475
J-479	5,254	TRUE	Passed	500	5,255	30	39.6	J-478
J-480	5,580	TRUE	Passed	500	5,581	30	37.7	J-479
J-481	5,922	TRUE	Passed	500	5,923	30	35.7	J-480
J-482	3,081	TRUE	Passed	500	3,082	30	25.8	J-485
J-483	1,896	TRUE	Passed	500	1,897	30	28.8	J-485
J-484	1,743	TRUE	Passed	500	1,744	30	34.1	J-485
J-485	1,415	TRUE	Passed	500	1,416	30	45.1	J-51
J-486	8,886	TRUE	Passed	500	8,887	30	41.1	1-FLOW
J-487	10,000	TRUE	Passed	500	10,001	38.4	43.1	J-51
J-489	10,000	TRUE	Passed	500	10,001	50.8	44.2	J-51
J-490	10,000	TRUE	Passed	500	10,001	36	38.5	J-437
J-491	10,000	TRUE	Passed	500	10,001	63	45.1	J-51
J-492	10,000	TRUE	Passed	500	10,001	48.3	43.4	J-51
J-493	9,464	TRUE	Passed	500	9,465	30	36.5	J-494
J-494	9,583	TRUE	Passed	500	9,584	30	35.2	J-493
J-497	10,000	TRUE	Passed	500	10,001	44.8	41.4	J-51
J-498	10,000	TRUE	Passed	500	10,001	47	42.5	J-51
J-499	10,000	TRUE	Passed	500	10,001	40.1	39.2	J-500
J-500	6,438	TRUE	Passed	500	6,439	30	43.9	J-51
J-501	10,000	TRUE	Passed	500	10,001	40.8	41.6	J-508
J-502	5,933	TRUE	Passed	500	5,934	30	32.2	J-554
J-504	4,843	TRUE	Passed	500	4,844	30	33.9	J-707
J-505	4,122	TRUE	Passed	500	4,123	30	44.4	J-51
J-507	4,120	TRUE	Passed	500	4,121	30	33	J-508
J-508	4,119	TRUE	Passed	500	4,120	30	34	J-507
J-509	4,844	TRUE	Passed	500	4,845	30	30.7	J-508
J-510	5,519	TRUE	Passed	500	5,520	30	32.6	J-513
J-511	2,211	TRUE	Passed	500	2,212	30	37.8	J-513
J-513	2,253	TRUE	Passed	500	2,254	30	37.5	J-514
J-514	2,545	TRUE	Passed	500	2,546	30	29.3	J-513
J-516	4,807	TRUE	Passed	500	4,808	30	38	J-508
J-517	5,257	TRUE	Passed	500	5,258	30	30.2	J-549
J-518	4,780	TRUE	Passed	500	4,781	30	26.2	J-549
J-519	5,138	TRUE	Passed	500	5,139	30	29.6	J-508
J-520	4,833	TRUE	Passed	500	4,834	30	34.4	J-526
J-521	4,082	TRUE	Passed	500	4,083	30	38.8	J-603
J-522	4,308	TRUE	Passed	500	4,309	30	27.5	J-603

J-523	4,869	TRUE	Passed	500	4,870	30	27.8	J-603
J-524	4,592	TRUE	Passed	500	4,593	30	31	J-521
J-525	5,022	TRUE	Passed	500	5,023	30	33.8	J-521
J-526	4,775	TRUE	Passed	500	4,776	30	35.8	J-520
J-527	4,969	TRUE	Passed	500	4,970	30	34.6	J-528
I-528	4,605	TRUE	Passed	500	4,606	30	37.8	J-610
I-529	4,710	TRUE	Passed	500	4,711	30	39.3	J-613
J-530	4,728	TRUE	Passed	500	4,729	30	41.2	J-529
-531	2,798	TRUE	Passed	500	2,799	30	44.5	J-51
-532	3,038	TRUE	Passed	500	3,039	30	44.5	J-51
I-533	8,168	TRUE	Passed	500	8,169	30	34.7	J-616
-534	8,765	TRUE	Passed	500	8,766	30	29.7	J-535
-535	8,115	TRUE	Passed	500	8,116	30	30.9	J-536
-536	7,277	TRUE	Passed	500	7,278	30	36.8	J-535
-537	8,322	TRUE	Passed	500	8,323	30	35.7	J-647
-538	8,816	TRUE	Passed	500	8,817	30	37	J-648
-539	10,000	TRUE	Passed	500	10,001	30.3	31.4	J-538
-540	2,916	TRUE	Passed	500	2,917	30	42.5	J-648
-541	3,153	TRUE	Passed	500	3,154	30	44.3	J-51
-542	6,304	TRUE	Passed	500	6,305	30	41	J-644
-543	8,529	TRUE	Passed	500	8,530	30	35	J-542
-544	9,530	TRUE	Passed	500	9,531	30	33.8	J-546
-545	5,232	TRUE	Passed	500	5,233	30	29.6	J-546
-546	2,022	TRUE	Passed	500	2,023	30	44.9	J-51
-547	4,903	TRUE	Passed	500	4,904	30	30.7	J-548
-548	1,755	TRUE	Passed	500	1,756	30	45	J-51
-549	1,604	TRUE	Passed	500	1,605	30	45	J-51
-550	4,233	TRUE	Passed	500	4,234	30	29.7	J-552
-551	2,825	TRUE	Passed	500	2,826	30	44.7	J-51
-552	2,276	TRUE	Passed	500	2,277	30	44.9	J-51
-553	4,292	TRUE	Passed	500	4,293	30	29.9	J-554
-554	2,593	TRUE	Passed	500	2,594	30	44.9	J-51
-555	10,000	TRUE	Passed	500	10,001	31.1	32.7	J-556
-556	3,867	TRUE	Passed	500	3,868	30	44.2	J-51
-557	3,427	TRUE	Passed	500	3,428	30	30.9	J-558
-558	1,747	TRUE	Passed	500	1,748	30	45	J-51
-559	10,000	TRUE	Passed	500	10,001	35.5	37.2	J-557
-560	10,000	TRUE	Passed	500	10,001	44.2	41.2	J-51
-561	3,556	TRUE	Passed	500	3,557	30	44.2	J-51
-562	10,000	TRUE	Passed	500	10,001	31	34.9	J-556
-563	2,732	TRUE	Passed	500	2,733	30	44.5	J-51
-564	10,000	TRUE	Passed	500	10,001	31.6	34.6	J-563

J-565	10,000	TRUE	Passed	500	10,001	34.3	37.9	J-556
J-566	7,772	TRUE	Passed	500	7,773	30	41.2	J-51
J-567	9,726	TRUE	Passed	500	9,727	30	36.7	J-578
J-568	8,576	TRUE	Passed	500	8,577	30	37.1	J-574
J-569	7,099	TRUE	Passed	500	7,100	30	37.9	J-570
J-570	6,469	TRUE	Passed	500	6,470	30	42	J-51
J-571	6,875	TRUE	Passed	500	6,876	30	39	J-574
I-572	8,285	TRUE	Passed	500	8,286	30	19.8	J-574
-573	4,634	TRUE	Passed	500	4,635	30	43.3	J-51
-574	7,335	TRUE	Passed	500	7,336	30	33.1	J-571
-576	10,000	TRUE	Passed	500	10,001	32.4	35.6	J-568
-577	10,000	TRUE	Passed	500	10,001	32.2	34.7	J-578
-578	3,048	TRUE	Passed	500	3,049	30	44.3	J-51
-579	4,059	TRUE	Passed	500	4,060	30	43.8	J-51
-580	4,137	TRUE	Passed	500	4,138	30	43.8	J-51
-581	3,913	TRUE	Passed	500	3,914	30	43.8	J-51
-582	6,161	TRUE	Passed	500	6,162	30	38.9	J-581
-583	6,733	TRUE	Passed	500	6,734	30	41.5	J-51
-584	7,665	TRUE	Passed	500	7,666	30	36.8	J-585
-585	5,848	TRUE	Passed	500	5,849	30	38.6	J-587
-587	5,417	TRUE	Passed	500	5,418	30	38.1	J-588
-588	5,056	TRUE	Passed	500	5,057	30	42.8	J-51
-589	5,231	TRUE	Passed	500	5,232	30	38.6	J-588
-590	6,705	TRUE	Passed	500	6,706	30	28.6	J-591
-591	6,128	TRUE	Passed	500	6,129	30	36.1	J-590
-592	6,232	TRUE	Passed	500	6,233	30	37.4	J-614
-593	4,798	TRUE	Passed	500	4,799	30	38.8	J-613
-594	5,075	TRUE	Passed	500	5,076	30	27.9	J-596
-595	3,977	TRUE	Passed	500	3,978	30	28	J-596
-596	3,273	TRUE	Passed	500	3,274	30	36.2	J-597
-597	3,444	TRUE	Passed	500	3,445	30	32.1	J-596
-598	3,616	TRUE	Passed	500	3,617	30	32.4	J-597
-599	4,428	TRUE	Passed	500	4,429	30	35.6	J-596
-601	3,786	TRUE	Passed	500	3,787	30	41.1	J-708
-602	5,036	TRUE	Passed	500	5,037	30	32.3	J-521
-603	2,250	TRUE	Passed	500	2,251	30	44.8	J-51
-604	5,126	TRUE	Passed	500	5,127	30	33.9	J-596
-605	3,489	TRUE	Passed	500	3,490	30	32.4	J-596
-606	3,632	TRUE	Passed	500	3,633	30	30.8	J-596
-607	4,759	TRUE	Passed	500	4,760	30	34.8	J-596
-608	4,894	TRUE	Passed	500	4,895	30	35.5	J-596
-609	4,932	TRUE	Passed	500	4,933	30	34.4	J-610

	. =0.0			-aa		20	20.0	
J-610	4,736	TRUE	Passed	500	4,737	30	36.6	J-528
J-611	5,234	TRUE	Passed	500	5,235	30	31.2	J-612
J-612	4,419	TRUE	Passed	500	4,420	30	39.8	J-610
J-613	4,388	TRUE	Passed	500	4,389	30	42.1	J-593
J-614	6,493	TRUE	Passed	500	6,494	30	35.1	J-615
J-615	6,800	TRUE	Passed	500	6,801	30	30.9	J-614
J-616	6,917	TRUE	Passed	500	6,918	30	32.8	J-615
J-617	6,377	TRUE	Passed	500	6,378	30	40.5	3-FLOW
J-620	7,340	TRUE	Passed	500	7,341	30	28.9	J-617
J-621	8,987	TRUE	Passed	500	8,988	30	29	J-617
J-622	8,590	TRUE	Passed	500	8,591	30	33.2	J-626
J-623	8,736	TRUE	Passed	500	8,737	30	35.1	J-617
J-625	9,669	TRUE	Passed	500	9,670	30	28.8	J-623
J-626	8,404	TRUE	Passed	500	8,405	30	33.4	J-627
I-627	8,326	TRUE	Passed	500	8,328	30	35	J-628
J-628	8,531	TRUE	Passed	500	8,532	30	33.7	J-627
J-629	9,005	TRUE	Passed	500	9,006	30	31.7	J-628
J-630	9,202	TRUE	Passed	500	9,203	30	32.2	J-629
I-631	9,214	TRUE	Passed	500	9,215	30	36.3	J-630
I-632	4,893	TRUE	Passed	500	4,894	30	30	J-633
I-633	2,931	TRUE	Passed	500	2,932	30	44.2	J-51
J-634	7,567	TRUE	Passed	500	7,568	30	30.3	J-633
J-636	9,834	TRUE	Passed	500	9,835	30	33.6	J-631
J-637	3,584	TRUE	Passed	500	3,585	30	43.9	J-51
J-638	10,000	TRUE	Passed	500	10,001	31.7	35.2	J-539
J-639	10,000	TRUE	Passed	500	10,001	35.5	37.8	J-51
J-640	10,000	TRUE	Passed	500	10,001	31.6	36.9	J-641
J-641	5,231	TRUE	Passed	500	5,232	30	42.9	J-51
I-642	3,811	TRUE	Passed	500	3,812	30	43.9	J-51
I-643	2,916	TRUE	Passed	500	2,917	30	44.4	J-51
I-644	5,016	TRUE	Passed	500	5,017	30	37.4	J-645
J-645	2,534	TRUE	Passed	500	2,535	30	44.6	J-51
J-646	7,002	TRUE	Passed	500	7,003	30	39.2	J-648
J-647	4,566	TRUE	Passed	500	4,567	30	43.5	J-51
J-648	2,765	TRUE	Passed	500	2,766	30	44.5	J-51
J-649	3,486	TRUE	Passed	500	3,487	30	29.8	J-650
J-650	1,758	TRUE	Passed	500	1,759	30	44.9	J-51
J-651	7,438	TRUE	Passed	500	7,439	30	29.4	J-652
J-652	2,872	TRUE	Passed	500	2,873	30	44.5	J-51
J-655	6,996	TRUE	Passed	500	6,997	30	31.6	J-656
J-656	3,367	TRUE	Passed	500	3,369	30	44.2	J-51
J-657	10,000	TRUE	Passed	500	10,001	33.4	36.5	J-128

J-659	10,000	TRUE	Passed	500	10,001	32.6	32.8	J-568
J-659	10,000	TRUE	Passed	500	10,001	37.7	36.4	J-128
J-660	10,000	TRUE	Passed	500	10,001	39.1	36.2	J-128
J-661	798	TRUE	Passed	500	803	30	45.1	J-51
J-662	10,000	TRUE	Passed	500	10,001	52.7	35.1	J-128
J-663	10,000	TRUE	Passed	500	10,001	43.8	36	J-128
J-664	10,000	TRUE	Passed	500	10,001	31.9	37.3	J-128
J-665	10,000	TRUE	Passed	500	10,001	34.4	37.7	J-51
J-666	10,000	TRUE	Passed	500	10,001	41	38.4	J-51
J-667	9,292	TRUE	Passed	500	9,293	30	34.6	J-51
J-668	10,000	TRUE	Passed	500	10,001	47.7	40.5	J-51
J-669	4,035	TRUE	Passed	500	4,036	30	40.7	J-21
J-670	4,588	TRUE	Passed	500	4,589	30	33.8	J-21
J-673	10,000	TRUE	Passed	500	10,001	38.2	37.1	J-128
J-674	4,074	TRUE	Passed	500	4,075	30	43.5	J-51
J-675	3,800	TRUE	Passed	500	3,801	30	43.1	J-51
J-676	5,344	TRUE	Passed	500	5,345	30	31	J-675
J-677	2,324	TRUE	Passed	500	2,325	30	29.3	J-678
J-678	1,736	TRUE	Passed	500	1,737	30	44.6	J-51
J-680	2,925	TRUE	Passed	500	2,925	30	24.2	J-128
J-682	2,571	TRUE	Passed	500	2,571	30	24.9	J-128
J-689	2,306	TRUE	Passed	500	2,331	30	44.2	J-51
J-696	2,673	TRUE	Passed	500	2,678	30	29.2	J-51
J-697	2,601	TRUE	Passed	500	2,601	30	22.5	J-128
J-707	4,613	TRUE	Passed	500	4,613	30	35.4	J-708
J-708	4,344	TRUE	Passed	500	4,344	30	34.7	J-1549
J-719	4,428	TRUE	Passed	500	4,428	30	39.7	J-724
J-724	4,266	TRUE	Passed	500	4,266	30	34.1	J-1780
J-726	5,293	TRUE	Passed	500	5,293	30	35.9	J-1334
J-727	7,584	TRUE	Passed	500	7,584	30	44.7	J-51
J-731	5,515	TRUE	Passed	500	5,516	30	39.4	J-51
J-904	6,539	TRUE	Passed	500	6,540	30	38.1	J-51
J-1031	9,015	TRUE	Passed	500	9,016	30	34.8	J-128
J-1082	10,000	TRUE	Passed	500	10,001	58.6	34.7	J-128
J-1184	9,002	TRUE	Passed	500	9,003	30	37.6	J-439
J-1201	7,851	TRUE	Passed	500	7,852	30	26.1	J-455
J-1296	10,000	TRUE	Passed	500	10,001	42.6	43.3	J-51
J-1334	5,303	TRUE	Passed	500	5,304	30	33.7	J-504
J-1340	3,808	TRUE	Passed	500	3,809	30	39.2	J-508
J-1549	4,627	TRUE	Passed	500	4,628	30	28.4	J-708
J-1642	8,473	TRUE	Passed	500	8,474	30	39.4	J-51
J-1704	10,000	TRUE	Passed	500	10,001	38.5	35.8	J-568

J-1780	4,346	TRUE	Passed	500	4,346	30	32.4	J-724
J-1806	2,255	TRUE	Passed	500	2,255	30	32.6	J-128
	3: 12-Inch SE E	xpansion - No I		nes	, ==			
		<u> </u>		vas lowered to 24 psi				
1-FLOW	9,334	TRUE	Passed	500	9,335	24	18.7	J-692
1-RES	3,305	TRUE	Passed	500	3,308	24	23.4	J-692
2-FLOW	7,904	TRUE	Passed	500	7,905	24	21.7	J-692
2-RES	4,364	TRUE	Passed	500	4,365	24	23.4	J-692
3-FLOW	3,020	TRUE	Passed	500	3,022	24	22.5	J-692
3-RES	2,578	TRUE	Passed	500	2,579	24	23	J-692
4-FLOW	3,646	TRUE	Passed	500	3,647	24	22.3	J-692
4-RES	2,638	TRUE	Passed	500	2,639	24	23.2	J-692
5-FLOW	3,976	TRUE	Passed	500	3,977	24	18.1	J-692
5-RES	2,071	TRUE	Passed	500	2,072	24	22.2	J-692
6-FLOW	2,148	TRUE	Passed	500	2,149	24	23.4	J-692
6-RES	1,395	TRUE	Passed	500	1,396	24	24	J-692
7-FLOW	2,345	TRUE	Passed	500	2,346	24	21.1	J-692
7-PLOVV 7-RES	2,107	TRUE	Passed	500	2,108	24	21.1	J-692
J-1	5,672	TRUE	Passed	500	5,673	24	14.1	J-692
J-2	7,775	TRUE	Passed	500	7,776	24	10.1	J-692
J-3	8,414	TRUE	Passed	500	8,415	24	10.1	J-692
J-11	8,955	TRUE	Passed	500	8,956	24	10.5	J-692
J-11 J-12	8,613	TRUE	Passed	500	8,614	24	9.4	J-692
J-12 J-13	5,131	TRUE	Passed	500	5,132	24	17.2	J-692
J-13 J-14	4,137	TRUE	Passed	500	4,138	24	19.3	J-692
J-14 J-15	7,999	TRUE	Passed	500	8,000	24	10.1	J-692
J-15 J-17	6,330	TRUE		500	6,331	24	14.2	J-692
		TRUE	Passed	500				
J-18 J-19	10,000 10,000	TRUE	Passed	500	10,001 10,001	58.4 24.4	21.8	J-692
J-19 J-20	4,501	TRUE	Passed	500	4,502	24.4	21.3	J-692
J-20 J-21	4,604	TRUE	Passed Passed	500	4,605	24	21.3	J-692
J-21 J-22		TRUE		500	-	24	23.5	
J-22 J-23	2,209	TRUE	Passed		2,210		23.5	J-692
J-23 J-24	4,063		Passed	500	4,064	24	23.5	J-692
	2,075	TRUE	Passed	500	2,076	24		
J-25	3,617	TRUE	Passed	500	3,618	24	22.2	J-692
J-26	2,002	TRUE	Passed	500	2,003	24	23.6	J-692
J-27	3,721	TRUE	Passed	500	3,723	24	22	J-692
J-28	2,303	TRUE	Passed	500	2,304	24	23.3	J-692
J-29	4,045	TRUE	Passed	500	4,046	24	21.5	J-692
J-30	7,013	TRUE	Passed	500	7,014	24	16.6	J-692
J-31	2,839	TRUE	Passed	500	2,840	24	21.5	J-692
J-33	3,112	TRUE	Passed	500	3,113	24	21	J-692

J-34	3,039	TRUE	Passed	500	3,040	24	21.1	J-692
J-35	3,751	TRUE	Passed	500	3,752	24	19.8	J-692
J-36	5,077	TRUE	Passed	500	5,078	24	16.8	J-692
J-37	5,663	TRUE	Passed	500	5,664	24	16.1	J-692
J-38	5,289	TRUE	Passed	500	5,290	24	15.7	J-692
J-39	4,664	TRUE	Passed	500	4,665	24	18	J-692
J-40	4,588	TRUE	Passed	500	4,589	24	18	J-692
J-41	5,353	TRUE	Passed	500	5,354	24	15.6	J-692
J-42	3,267	TRUE	Passed	500	3,268	24	20	J-692
J-43	4,575	TRUE	Passed	500	4,576	24	16.8	J-692
J-44	2,443	TRUE	Passed	500	2,444	24	21.7	J-692
J-45	2,600	TRUE	Passed	500	2,601	24	21.3	J-692
J-46	3,336	TRUE	Passed	500	3,337	24	19.8	J-692
J-47	2,204	TRUE	Passed	500	2,205	24	22.1	J-692
J-48	2,888	TRUE	Passed	500	2,889	24	20.8	J-692
J-49	3,382	TRUE	Passed	500	3,383	24	19.8	J-692
J-50	2,616	TRUE	Passed	500	2,617	24	21.3	J-692
J-51	1,140	TRUE	Passed	500	1,141	24	23.6	J-692
J-52	2,780	TRUE	Passed	500	2,781	24	20.7	J-51
J-53	2,350	TRUE	Passed	500	2,351	24	21.7	J-692
J-54	2,530	TRUE	Passed	500	2,531	24	21.3	J-692
J-55	2,061	TRUE	Passed	500	2,062	24	22.2	J-692
J-56	2,393	TRUE	Passed	500	2,394	24	21.6	J-692
J-57	2,310	TRUE	Passed	500	2,311	24	21.8	J-692
J-58	2,539	TRUE	Passed	500	2,540	24	21.3	J-692
J-58	2,867	TRUE	Passed	500	2,868	24	20.7	J-692
	2,635	TRUE		500		24	21.1	J-692
J-60			Passed	500	2,636	24		
J-61 J-64	4,148	TRUE TRUE	Passed	500	4,149	24	17.7 17.6	J-692 J-692
	4,077 4,147	TRUE	Passed	500	4,078	24	17.8	J-692 J-692
J-65			Passed		4,148			
J-66	5,154	TRUE	Passed	500	5,155	24	15.4	J-692
J-67	4,614	TRUE	Passed	500	4,615		16.8	J-692
J-68	4,927	TRUE	Passed	500	4,928	24	16	J-692
J-69	2,747	TRUE	Passed	500	2,748	24	21.2	J-692
J-70	4,018	TRUE	Passed	500	4,019	24	18.5	J-692
J-71	3,394	TRUE	Passed	500	3,395	24	19.9	J-692
J-72	3,375	TRUE	Passed	500	3,376	24	20	J-692
J-73	1,309	TRUE	Passed	500	1,310	24	23.5	J-692
J-74	3,345	TRUE	Passed	500	3,346	24	20.1	J-692
J-75	5,136	TRUE	Passed	500	5,137	24	15.8	J-692
J-76	4,849	TRUE	Passed	500	4,850	24	16.4	J-692
J-77	4,706	TRUE	Passed	500	4,707	24	16.5	J-692

J-78	5,348	TRUE	Passed	500	5,349	24	15.4	J-692
J-79	4,413	TRUE	Passed	500	4,414	24	17.8	J-692
J-80	4,930	TRUE	Passed	500	4,931	24	16.6	J-692
J-81	5,183	TRUE	Passed	500	5,184	24	15.6	J-692
J-82	5,953	TRUE	Passed	500	5,954	24	14.2	J-692
J-83	6,087	TRUE	Passed	500	6,088	24	13.8	J-692
J-84	6,088	TRUE	Passed	500	6,089	24	13.8	J-692
J-85	5,610	TRUE	Passed	500	5,611	24	14.9	J-692
J-86	5,303	TRUE	Passed	500	5,304	24	15.6	J-692
J-87	4,657	TRUE	Passed	500	4,659	24	17.5	J-692
J-88	4,075	TRUE	Passed	500	4,076	24	18.8	J-692
J-89	5,157	TRUE	Passed	500	5,158	24	15.9	J-692
J-90	3,868	TRUE	Passed	500	3,869	24	19.1	J-692
J-91	1,856	TRUE	Passed	500	1,857	24	22.8	J-692
J-92	6,287	TRUE	Passed	500	6,288	24	11.8	J-692
J-93	5,141	TRUE	Passed	500	5,142	24	15.6	J-692
J-94	6,258	TRUE	Passed	500	6,259	24	12	J-692
J-95	7,336	TRUE	Passed	500	7,338	24	10.9	J-692
J-96	6,168	TRUE	Passed	500	6,169	24	13	J-692
J-97	6,345	TRUE	Passed	500	6,346	24	11.6	J-692
J-98	6,507	TRUE	Passed	500	6,508	24	10.5	J-692
J-99	3,629	TRUE	Passed	500	3,630	24	14.1	J-692
J-100	5,146	TRUE	Passed	500	5,147	24	6	J-692
J-101	3,341	TRUE	Passed	500	3,342	24	15.2	J-692
J-102	5,256	TRUE	Passed	500	5,257	24	4.7	J-692
J-103	4,766	TRUE	Passed	500	4,767	24	4.1	J-692
J-104	4,138	TRUE	Passed	500	4,139	24	8.1	J-692
J-105	4,817	TRUE	Passed	500	4,818	24	3	J-692
J-106	4,599	TRUE	Passed	500	4,600	24	4.7	J-692
J-107	4,396	TRUE	Passed	500	4,397	24	6.5	J-692
J-108	4,661	TRUE	Passed	500	4,662	24	4.3	J-692
J-109	4,665	TRUE	Passed	500	4,666	24	4.4	J-692
J-110	4,422	TRUE	Passed	500	4,423	24	6.5	J-692
J-111	4,017	TRUE	Passed	500	4,018	24	9.3	J-692
J-112	3,577	TRUE	Passed	500	3,578	24	12.2	J-692
J-113	3,091	TRUE	Passed	500	3,092	24	14.7	J-692
J-114	2,847	TRUE	Passed	500	2,848	24	15.6	J-692
J-115	3,418	TRUE	Passed	500	3,419	24	12.4	J-692
J-116	2,656	TRUE	Passed	500	2,657	24	16.5	J-692
J-117	3,111	TRUE	Passed	500	3,112	24	14.1	J-692
J-118	2,118	TRUE	Passed	500	2,119	24	22.6	J-692
J-118	2,778	TRUE	Passed	500	2,779	24	15.8	J-692

J-119	3,226	TRUE	Passed	500	3,227	24	13.3	J-692
J-121	2,477	TRUE	Passed	500	2,478	24	17.1	J-692
J-122	3,299	TRUE	Passed	500	3,300	24	12.7	J-692
J-123	4,087	TRUE	Passed	500	4,112	29.6	0	J-692
J-124	4,768	TRUE	Passed	500	4,769	24	0.9	J-692
J-125	3,210	TRUE	Passed	500	3,211	24	11.7	J-692
J-126	4,017	TRUE	Passed	500	4,018	24	6	J-692
J-127	3,224	TRUE	Passed	500	3,225	24	11.8	J-692
J-128	1,322	TRUE	Passed	500	1,323	24	21.5	J-692
J-129	2,958	TRUE	Passed	500	2,959	24	13.5	J-692
J-130	2,992	TRUE	Passed	500	2,993	24	13.5	J-692
J-133	3,007	TRUE	Passed	500	3,008	24	13.5	J-692
J-134	2,496	TRUE	Passed	500	2,497	24	16.5	J-692
J-135	2,753	TRUE	Passed	500	2,754	24	15.1	J-692
J-136	3,083	TRUE	Passed	500	3,084	24	13.2	J-692
J-137	3,270	TRUE	Passed	500	3,271	24	12	J-692
J-138	3,607	TRUE	Passed	500	3,608	24	9.9	J-692
J-139	4,846	TRUE	Passed	500	4,847	24	4.7	J-692
J-140	3,103	TRUE	Passed	500	3,104	24	14.9	J-692
J-141	3,387	TRUE	Passed	500	3,388	24	13.4	J-692
J-142	4,501	TRUE	Passed	500	4,502	24	5.5	J-692
J-143	5,207	TRUE	Passed	500	5,208	24	0.3	J-692
J-144	5,096	TRUE	Passed	500	5,097	24.1	0	J-692
J-145	3,519	TRUE	Passed	500	3,520	24	11.4	J-692
J-146	5,152	TRUE	Passed	500	5,153	24.4	0	J-692
J-147	5,072	TRUE	Passed	500	5,073	24	0.9	J-692
J-148	5,296	TRUE	Passed	500	5,297	24.3	0	J-692
J-149	5,587	TRUE	Passed	500	5,588	24	1.7	J-692
J-150	5,373	TRUE	Passed	500	5,374	24	5.4	J-692
J-151	5,325	TRUE	Passed	500	5,326	24	2.6	J-692
J-152	2,777	TRUE	Passed	500	2,778	24	18.4	J-692
J-153	5,678	TRUE	Passed	500	5,679	24	4.8	J-692
J-154	5,419	TRUE	Passed	500	5,420	24	6.3	J-692
J-155	3,439	TRUE	Passed	500	3,440	24	18.1	J-692
J-156	3,415	TRUE	Passed	500	3,416	24	18.5	J-692
J-157	3,647	TRUE	Passed	500	3,648	24	17.5	J-692
J-158	2,938	TRUE	Passed	500	2,939	24	18.2	J-692
J-159	4,029	TRUE	Passed	500	4,030	24	13.9	J-692
J-160	4,199	TRUE	Passed	500	4,200	24	12.7	J-692
J-161	4,174	TRUE	Passed	500	4,175	24	12.6	J-692
J-162	4,222	TRUE	Passed	500	4,223	24	12.5	J-692
J-163	3,698	TRUE	Passed	500	3,699	24	14.7	J-692

1.164	4.005	TDUE	Descri	F00	4.000	24	12.2	1.002
J-164	4,005	TRUE TRUE	Passed	500 500	4,006	24	13.3	J-692
J-165	4,342		Passed		4,343	24	11.6	J-692
J-166	5,645	TRUE	Passed	500	5,646	24	0.4	J-692
J-167	2,503	TRUE	Passed	500	2,504	24	19.3	J-692
J-168	3,079	TRUE	Passed	500	3,080	24	17.2	J-692
J-169	3,825	TRUE	Passed	500	3,826	24	14.1	J-692
J-170	5,278	TRUE	Passed	500	5,279	24	2.8	J-692
J-171	2,541	TRUE	Passed	500	2,542	24	18.1	J-692
J-172	4,672	TRUE	Passed	500	4,673	24	2.5	J-692
J-173	3,634	TRUE	Passed	500	3,635	24	10.1	J-692
J-174	3,707	TRUE	Passed	500	3,708	24	9.6	J-692
J-175	4,390	TRUE	Passed	500	4,391	24	4.6	J-692
J-176	3,558	TRUE	Passed	500	3,559	24	10.5	J-692
J-177	2,442	TRUE	Passed	500	2,443	24	17	J-692
J-178	3,045	TRUE	Passed	500	3,046	24	13.7	J-692
J-179	1,220	TRUE	Passed	500	1,221	24	22	J-692
J-180	1,540	TRUE	Passed	500	1,541	24	20.6	J-692
J-181	3,276	TRUE	Passed	500	3,277	24	12.3	J-692
J-183	9,289	TRUE	Passed	500	9,290	36.4	0	J-692
J-184	778	TRUE	Passed	500	779	24	24.1	J-692
J-185	7,547	TRUE	Passed	500	7,548	24	7.2	J-692
J-186	5,267	TRUE	Passed	500	5,268	24	15	J-692
J-187	5,496	TRUE	Passed	500	5,497	24	14.1	J-692
J-188	4,168	TRUE	Passed	500	4,169	24	17.9	J-692
J-189	5,228	TRUE	Passed	500	5,229	24	14.4	J-692
J-190	5,273	TRUE	Passed	500	5,274	24	14.6	J-692
J-191	4,524	TRUE	Passed	500	4,525	24	16.7	J-692
J-192	3,942	TRUE	Passed	500	3,943	24	17.9	J-692
J-193	3,878	TRUE	Passed	500	3,879	24	17.4	J-692
J-194	3,288	TRUE	Passed	500	3,289	24	18.7	J-692
J-195	2,565	TRUE	Passed	500	2,566	24	20.6	J-692
J-196	2,126	TRUE	Passed	500	2,127	24	21.6	J-692
J-197	2,300	TRUE	Passed	500	2,301	24	21.2	J-692
J-200	5,183	TRUE	Passed	500	5,184	24	15.3	J-692
J-201	4,571	TRUE	Passed	500	4,572	24	17	J-692
J-202	5,023	TRUE	Passed	500	5,024	24	15.8	J-692
J-203	4,995	TRUE	Passed	500	4,996	24	16	J-692
J-204	3,849	TRUE	Passed	500	3,850	24	18.9	J-692
J-205	3,134	TRUE	Passed	500	3,135	24	20.4	J-692
J-206	4,208	TRUE	Passed	500	4,209	24	18	J-692
J-207	3,469	TRUE	Passed	500	3,470	24	19.7	J-692
J-208	5,616	TRUE	Passed	500	5,617	24	14.5	J-692

J-209	4,275	TRUE	Passed	500	4,276	24	18.1	J-692
J-210	7,271	TRUE	Passed	500	7,272	24	11	J-692
J-211	6,180	TRUE	Passed	500	6,181	24	15.5	J-692
J-212	4,951	TRUE	Passed	500	4,952	24	18.3	J-692
J-213	3,817	TRUE	Passed	500	3,818	24	20.5	J-692
J-214	3,003	TRUE	Passed	500	3,004	24	21.8	J-692
J-215	2,508	TRUE	Passed	500	2,509	24	22.5	J-692
J-216	880	TRUE	Passed	500	881	24	24.2	J-692
J-217	3,614	TRUE	Passed	500	3,615	24	20.8	J-692
J-218	2,012	TRUE	Passed	500	2,013	24	23.1	J-692
J-219	4,393	TRUE	Passed	500	4,394	24	19.5	J-692
J-220	2,098	TRUE	Passed	500	2,099	24	23	J-692
J-221	2,514	TRUE	Passed	500	2,515	24	22.5	J-692
J-222	4,864	TRUE	Passed	500	4,865	24	18.6	J-692
J-223	5,361	TRUE	Passed	500	5,362	24	17.6	J-692
J-224	6,227	TRUE	Passed	500	6,228	24	15.7	J-692
J-225	6,449	TRUE	Passed	500	6,450	24	15.2	J-692
J-226	8,207	TRUE	Passed	500	8,208	24	10.4	J-692
J-227	6,763	TRUE	Passed	500	6,764	24	11.1	J-692
J-228	5,374	TRUE	Passed	500	5,375	24	14.9	J-692
J-229	5,285	TRUE	Passed	500	5,286	24	15.2	J-692
J-230	3,160	TRUE	Passed	500	3,161	24	20.6	J-692
J-231	4,895	TRUE	Passed	500	4,896	24	16.5	J-692
J-232	5,441	TRUE	Passed	500	5,442	24	15.2	J-692
J-233	7,089	TRUE	Passed	500	7,090	24	10.6	J-692
J-234	9,918	TRUE	Passed	500	9,919	42.2	0	J-692
J-235	10,000	TRUE	Passed	500	10,001	49.8	1.5	J-692
J-236	2,566	TRUE	Passed	500	2,567	24	20.5	J-692
J-237	2,139	TRUE	Passed	500	2,140	24	21.5	J-692
J-238	1,177	TRUE	Passed	500	1,178	24	23.3	J-692
J-239	10,000	TRUE	Passed	500	10,001	29.7	6.7	J-692
J-240	10,000	TRUE	Passed	500	10,001	28.1	6.8	J-692
J-241	8,752	TRUE	Passed	500	8,753	24	12	J-692
J-242	8,573	TRUE	Passed	500	8,574	24	14.8	J-692
J-243	10,000	TRUE	Passed	500	10,001	25.1	10.9	J-692
J-244	5,662	TRUE	Passed	500	5,663	24	19	J-692
J-245	10,000	TRUE	Passed	500	10,001	27	12.5	J-692
J-246	9,694	TRUE	Passed	500	9,695	24	16.8	J-692
J-247	10,000	TRUE	Passed	500	10,001	39.7	14.3	J-692
J-248	7,696	TRUE	Passed	500	7,697	24	16.9	J-692
J-249	2,649	TRUE	Passed	500	2,650	24	23.1	J-250
J-250	1,453	TRUE	Passed	500	1,454	24	24.1	J-692

J-251	7,953	TRUE	Passed	500	7,954	24	16.6	J-692
J-252	7,881	TRUE	Passed	500	7,882	24	17.1	J-692
J-253	3,421	TRUE	Passed	500	3,422	24	22.8	J-692
J-254	8,499	TRUE	Passed	500	8,500	24	15.5	J-692
J-255	7,818	TRUE	Passed	500	7,819	24	16.8	J-692
J-256	4,527	TRUE	Passed	500	4,528	24	21.3	J-692
J-257	7,763	TRUE	Passed	500	7,764	24	16.7	J-692
J-258	7,728	TRUE	Passed	500	7,729	24	16.7	J-692
J-259	4,814	TRUE	Passed	500	4,815	24	21	J-692
J-260	6,836	TRUE	Passed	500	6,837	24	18.2	J-692
J-262	7,876	TRUE	Passed	500	7,877	24	16.9	J-692
J-263	4,626	TRUE	Passed	500	4,627	24	21.2	J-692
J-264	8,402	TRUE	Passed	500	8,403	24	16.2	J-692
J-265	4,337	TRUE	Passed	500	4,338	24	21.5	J-692
J-266	3,050	TRUE	Passed	500	3,051	24	22.8	J-692
J-267	6,654	TRUE	Passed	500	6,655	24	18.5	J-692
J-268	5,853	TRUE	Passed	500	5,854	24	19.7	J-692
J-269	6,804	TRUE	Passed	500	6,805	24	18.3	J-692
J-270	8,275	TRUE	Passed	500	8,276	24	15.6	J-692
J-271	7,059	TRUE	Passed	500	7,060	24	17.8	J-692
J-272	7,090	TRUE	Passed	500	7,091	24	17.3	J-692
J-273	5,396	TRUE	Passed	500	5,397	24	19.9	J-692
J-274	4,980	TRUE	Passed	500	4,981	24	20.4	J-692
J-275	6,711	TRUE	Passed	500	6,712	24	17.8	J-692
J-276	6,489	TRUE	Passed	500	6,490	24	18.2	J-692
J-277	6,532	TRUE	Passed	500	6,533	24	17.9	J-692
J-278	4,813	TRUE	Passed	500	4,814	24	20.5	J-692
J-279	4,269	TRUE	Passed	500	4,270	24	21.1	J-692
J-280	1,576	TRUE	Passed	500	1,577	24	23.9	J-692
J-281	3,497	TRUE	Passed	500	3,498	24	22.1	J-692
J-282	3,327	TRUE	Passed	500	3,328	24	22.3	J-692
J-283	2,642	TRUE	Passed	500	2,643	24	23	J-692
J-284	1,514	TRUE	Passed	500	1,515	24	24	J-692
J-285	2,234	TRUE	Passed	500	2,235	24	23.4	J-692
J-286	4,716	TRUE	Passed	500	4,717	24	20.4	J-692
J-287	3,844	TRUE	Passed	500	3,845	24	21.4	J-292
J-288	2,240	TRUE	Passed	500	2,241	24	23.3	J-692
J-289	2,528	TRUE	Passed	500	2,529	24	23.1	J-692
J-290	2,333	TRUE	Passed	500	2,334	24	23.3	J-692
J-291	1,257	TRUE	Passed	500	1,258	24	24.1	J-692
J-292	2,768	TRUE	Passed	500	2,769	24	22.8	J-692
J-294	1,513	TRUE	Passed	500	1,514	24	23.9	J-692

J-296	6,656	TRUE	Passed	500	6,657	24	17	J-692
J-290 J-297	6,771	TRUE	Passed	500	6,772	24	16.3	J-692
J-297 J-298	8,933	TRUE		500	8,934	24	10.9	J-692
	10,000	TRUE	Passed	500	-	24	8.3	J-692
J-299			Passed		10,001			
J-300	4,454	TRUE	Passed	500	4,455	24	20.7	J-692
J-301	3,596	TRUE	Passed	500	3,597	24	21.9	J-692
J-302	4,060	TRUE	Passed	500	4,061	24	21.4	J-692
J-303	3,338	TRUE	Passed	500	3,339	24	22.3	J-692
J-304	5,973	TRUE	Passed	500	5,974	24	18.6	J-692
J-305	6,128	TRUE	Passed	500	6,129	24	18.3	J-692
J-306	2,615	TRUE	Passed	500	2,616	24	23	J-692
J-307	8,225	TRUE	Passed	500	8,226	24	14.3	J-692
J-308	7,295	TRUE	Passed	500	7,296	24	16.5	J-692
J-309	3,861	TRUE	Passed	500	3,862	24	21.5	J-692
J-310	3,668	TRUE	Passed	500	3,669	24	21.7	J-692
J-311	4,176	TRUE	Passed	500	4,177	24	21	J-692
J-312	4,105	TRUE	Passed	500	4,106	24	21	J-692
J-313	4,630	TRUE	Passed	500	4,631	24	20.1	J-692
J-314	3,457	TRUE	Passed	500	3,458	24	21.9	J-692
J-315	2,810	TRUE	Passed	500	2,811	24	22.6	J-692
J-316	4,780	TRUE	Passed	500	4,781	24	19.7	J-692
J-317	3,556	TRUE	Passed	500	3,557	24	21.7	J-692
J-318	7,021	TRUE	Passed	500	7,022	24	17.7	J-692
J-319	6,715	TRUE	Passed	500	6,716	24	18	J-692
J-320	6,745	TRUE	Passed	500	6,746	24	17.9	J-692
J-321	3,521	TRUE	Passed	500	3,522	24	22.4	J-692
J-322	3,747	TRUE	Passed	500	3,748	24	22.2	J-692
J-323	3,322	TRUE	Passed	500	3,323	24	22.6	J-692
J-324	4,572	TRUE	Passed	500	4,573	24	21.3	J-692
J-325	10,000	TRUE	Passed	500	10,001	38.5	6.5	J-692
J-326	10,000	TRUE	Passed	500	10,001	39.1	6.4	J-692
J-327	7,313	TRUE	Passed	500	7,314	24	13.8	J-692
J-328	10,000	TRUE	Passed	500	10,001	39.9	6.4	J-692
J-329	10,000	TRUE	Passed	500	10,001	29.4	5.8	J-692
J-330	1,842	TRUE	Passed	500	1,844	24	23.4	J-692
J-331	6,318	TRUE	Passed	500	6,319	24	16	J-692
J-332	6,615	TRUE	Passed	500	6,616	24	15.4	J-692
J-333	4,782	TRUE	Passed	500	4,783	24	19	J-692
J-334	8,264	TRUE	Passed	500	8,265	24	10.4	J-692
	7,004			500		24		J-692
J-336		TRUE	Passed	500	7,005	24	14	J-692 J-692
J-338	7,734	TRUE	Passed		7,735		12.1	
J-339	6,685	TRUE	Passed	500	6,686	24	14.6	J-692

J-340	10,000	TRUE	Passed	500	10,001	32.9	6.6	J-692
J-341	7,901	TRUE	Passed	500	7,902	24	14.8	J-692
J-342	4,259	TRUE	Passed	500	4,260	24	20.8	J-692
J-343	7,640	TRUE	Passed	500	7,641	24	14.7	J-692
J-345	5,143	TRUE	Passed	500	5,144	24	19.3	J-692
J-346	3,861	TRUE	Passed	500	3,862	24	21.2	J-692
J-347	10,000	TRUE	Passed	500	10,001	46.4	6.7	J-692
J-348	10,000	TRUE	Passed	500	10,001	48	6.8	J-692
J-349	10,000	TRUE	Passed	500	10,001	43.2	6.8	J-692
J-350	10,000	TRUE	Passed	500	10,001	41.3	6.8	J-692
J-351	8,935	TRUE	Passed	500	8,936	24	9.8	J-692
J-352	9,226	TRUE	Passed	500	9,227	24	9	J-692
J-353	9,792	TRUE	Passed	500	9,793	24	7.2	J-692
J-354	10,000	TRUE	Passed	500	10,001	31.2	7.5	J-692
J-355	9,172	TRUE	Passed	500	9,173	24	9.8	J-692
J-356	8,626	TRUE	Passed	500	8,627	24	10.6	J-692
J-357	10,000	TRUE	Passed	500	10,001	43.4	6.4	J-692
J-358	10,000	TRUE	Passed	500	10,001	29.2	7.8	J-692
J-359	10,000	TRUE	Passed	500	10,001	27.5	7.8	J-692
J-360	1,636	TRUE	Passed	500	1,637	24	23.7	J-692
J-361	8,775	TRUE	Passed	500	8,776	24	10.9	J-692
J-362	10,000	TRUE	Passed	500	10,001	44.4	6.9	J-692
J-363	8,309	TRUE	Passed	500	8,310	24	11.5	J-692
J-364	7,454	TRUE	Passed	500	7,455	24	13.7	J-692
J-365	7,864	TRUE	Passed	500	7,865	24	12.6	J-692
J-366	7,272	TRUE	Passed	500	7,273	24	14.1	J-692
J-367	8,911	TRUE	Passed	500	8,912	24	9.9	J-692
J-368	6,225	TRUE	Passed	500	6,226	24	17.2	J-692
J-369	9,022	TRUE	Passed	500	9,023	24	10.5	J-692
J-370	10,000	TRUE	Passed	500	10,001	31.7	7.7	J-692
J-371	3,449	TRUE	Passed	500	3,450	24	12	J-692
J-371	10,000	TRUE	Passed	500	10,001	30.2	7.6	J-692
J-372	7,274	TRUE	Passed	500	7,275	24	14.5	J-692
J-373	10,000	TRUE	Passed	500	10,001	46.9	6.9	J-692
J-374	10,000	TRUE	Passed	500	10,001	47.1	6.9	J-692
J-375	10,000	TRUE	Passed	500	10,001	44.6	6.8	J-692
J-376	8,284	TRUE	Passed	500	8,285	24	11.7	J-692
J-377	10,000	TRUE	Passed	500	10,001	51.3	6.8	J-692
J-378	10,000	TRUE	Passed	500	10,001	40.5	7	J-692
J-379	10,000	TRUE	Passed	500	10,001	43.8	7	J-692
J-380	6,969	TRUE	Passed	500	6,970	24	15.1	J-692
J-382	7,529	TRUE	Passed	500	7,530	24	14.1	J-692

J-383	6,923	TRUE	Passed	500	6,924	24	15.4	J-692
J-384	7,222	TRUE	Passed	500	7,223	24	14.8	J-692
J-385	9,556	TRUE	Passed	500	9,558	24	8.9	J-692
J-386	10,000	TRUE	Passed	500	10,001	26	7.5	J-692
J-387	8,789	TRUE	Passed	500	8,790	24	11	J-692
J-388	6,654	TRUE	Passed	500	6,655	24	16.1	J-692
J-389	5,240	TRUE	Passed	500	5,241	24	18.9	J-692
J-390	1,964	TRUE	Passed	500	1,965	24	23.4	J-692
J-391	7,034	TRUE	Passed	500	7,035	24	15	J-692
J-392	10,000	TRUE	Passed	500	10,001	39.2	7	J-692
J-393	7,826	TRUE	Passed	500	7,827	24	13.2	J-692
J-394	9,181	TRUE	Passed	500	9,182	24	9.7	J-692
J-395	9,348	TRUE	Passed	500	9,349	24	9.2	J-692
J-396	10,000	TRUE	Passed	500	10,001	40	7	J-692
J-397	6,409	TRUE	Passed	500	6,410	24	16.1	J-692
J-398	1,747	TRUE	Passed	500	1,748	24	23.5	J-692
J-399	10,000	TRUE	Passed	500	10,001	64.7	6	J-692
J-401	3,330	TRUE	Passed	500	3,331	24	11.1	J-692
J-401	10,000	TRUE	Passed	500	10,001	61.5	6.9	J-692
J-402	10,000	TRUE	Passed	500	10,001	62.2	6.9	J-692
J-403	10,000	TRUE	Passed	500	10,001	40.9	7	J-692
J-404	10,000	TRUE	Passed	500	10,001	25.6	7.9	J-692
J-405	4,711	TRUE	Passed	500	4,712	24	19.6	J-692
J-406	10,000	TRUE	Passed	500	10,001	57.8	6.8	J-692
J-407	10,000	TRUE	Passed	500	10,001	64.2	6.8	J-692
J-408	10,000	TRUE	Passed	500	10,001	44.7	6.9	J-692
J-409	3,515	TRUE	Passed	500	3,516	24	21.4	J-692
J-410	10,000	TRUE	Passed	500	10,001	51.1	6.9	J-692
J-411	3,581	TRUE	Passed	500	3,582	24	21.3	J-692
J-412	10,000	TRUE	Passed	500	10,001	55.8	6.9	J-692
J-413	10,000	TRUE	Passed	500	10,001	62.1	6.5	J-692
J-414	10,000	TRUE	Passed	500	10,001	57.7	4.1	J-692
J-415	2,016	TRUE	Passed	500	2,017	24	23	J-692
J-416	10,000	TRUE	Passed	500	10,001	58.7	6.7	J-692
J-417	10,000	TRUE	Passed	500	10,001	54.9	7	J-692
J-418	5,536	TRUE	Passed	500	5,537	24	18.3	J-692
J-419	3,521	TRUE	Passed	500	3,522	24	21.6	J-692
J-420	10,000	TRUE	Passed	500	10,001	34.2	8.5	J-692
J-421	9,478	TRUE	Passed	500	9,479	24	9.5	J-692
J-422	6,999	TRUE	Passed	500	7,000	24	15.4	J-692
			_					
J-423	9,374	TRUE	Passed	500	9,375	24	9.7	J-692

J-425	4,213	TRUE	Passed	500	4,214	24	20.4	J-692
J-426	9,432	TRUE	Passed	500	9,433	24	8.9	J-692
J-427	8,000	TRUE	Passed	500	8,001	24	12.8	J-692
J-428	9,492	TRUE	Passed	500	9,493	24	9.2	J-692
-429	9,464	TRUE	Passed	500	9,465	24	9.2	J-692
-430	4,051	TRUE	Passed	500	4,052	24	20.7	J-692
-431	7,428	TRUE	Passed	500	7,429	24	14.4	J-692
-432	2,367	TRUE	Passed	500	2,368	24	23	J-692
-433	3,938	TRUE	Passed	500	3,939	24	16.8	J-692
-434	10,000	TRUE	Passed	500	10,001	61.8	24.1	J-692
435	10,000	TRUE	Passed	500	10,001	63.1	24.2	J-692
436	10,000	TRUE	Passed	500	10,001	59.7	23.6	J-692
437	9,023	TRUE	Passed	500	9,024	24	22.9	J-692
439	7,099	TRUE	Passed	500	7,100	24	22.8	J-692
440	6,968	TRUE	Passed	500	6,969	24	22.7	J-692
-442	8,071	TRUE	Passed	500	8,072	24	21.5	J-443
443	2,218	TRUE	Passed	500	2,219	24	24.2	J-692
445	9,409	TRUE	Passed	500	9,410	24	20.2	J-692
447	6,431	TRUE	Passed	500	6,432	24	21.7	J-692
448	5,128	TRUE	Passed	500	5,129	24	22.5	J-692
449	6,110	TRUE	Passed	500	6,111	24	17.5	J-450
450	4,223	TRUE	Passed	500	4,224	24	23	J-692
451	5,963	TRUE	Passed	500	5,964	24	21.8	J-692
452	5,460	TRUE	Passed	500	5,461	24	22.1	J-692
453	5,032	TRUE	Passed	500	5,033	24	22.5	J-692
454	4,854	TRUE	Passed	500	4,855	24	22.6	J-692
455	6,534	TRUE	Passed	500	6,535	24	21.6	J-692
456	6,496	TRUE	Passed	500	6,497	24	21.4	J-692
457	5,218	TRUE	Passed	500	5,219	24	22.2	J-692
458	3,030	TRUE	Passed	500	3,031	24	23.6	J-692
459	2,954	TRUE	Passed	500	2,955	24	23.5	J-692
460	4,010	TRUE	Passed	500	4,011	24	22.8	J-692
461	1,661	TRUE	Passed	500	1,662	24	23.4	J-463
462	1,455	TRUE	Passed	500	1,456	24	24.3	J-692
463	1,338	TRUE	Passed	500	1,339	24	24.3	J-692
464	5,247	TRUE	Passed	500	5,248	24	22.1	J-692
465	5,393	TRUE	Passed	500	5,394	24	21.9	J-692
466	5,693	TRUE	Passed	500	5,694	24	21.6	J-692
467	6,391	TRUE	Passed	500	6,392	24	20.8	J-692
468	6,305	TRUE	Passed	500	6,306	24	20.8	J-692
469	6,881	TRUE	Passed	500	6,882	24	20	J-692
470	8,255	TRUE	Passed	500	8,256	24	17.2	J-692

J-471	10,000	TRUE	Passed	500	10,001	37.6	14.1	J-692
J-472	7,073	TRUE	Passed	500	7,074	24	19.2	J-692
J-473	6,532	TRUE	Passed	500	6,533	24	20.3	J-692
J-474	5,980	TRUE	Passed	500	5,981	24	20.9	J-692
J-475	5,627	TRUE	Passed	500	5,628	24	21.4	J-692
J-476	2,361	TRUE	Passed	500	2,362	24	23.8	J-692
J-477	2,387	TRUE	Passed	500	2,389	24	23.8	J-692
J-478	5,548	TRUE	Passed	500	5,549	24	21.6	J-692
J-479	5,685	TRUE	Passed	500	5,686	24	21.7	J-692
J-480	6,033	TRUE	Passed	500	6,034	24	21.5	J-692
J-481	6,406	TRUE	Passed	500	6,407	24	21.4	J-692
J-482	3,321	TRUE	Passed	500	3,322	24	19.8	J-485
J-483	2,056	TRUE	Passed	500	2,057	24	22.8	J-485
J-484	1,890	TRUE	Passed	500	1,891	24	24.2	J-692
J-485	1,539	TRUE	Passed	500	1,540	24	24.3	J-692
J-486	9,602	TRUE	Passed	500	9,603	24	19.1	J-692
J-487	10,000	TRUE	Passed	500	10,001	38.4	20.1	J-692
J-489	10,000	TRUE	Passed	500	10,001	50.7	22.5	J-692
J-490	10,000	TRUE	Passed	500	10,001	35.9	22.3	J-692
J-491	10,000	TRUE	Passed	500	10,001	63	24.3	J-692
J-492	10,000	TRUE	Passed	500	10,001	48.3	20.9	J-692
J-493	10,000	TRUE	Passed	500	10,001	25.9	20.5	J-692
J-494	10,000	TRUE	Passed	500	10,001	26.8	20.5	J-692
J-497	10,000	TRUE	Passed	500	10,001	44.9	16.8	J-692
J-498	10,000	TRUE	Passed	500	10,001	47	19.4	J-692
J-499	10,000	TRUE	Passed	500	10,001	39.9	19.6	J-692
J-500	6,940	TRUE	Passed	500	6,941	24	21.7	J-692
J-501	10,000	TRUE	Passed	500	10,001	38.6	20.6	J-692
J-502	5,186	TRUE	Passed	500	5,187	24	22.9	J-692
J-504	3,297	TRUE	Passed	500	3,298	24	23.8	J-692
J-505	4,075	TRUE	Passed	500	4,076	24	23.3	J-692
J-507	4,574	TRUE	Passed	500	4,575	24	22.5	J-692
J-508	4,592	TRUE	Passed	500	4,593	24	22.5	J-692
J-509	5,331	TRUE	Passed	500	5,332	24	21.9	J-692
J-510	5,991	TRUE	Passed	500	5,992	24	22.4	J-692
J-510	2,391	TRUE	Passed	500	2,393	24	24.1	J-692
J-511	2,442	TRUE	Passed	500	2,443	24	24.1	J-692
J-515 J-514	2,754	TRUE	Passed	500	2,755	24	23.3	J-513
J-514 J-516	5,292	TRUE	Passed	500	5,293	24	25.5	J-692
J-516 J-517	5,691	TRUE		500	5,692	24	21.4	J-692
J-517 J-518	5,691	TRUE	Passed Passed	500	5,692	24	20.2	J-549
J-519	5,639	TRUE	Passed	500	5,640	24	21.5	J-692

J-520	4,742	TRUE	Passed	500	4,743	24	21.4	J-692
J-521	3,936	TRUE	Passed	500	3,937	24	22.1	J-692
J-522	4,068	TRUE	Passed	500	4,069	24	21.5	
J-523	4,431	TRUE	Passed	500	4,432	24	21.5	
J-524	4,301	TRUE	Passed	500	4,302	24	21.7	J-692
J-525	4,757	TRUE	Passed	500	4,758	24	21.2	
J-526	4,633	TRUE	Passed	500	4,634	24	21.4	
J-527	4,681	TRUE	Passed	500	4,682	24	21.2	
J-528	4,356	TRUE	Passed	500	4,357	24	21.5	
J-529	4,571	TRUE	Passed	500	4,572	24	21.2	
J-530	4,609	TRUE	Passed	500	4,610	24	21.2	
J-531	2,965	TRUE	Passed	500	2,966	24	22.9	
J-532	3,205	TRUE	Passed	500	3,206	24	22.7	J-692
J-533	8,269	TRUE	Passed	500	8,270	24	15	
J-534	9,158	TRUE	Passed	500	9,159	24	13.4	
J-535	8,532	TRUE	Passed	500	8,533	24	14.7	J-692
J-536	7,676	TRUE	Passed	500	7,677	24	16.2	J-692
J-537	8,770	TRUE	Passed	500	8,771	24	14.1	
J-538	9,345	TRUE	Passed	500	9,346	24	12.3	
J-539	10,000	TRUE	Passed	500	10,001	28.1	10.6	
J-540	3,154	TRUE	Passed	500	3,155	24	22.6	
J-541	3,397	TRUE	Passed	500	3,398	24	22.4	J-692
J-542	6,784	TRUE	Passed	500	6,785	24	18.5	
J-543	9,145	TRUE	Passed	500	9,146	24	15.2	
J-544	10,000	TRUE	Passed	500	10,001	26	14.7	J-692
J-545	5,661	TRUE	Passed	500	5,662	24	20.9	J-692
J-546	2,190	TRUE	Passed	500	2,191	24	23.8	J-692
J-547	5,281	TRUE	Passed	500	5,282	24	21.6	J-692
J-548	1,888	TRUE	Passed	500	1,889	24	24	J-692
J-549	1,752	TRUE	Passed	500	1,753	24	24.1	J-692
J-550	4,649	TRUE	Passed	500	4,650	24	22.4	J-692
J-551	3,100	TRUE	Passed	500	3,101	24	23.4	J-692
J-552	2,501	TRUE	Passed	500	2,502	24	23.8	J-692
J-553	4,109	TRUE	Passed	500	4,110	24	23.4	J-692
J-554	2,682	TRUE	Passed	500	2,684	24	24	J-692
J-555	10,000	TRUE	Passed	500	10,001	31.4	14.4	J-692
J-556	4,226	TRUE	Passed	500	4,227	24	22	J-692
J-557	3,730	TRUE	Passed	500	3,731	24	22.5	J-692
J-558	1,898	TRUE	Passed	500	1,899	24	23.9	J-692
J-559	10,000	TRUE	Passed	500	10,001	35.7	15.3	J-692
J-560	10,000	TRUE	Passed	500	10,001	44.2	16.3	J-692
J-561	3,840	TRUE	Passed	500	3,841	24	22.1	J-692

J-562	10,000	TRUE	Passed	500	10,001	31.2	14.8	J-692
J-563	2,981	TRUE	Passed	500	2,982	24	22.7	J-692
J-564	10,000	TRUE	Passed	500	10,001	32.8	11.5	J-692
J-565	10,000	TRUE	Passed	500	10,001	35	13.2	J-692
J-566	8,474	TRUE	Passed	500	8,475	24	14.2	J-692
J-567	10,000	TRUE	Passed	500	10,001	29.5	10.3	J-692
J-568	10,000	TRUE	Passed	500	10,001	25.4	7.7	J-692
J-569	8,116	TRUE	Passed	500	8,117	24	12.8	J-692
J-570	7,163	TRUE	Passed	500	7,164	24	15.5	J-692
J-571	8,254	TRUE	Passed	500	8,255	24	11.3	J-692
J-572	10,000	TRUE	Passed	500	10,001	31.8	4.5	J-692
J-573	7,805	TRUE	Passed	500	7,806	24	4.3	J-692
J-574	9,231	TRUE	Passed	500	9,232	24	8.1	J-692
J-576	10,000	TRUE	Passed	500	10,001	34.4	8.9	J-692
J-577	10,000	TRUE	Passed	500	10,001	33	9.7	J-692
J-578	3,346	TRUE	Passed	500	3,347	24	22.2	J-692
J-579	4,413	TRUE	Passed	500	4,414	24	21.1	J-692
J-580	4,466	TRUE	Passed	500	4,467	24	21.1	J-692
J-581	4,210	TRUE	Passed	500	4,211	24	21.2	J-692
J-582	6,611	TRUE	Passed	500	6,612	24	17.5	J-692
J-583	7,143	TRUE	Passed	500	7,144	24	16.5	J-692
J-584	8,083	TRUE	Passed	500	8,084	24	14.7	J-692
J-585	6,241	TRUE	Passed	500	6,242	24	18	J-692
J-587	5,796	TRUE	Passed	500	5,797	24	18.7	J-692
J-588	5,435	TRUE	Passed	500	5,436	24	19.3	J-692
J-589	5,578	TRUE	Passed	500	5,579	24	19	J-692
J-590	7,006	TRUE	Passed	500	7,007	24	16.6	J-692
J-591	6,439	TRUE	Passed	500	6,440	24	17.7	J-692
J-592	6,221	TRUE	Passed	500	6,222	24	18.6	J-692
J-593	4,607	TRUE	Passed	500	4,608	24	21.1	J-692
J-594	4,463	TRUE	Passed	500	4,464	24	20.3	J-596
J-595	3,637	TRUE	Passed	500	3,638	24	21.3	J-596
J-596	3,091	TRUE	Passed	500	3,092	24	22.8	J-692
J-597	3,197	TRUE	Passed	500	3,198	24	22.7	J-692
J-598	3,281	TRUE	Passed	500	3,282	24	22.6	J-692
J-599	3,474	TRUE	Passed	500	3,475	24	22.5	J-692
J-601	3,056	TRUE	Passed	500	3,057	24	22.9	J-692
J-602	4,377	TRUE	Passed	500	4,378	24	21.6	J-692
J-603	2,345	TRUE	Passed	500	2,346	24	23.5	J-692
J-604	4,389	TRUE	Passed	500	4,390	24	21.5	J-692
J-605	3,249	TRUE	Passed	500	3,250	24	22.7	J-692
J-606	3,366	TRUE	Passed	500	3,367	24	22.6	J-692

1.607	4 220	TDUE	DI	500	4 220	24	24.7	1.002
J-607	4,228	TRUE	Passed	500	4,229	24	21.7	J-692
J-608	4,356	TRUE	Passed	500	4,357	24	21.5	J-692
J-609	4,444	TRUE	Passed	500	4,445	24	21.4	J-692
J-610	4,369	TRUE	Passed	500	4,370	24	21.5	J-692
J-611	4,668	TRUE	Passed	500	4,669	24	21.2	J-692
J-612	4,143	TRUE	Passed	500	4,144	24	21.7	J-692
J-613	4,270	TRUE	Passed	500	4,271	24	21.5	J-692
J-614	6,444	TRUE	Passed	500	6,445	24	18.3	J-692
J-615	6,729	TRUE	Passed	500	6,730	24	17.9	J-692
J-616	6,880	TRUE	Passed	500	6,881	24	17.6	J-692
J-617	6,759	TRUE	Passed	500	6,760	24	16.9	J-692
J-620	7,710	TRUE	Passed	500	7,711	24	15	J-692
J-621	9,390	TRUE	Passed	500	9,391	24	11.1	J-692
J-622	9,007	TRUE	Passed	500	9,008	24	12.2	J-692
J-623	9,093	TRUE	Passed	500	9,094	24	11.5	J-692
J-625	10,000	TRUE	Passed	500	10,001	24.2	9.2	J-692
J-626	8,840	TRUE	Passed	500	8,841	24	12.7	J-692
J-627	8,787	TRUE	Passed	500	8,788	24	12.9	J-692
J-628	9,007	TRUE	Passed	500	9,008	24	12.5	J-692
J-629	9,461	TRUE	Passed	500	9,462	24	11.5	J-692
J-630	9,663	TRUE	Passed	500	9,664	24	11	J-692
J-631	9,735	TRUE	Passed	500	9,736	24	10.8	J-692
J-632	5,280	TRUE	Passed	500	5,281	24	19.2	J-692
J-633	3,171	TRUE	Passed	500	3,172	24	22.2	J-692
J-634	8,069	TRUE	Passed	500	8,070	24	13.8	J-692
J-636	10,000	TRUE	Passed	500	10,001	26.7	10.2	J-692
J-637	3,847	TRUE	Passed	500	3,848	24	21.5	J-692
J-638	10,000	TRUE	Passed	500	10,001	29.7	10.3	J-692
J-639	10,000	TRUE	Passed	500	10,001	34.9	9.6	J-692
J-640	10,000	TRUE	Passed	500	10,001	31.5	9.7	J-692
J-641	5,672	TRUE	Passed	500	5,673	24	18.9	J-692
J-642	4,128	TRUE	Passed	500	4,129	24	21.3	J-692
J-643	3,176	TRUE	Passed	500	3,177	24	22.6	J-692
J-644	5,426	TRUE	Passed	500	5,427	24	20.1	J-692
J-645	2,772	TRUE	Passed	500	2,773	24	23	J-692
J-646	7,479	TRUE	Passed	500	7,480	24	17.1	J-692
J-647	4,910	TRUE	Passed	500	4,911	24	20.6	J-692
J-648	3,029	TRUE	Passed	500	3,030	24	22.7	J-692
J-649	3,748	TRUE	Passed	500	3,749	24	22.1	J-692
J-650	1,895	TRUE	Passed	500	1,896	24	23.8	J-692
J-651	7,951	TRUE	Passed	500	7,952	24	16.6	J-692
J-652				500				
J-05Z	3,096	TRUE	Passed	500	3,097	24	22.8	J-692

7,423 3,610 10,000	TRUE TRUE	Passed	500	7,424	24	16.8	J-692
	TRUE						
10.000		Passed	500	3,611	24	22.1	J-692
10,000	TRUE	Passed	500	10,001	32.6	8.3	J-692
10,000	TRUE	Passed	500	10,001	35.2	8.6	J-692
10,000	TRUE	Passed	500	10,001	37.5	8	J-692
	TRUE	Passed	500	10,001			J-692
	TRUE	Passed	500		24		J-692
		Passed	500		51.6		J-692
		Passed			42.9		J-692
	TRUE	Passed			31.4	9.1	J-692
				-	33.7		J-692
							J-692
							J-692
							J-692
							J-692
							J-692
							J-692
				-			J-692
							J-692
-							J-692
							J-692
							J-692
							J-692
							J-692
							J-692
							J-692
							J-692
							J-692
							J-692
							J-692
							J-695
							J-692
							J-695
							J-692
							J-692
							J-692
				-			J-692
							J-692
							J-692
							J-692
							J-692
							J-692
	10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 4,449 5,042 10,000 4,267 3,989 5,607 2,516 1,883 5,276 4,353 1,235 3,485 4,221 5,934 4,973 4,401 317 4,315 3,556 681 4,377 5,005 3,137 6,943 4,056 3,799 4,772 4,594	10,000 TRUE 833 TRUE 10,000 TRUE 4,449 TRUE 5,042 TRUE 10,000 TRUE 4,267 TRUE 3,989 TRUE 5,607 TRUE 1,883 TRUE 1,883 TRUE 5,276 TRUE 4,353 TRUE 4,353 TRUE 4,221 TRUE 5,934 TRUE 5,934 TRUE 4,973 TRUE 4,401 TRUE 3,17 FALSE 4,315 TRUE 4,401 TRUE 3,556 TRUE 4,377 TRUE 5,005 TRUE 3,137 TRUE 5,005 TRUE 3,137 TRUE 6,943 TRUE 4,056 TRUE 4,056 TRUE 4,772 TRUE	10,000 TRUE Passed 833 TRUE Passed 10,000 TRUE Passed 4,449 TRUE Passed 5,042 TRUE Passed 10,000 TRUE Passed 10,000 TRUE Passed 4,267 TRUE Passed 10,000 TRUE Passed 4,267 TRUE Passed 3,989 TRUE Passed 5,607 TRUE Passed 1,883 TRUE Passed 1,883 TRUE Passed 5,276 TRUE Passed 4,353 TRUE Passed 4,221 TRUE Passed 4,973 TRUE Passed	10,000 TRUE Passed 500 833 TRUE Passed 500 10,000 TRUE Passed 500 4,449 TRUE Passed 500 10,000 TRUE Passed 500 4,267 TRUE Passed 500 4,267 TRUE Passed 500 2,516 TRUE Passed 500 2,516 TRUE Passed 500 1,883 TRUE Passed 500 4,353 TRUE Passed 500 4,353 TRUE Passed </td <td>10,000 TRUE Passed 500 10,001 833 TRUE Passed 500 837 10,000 TRUE Passed 500 10,001 4,449 TRUE Passed 500 10,001 4,449 TRUE Passed 500 5,043 10,000 TRUE Passed 500 10,001 4,267 TRUE Passed 500 10,001 4,267 TRUE Passed 500 10,001 4,267 TRUE Passed 500 3,990 5,607 TRU</td> <td> 10,000 TRUE</td> <td> 10,000</td>	10,000 TRUE Passed 500 10,001 833 TRUE Passed 500 837 10,000 TRUE Passed 500 10,001 4,449 TRUE Passed 500 10,001 4,449 TRUE Passed 500 5,043 10,000 TRUE Passed 500 10,001 4,267 TRUE Passed 500 10,001 4,267 TRUE Passed 500 10,001 4,267 TRUE Passed 500 3,990 5,607 TRU	10,000 TRUE	10,000

J-726	4,328	TRUE	Passed	500	4,328	24	23.3	J-692
J-727	8,247	TRUE	Passed	500	8,247	24	23.4	J-692
J-731	6,015	TRUE	Passed	500	6,016	24	19.4	J-692
J-904	7,109	TRUE	Passed	500	7,110	24	13.7	J-692
J-1031	9,755	TRUE	Passed	500	9,756	24	8.2	J-692
J-1082	10,000	TRUE	Passed	500	10,001	57.5	7.2	J-692
J-1184	9,691	TRUE	Passed	500	9,692	24	22.2	J-692
J-1201	8,462	TRUE	Passed	500	8,463	24	20.4	J-692
J-1296	10,000	TRUE	Passed	500	10,001	42.5	20.6	J-692
J-1334	4,020	TRUE	Passed	500	4,021	24	23.5	J-692
J-1340	4,140	TRUE	Passed	500	4,141	24	22.9	J-692
J-1549	3,100	TRUE	Passed	500	3,101	24	22.8	J-692
J-1642	9,055	TRUE	Passed	500	9,056	24	11.7	J-692
J-1704	10,000	TRUE	Passed	500	10,001	40.2	8.5	J-692
J-1780	4,680	TRUE	Passed	500	4,680	24	23.6	J-692
J-1806	3,449	TRUE	Passed	500	3,449	24	13.1	J-692
					3,443	24	15.1	3 032
	4: 16-Inch SE E							
	neet fire flow constra	<u> </u>	·					
1-FLOW	9,351	TRUE	Passed	500	9,352	24	18.8	J-692
1-RES	3,306	TRUE	Passed	500	3,309	24	23.5	J-692
2-FLOW	7,909	TRUE	Passed	500	7,910	24	21.8	J-692
2-RES	4,365	TRUE	Passed	500	4,366	24	23.5	J-692
3-FLOW	3,022	TRUE	Passed	500	3,023	24	22.6	J-692
3-RES	2,579	TRUE	Passed	500	2,580	24	23	J-692
4-FLOW	3,650	TRUE	Passed	500	3,651	24	22.4	J-692
4-RES	2,640	TRUE	Passed	500	2,641	24	23.3	J-692
5-FLOW	4,348	TRUE	Passed	500	4,349	24	17	J-692
5-RES	2,122	TRUE	Passed	500	2,123	24	22.2	J-692
6-FLOW	2,148	TRUE	Passed	500	2,149	24	23.5	J-692
6-RES	1,395	TRUE	Passed	500	1,396	24	24.1	J-692
7-FLOW	2,359	TRUE	Passed	500	2,360	24	21.9	J-692
7-RES	2,119	TRUE	Passed	500	2,120	24	22.3	J-692
J-1	5,730	TRUE	Passed	500	5,731	24	15.4	J-692
J-2	7,833	TRUE	Passed	500	7,834	24	11.3	J-692
J-3	8,439	TRUE	Passed	500	8,440	24	11.6	
J-11	9,020	TRUE	Passed	500	9,021	24	11.3	J-692
J-12	8,678	TRUE	Passed	500	8,679	24	10.4	J-692
J-13	5,186	TRUE	Passed	500	5,187	24	17.6	J-692
J-14	4,154	TRUE	Passed	500	4,155	24	19.8	J-692
J-15	8,058	TRUE	Passed	500	8,059	24	11.1	J-692
J-17	6,446	TRUE	Passed	500	6,447	24	14.5	J-692
J-18	10,000	TRUE	Passed	500	10,001	58.4	21.9	J-692

J-19	10,000	TRUE	Passed	500	10,001	24.8	14.4	J-692
J-20	4,509	TRUE	Passed	500	4,510	24	21.5	J-692
J-21	4,612	TRUE	Passed	500	4,613	24	21.4	J-692
J-22	2,210	TRUE	Passed	500	2,211	24	23.6	J-692
J-23	4,069	TRUE	Passed	500	4,070	24	21.9	J-692
J-24	2,076	TRUE	Passed	500	2,077	24	23.6	J-692
J-25	3,623	TRUE	Passed	500	3,624	24	22.3	J-692
J-26	2,004	TRUE	Passed	500	2,005	24	23.7	J-692
J-27	3,729	TRUE	Passed	500	3,730	24	22.1	J-692
J-28	2,306	TRUE	Passed	500	2,307	24	23.4	J-692
J-29	4,056	TRUE	Passed	500	4,057	24	21.7	J-692
J-30	7,097	TRUE	Passed	500	7,098	24	16.7	J-692
J-30	2,879	TRUE	Passed	500	2,881	24	21.5	J-692
J-33	3,166	TRUE	Passed	500	3,167	24	21.5	J-692
J-34	3,094	TRUE	Passed	500	3,107	24	21.2	J-692
J-35	3,847	TRUE	Passed	500	3,848	24	19.7	J-692
J-36	5,310	TRUE	Passed	500	5,311	24	16.4	J-692
J-30 J-37	5,893	TRUE		500	5,894	24	15.8	J-692
		TRUE	Passed	500		24		J-692 J-692
J-38	5,652	TRUE	Passed	500	5,653	24	14.9 17.8	J-692
J-39	4,824		Passed		4,825			
J-40	4,751	TRUE	Passed	500	4,752	24	17.8	J-692
J-41	5,716	TRUE	Passed	500	5,717	24	14.7	J-692
J-42	3,405	TRUE	Passed	500	3,406	24	19.7	J-692
J-43	4,993	TRUE	Passed	500	4,994	24	15.5	J-692
J-44	2,515	TRUE	Passed	500	2,516	24	21.6	J-692
J-45	2,688	TRUE	Passed	500	2,689	24	21.2	J-692
J-46	3,525	TRUE	Passed	500	3,526	24	19.3	J-692
J-47	2,259	TRUE	Passed	500	2,261	24	22	J-692
J-48	2,997	TRUE	Passed	500	2,998	24	20.6	J-692
J-49	3,532	TRUE	Passed	500	3,533	24	19.5	J-692
J-50	2,685	TRUE	Passed	500	2,686	24	21.3	J-692
J-51	1,151	TRUE	Passed	500	1,152	24	23.7	J-692
J-52	2,911	TRUE	Passed	500	2,912	24	20.6	J-692
J-53	2,434	TRUE	Passed	500	2,435	24	21.6	J-692
J-54	2,631	TRUE	Passed	500	2,632	24	21.2	J-692
J-55	2,119	TRUE	Passed	500	2,120	24	22.2	J-692
J-56	2,477	TRUE	Passed	500	2,478	24	21.5	J-692
J-57	2,384	TRUE	Passed	500	2,385	24	21.7	J-692
J-58	2,632	TRUE	Passed	500	2,633	24	21.2	J-692
J-59	3,001	TRUE	Passed	500	3,002	24	20.4	J-692
J-60	2,743	TRUE	Passed	500	2,744	24	21	J-692
J-61	4,542	TRUE	Passed	500	4,544	24	16.6	J-692

J-64	4,519	TRUE	Passed	500	4,520	24	16.3	J-692
J-65	4,539	TRUE	Passed	500	4,540	24	16.6	J-692
J-66	5,661	TRUE	Passed	500	5,662	24	13.8	J-692
J-67	5,069	TRUE	Passed	500	5,070	24	15.5	J-692
J-68	5,405	TRUE	Passed	500	5,406	24	14.6	J-692
J-69	2,826	TRUE	Passed	500	2,827	24	21.1	J-692
J-70	4,280	TRUE	Passed	500	4,281	24	17.9	J-692
J-71	3,529	TRUE	Passed	500	3,530	24	19.7	J-692
J-72	3,521	TRUE	Passed	500	3,522	24	19.7	J-692
J-73	1,319	TRUE	Passed	500	1,320	24	23.6	J-692
J-74	3,491	TRUE	Passed	500	3,492	24	19.9	J-692
J-75	5,529	TRUE	Passed	500	5,530	24	14.8	J-692
J-76	5,238	TRUE	Passed	500	5,239	24	15.3	J-692
J-77	5,190	TRUE	Passed	500	5,191	24	15	J-692
J-78	5,728	TRUE	Passed	500	5,729	24	14.4	J-692
J-79	4,675	TRUE	Passed	500	4,676	24	17.3	J-692
J-80	5,273	TRUE	Passed	500	5,274	24	15.9	J-692
J-81	5,611	TRUE	Passed	500	5,612	24	14.5	J-692
J-82	6,306	TRUE	Passed	500	6,307	24	13.4	J-692
J-83	6,463	TRUE	Passed	500	6,464	24	13	J-692
J-84	6,476	TRUE	Passed	500	6,477	24	12.9	J-692
J-85	5,995	TRUE	Passed	500	5,996	24	13.9	J-692
J-86	5,647	TRUE	Passed	500	5,649	24	14.8	J-692
J-87	4,862	TRUE	Passed	500	4,863	24	17.1	J-692
J-88	4,222	TRUE	Passed	500	4,223	24	18.6	J-692
J-89	5,503	TRUE	Passed	500	5,504	24	15.1	J-692
J-90	4,011	TRUE	Passed	500	4,012	24	18.9	J-692
J-91	1,873	TRUE	Passed	500	1,874	24	22.9	J-692
J-92	6,372	TRUE	Passed	500	6,373	24	13.5	J-692
J-93	5,611	TRUE	Passed	500	5,612	24	14.2	J-692
J-94	6,339	TRUE	Passed	500	6,340	24	13.6	J-692
J-95	7,396	TRUE	Passed	500	7,397	24	12.2	J-692
J-96	6,229	TRUE	Passed	500	6,230	24	14.4	J-692
J-97	6,434	TRUE	Passed	500	6,435	24	13.3	J-692
J-98	6,606	TRUE	Passed	500	6,607	24	12.5	J-692
J-99	3,789	TRUE	Passed	500	3,790	24	16.6	J-692
J-100	5,587	TRUE	Passed	500	5,588	24	9.4	J-692
J-101	3,484	TRUE	Passed	500	3,485	24	17.4	J-692
J-102	5,742	TRUE	Passed	500	5,743	24	8.1	J-692
J-103	5,336	TRUE	Passed	500	5,337	24	7.4	J-692
J-104	4,544	TRUE	Passed	500	4,545	24	11.2	J-692
J-105	5,606	TRUE	Passed	500	5,607	24	5.3	J-692

J-106	5,315	TRUE	Passed	500	5,316	24	7.1	J-692
J-107	4,862	TRUE	Passed	500	4,863	24	9.7	J-692
J-108	5,356	TRUE	Passed	500	5,358	24	6.8	J-692
J-109	5,299	TRUE	Passed	500	5,300	24	7.2	J-692
J-110	4,888	TRUE	Passed	500	4,889	24	9.8	J-692
J-111	4,393	TRUE	Passed	500	4,394	24	12.3	J-692
J-112	3,847	TRUE	Passed	500	3,848	24	14.8	J-692
J-113	3,281	TRUE	Passed	500	3,282	24	17	J-692
J-114	2,997	TRUE	Passed	500	2,998	24	17.8	J-692
J-115	3,686	TRUE	Passed	500	3,687	24	15.1	J-692
J-116	2,782	TRUE	Passed	500	2,783	24	18.6	J-692
J-117	3,318	TRUE	Passed	500	3,319	24	16.5	J-692
J-118	2,135	TRUE	Passed	500	2,136	24	22.7	J-692
J-118	2,925	TRUE	Passed	500	2,926	24	18	J-692
J-119	3,455	TRUE	Passed	500	3,456	24	15.8	J-692
J-121	2,596	TRUE	Passed	500	2,597	24	19	J-692
J-122	3,590	TRUE	Passed	500	3,591	24	15.1	J-692
J-123	5,634	TRUE	Passed	500	5,659	30.6	0	J-692
J-124	5,989	TRUE	Passed	500	5,990	24	0.5	J-692
J-125	3,654	TRUE	Passed	500	3,655	24	13.8	J-692
J-126	4,870	TRUE	Passed	500	4,872	24	7.2	J-692
J-127	3,712	TRUE	Passed	500	3,713	24	13.6	J-692
J-128	1,362	TRUE	Passed	500	1,363	24	22.5	J-692
J-129	3,318	TRUE	Passed	500	3,319	24	15.5	J-692
J-130	3,348	TRUE	Passed	500	3,349	24	15.5	J-692
J-133	3,325	TRUE	Passed	500	3,326	24	15.7	J-692
J-134	2,678	TRUE	Passed	500	2,679	24	18.4	J-692
J-135	2,986	TRUE	Passed	500	2,987	24	17.2	J-692
J-136	3,357	TRUE	Passed	500	3,358	24	15.6	J-692
J-137	3,583	TRUE	Passed	500	3,584	24	14.6	J-692
J-138	4,008	TRUE	Passed	500	4,009	24	12.6	J-692
J-139	5,441	TRUE	Passed	500	5,442	24	7.4	J-692
J-140	3,258	TRUE	Passed	500	3,259	24	17.3	J-692
J-141	3,589	TRUE	Passed	500	3,590	24	16	J-692
J-142	5,025	TRUE	Passed	500	5,026	24	8.8	J-692
J-143	6,049	TRUE	Passed	500	6,051	24	3	J-692
J-144	6,119	TRUE	Passed	500	6,120	24	1.3	J-692
J-145	3,838	TRUE	Passed	500	3,839	24	14.1	J-692
J-146	6,162	TRUE	Passed	500	6,163	24	1.6	J-692
J-147	5,953	TRUE	Passed	500	5,954	24	3.1	J-692
J-148	6,161	TRUE	Passed	500	6,162	24	2.7	J-692
J-149	6,197	TRUE	Passed	500	6,198	24	5.4	J-692

J-150	5,829	TRUE	Passed	500	5,830	24	8.8	J-692
J-151	5,927	TRUE	Passed	500	5,928	24	6.1	J-692
J-152	2,836	TRUE	Passed	500	2,837	24	20	J-692
J-153	6,119	TRUE	Passed	500	6,120	24	8.3	J-692
J-154	5,797	TRUE	Passed	500	5,798	24	9.8	J-692
J-155	3,478	TRUE	Passed	500	3,479	24	19.5	J-692
J-156	3,448	TRUE	Passed	500	3,449	24	19.7	J-692
J-157	3,689	TRUE	Passed	500	3,690	24	18.9	J-692
J-158	2,989	TRUE	Passed	500	2,990	24	19.7	J-692
J-159	4,146	TRUE	Passed	500	4,147	24	16.3	J-692
J-160	4,368	TRUE	Passed	500	4,369	24	15.3	J-692
J-161	4,360	TRUE	Passed	500	4,361	24	15.2	J-692
J-162	4,402	TRUE	Passed	500	4,403	24	15.1	J-692
J-163	3,851	TRUE	Passed	500	3,852	24	16.9	J-692
J-164	4,181	TRUE	Passed	500	4,182	24	15.8	J-692
J-165	4,559	TRUE	Passed	500	4,560	24	14.4	J-692
J-166	6,290	TRUE	Passed	500	6,291	24	4.2	J-692
J-167	2,558	TRUE	Passed	500	2,559	24	20.6	J-692
J-168	3,176	TRUE	Passed	500	3,177	24	19	J-692
J-169	4,007	TRUE	Passed	500	4,008	24	16.4	J-692
J-170	5,879	TRUE	Passed	500	5,880	24	6.2	J-692
J-171	2,614	TRUE	Passed	500	2,615	24	19.8	J-692
J-172	5,514	TRUE	Passed	500	5,515	24	4.5	J-692
J-173	4,030	TRUE	Passed	500	4,031	24	12.8	J-692
J-174	4,107	TRUE	Passed	500	4,108	24	12.4	J-692
J-175	5,075	TRUE	Passed	500	5,076	24	7.1	J-692
J-176	3,920	TRUE	Passed	500	3,921	24	13.3	J-692
J-177	2,569	TRUE	Passed	500	2,570	24	19	J-692
J-178	3,282	TRUE	Passed	500	3,283	24	16.2	J-692
J-179	1,240	TRUE	Passed	500	1,241	24	22.9	J-692
J-180	1,594	TRUE	Passed	500	1,595	24	21.8	J-692
J-181	3,531	TRUE	Passed	500	3,532	24	15.1	J-692
J-183	9,936	TRUE	Passed	500	9,937	31.7	0	J-692
J-184	779	TRUE	Passed	500	780	24	24.2	J-692
J-185	7,641	TRUE	Passed	500	7,642	24	8.9	J-692
J-186	5,305	TRUE	Passed	500	5,306	24	16	J-692
J-187	5,533	TRUE	Passed	500	5,534	24	15.3	J-692
J-188	4,188	TRUE	Passed	500	4,189	24	18.7	J-692
J-189	5,276	TRUE	Passed	500	5,277	24	15.7	J-692
J-190	5,317	TRUE	Passed	500	5,318	24	15.9	J-692
J-191	4,554	TRUE	Passed	500	4,555	24	17.9	J-692
J-192	3,970	TRUE	Passed	500	3,971	24	19	J-692

J-193	3,915	TRUE	Passed	500	3,916	24	18.8	J-692
J-193 J-194	3,319	TRUE		500	3,320	24		
			Passed			24	19.9	
J-195 J-196	2,582 2,138	TRUE TRUE	Passed	500 500	2,583 2,139	24	21.5 22.3	
J-190 J-197			Passed	500		24	22.3	
	2,313	TRUE	Passed		2,314	24		
J-200	5,230	TRUE	Passed	500 500	5,231	24	16.6	
J-201	4,605	TRUE	Passed		4,606		18.1	
J-202	5,065	TRUE	Passed	500	5,066	24	17.1	
J-203	5,036	TRUE	Passed	500	5,037	24	17.2	
J-204	3,870	TRUE	Passed	500	3,871	24	19.8	
J-205	3,147	TRUE	Passed	500	3,148	24	21.1	
J-206	4,234	TRUE	Passed	500	4,235	24	19	
J-207	3,485	TRUE	Passed	500	3,486	24	20.5	
J-208	5,665	TRUE	Passed	500	5,666	24	15.8	
J-209	4,300	TRUE	Passed	500	4,301	24	19	
J-210	7,330	TRUE	Passed	500	7,331	24	12.3	
J-211	6,197	TRUE	Passed	500	6,198	24	16.2	
J-212	4,960	TRUE	Passed	500	4,961	24	18.8	
J-213	3,822	TRUE	Passed	500	3,823	24	20.8	
J-214	3,006	TRUE	Passed	500	3,007	24	22.1	1
J-215	2,510	TRUE	Passed	500	2,511	24	22.7	J-692
J-216	881	TRUE	Passed	500	882	24	24.3	
J-217	3,619	TRUE	Passed	500	3,620	24	21.2	J-692
J-218	2,014	TRUE	Passed	500	2,015	24	23.3	J-692
J-219	4,400	TRUE	Passed	500	4,401	24	19.9	J-692
J-220	2,099	TRUE	Passed	500	2,100	24	23.2	J-692
J-221	2,516	TRUE	Passed	500	2,517	24	22.7	J-692
J-222	4,873	TRUE	Passed	500	4,874	24	19.1	J-692
J-223	5,372	TRUE	Passed	500	5,373	24	18.1	J-692
J-224	6,241	TRUE	Passed	500	6,242	24	16.4	J-692
J-225	6,464	TRUE	Passed	500	6,465	24	15.8	J-692
J-226	8,236	TRUE	Passed	500	8,237	24	11.3	J-692
J-227	6,799	TRUE	Passed	500	6,800	24	12.7	J-692
J-228	5,414	TRUE	Passed	500	5,415	24	16	
J-229	5,322	TRUE	Passed	500	5,323	24	16.3	
J-230	3,169	TRUE	Passed	500	3,170	24	21.1	
J-231	4,922	TRUE	Passed	500	4,923	24	17.4	
J-232	5,472	TRUE	Passed	500	5,473	24	16.2	
J-233	7,137	TRUE	Passed	500	7,138	24	11.9	
J-234	10,000	TRUE	Passed	500	10,001	43.1	2	
J-235	10,000	TRUE	Passed	500	10,001	50.9	3.4	
J-236	2,584	TRUE	Passed	500	2,585	24	21.4	
	=,= 5 ·				=,: 00			

J-237	2,150	TRUE	Passed	500	2,151	24	22.2	J-692
J-238	1,180	TRUE	Passed	500	1,181	24	23.7	J-692
J-239	10,000	TRUE	Passed	500	10,001	29.9	7.7	J-692
J-240	10,000	TRUE	Passed	500	10,001	28.4	7.8	J-692
J-241	8,771	TRUE	Passed	500	8,772	24	12.6	J-692
J-242	8,603	TRUE	Passed	500	8,604	24	15.4	J-692
J-243	10,000	TRUE	Passed	500	10,001	25.2	11.5	J-692
J-244	5,666	TRUE	Passed	500	5,667	24	19.2	J-692
J-245	10,000	TRUE	Passed	500	10,001	27.1	12.9	J-692
J-246	9,712	TRUE	Passed	500	9,713	24	17.3	J-692
J-247	10,000	TRUE	Passed	500	10,001	39.8	14.6	J-692
J-248	7,702	TRUE	Passed	500	7,703	24	17.1	J-692
J-249	2,649	TRUE	Passed	500	2,650	24	23.1	J-250
J-250	1,453	TRUE	Passed	500	1,454	24	24.2	J-692
J-251	7,963	TRUE	Passed	500	7,964	24	16.8	J-692
J-252	7,888	TRUE	Passed	500	7,889	24	17.3	J-692
J-253	3,422	TRUE	Passed	500	3,423	24	22.9	J-692
J-254	8,517	TRUE	Passed	500	8,518	24	15.7	J-692
J-255	7,836	TRUE	Passed	500	7,837	24	17	J-692
J-256	4,530	TRUE	Passed	500	4,531	24	21.5	J-692
J-257	7,778	TRUE	Passed	500	7,779	24	16.9	J-692
J-258	7,744	TRUE	Passed	500	7,745	24	16.9	J-692
J-259	4,818	TRUE	Passed	500	4,819	24	21.1	J-692
J-260	6,848	TRUE	Passed	500	6,849	24	18.4	J-692
J-262	7,897	TRUE	Passed	500	7,898	24	17.1	J-692
J-263	4,631	TRUE	Passed	500	4,632	24	21.4	J-692
J-264	8,431	TRUE	Passed	500	8,432	24	16.4	J-692
J-265	4,341	TRUE	Passed	500	4,342	24	21.7	J-692
J-266	3,051	TRUE	Passed	500	3,052	24	22.9	J-692
J-267	6,667	TRUE	Passed	500	6,668	24	18.7	J-692
J-268	5,864	TRUE	Passed	500	5,865	24	19.9	J-692
J-269	6,817	TRUE	Passed	500	6,818	24	18.4	J-692
J-270	8,293	TRUE	Passed	500	8,294	24	15.9	J-692
J-271	7,071	TRUE	Passed	500	7,072	24	18	J-692
J-272	7,100	TRUE	Passed	500	7,101	24	17.5	J-692
J-273	5,400	TRUE	Passed	500	5,402	24	20	J-692
J-274	4,984	TRUE	Passed	500	4,985	24	20.6	J-692
J-275	6,719	TRUE	Passed	500	6,720	24	17.9	J-692
J-276	6,497	TRUE	Passed	500	6,498	24	18.4	J-692
J-277	6,539	TRUE	Passed	500	6,540	24	18	J-692
J-278	4,816	TRUE	Passed	500	4,817	24	20.6	J-692
J-279	4,271	TRUE	Passed	500	4,272	24	21.2	J-692

1 200	1 570	TDUE	Danad	F00	1 [77]	24	24	1.000
J-280	1,576	TRUE	Passed	500	1,577	24	24	J-692
J-281	3,498	TRUE	Passed		3,499	24		J-692
J-282 J-283	3,328	TRUE TRUE	Passed	500 500	3,329	24	22.4	J-692
	2,642		Passed		2,643		23.1	J-692
J-284	1,514	TRUE	Passed	500	1,515	24	24	J-692
J-285	2,234	TRUE	Passed	500	2,235	24	23.5	J-692
J-286	4,719	TRUE	Passed	500	4,720	24	20.6	J-692
J-287	3,846	TRUE	Passed	500	3,847	24	21.4	J-292
J-288	2,240	TRUE	Passed	500	2,241	24	23.4	J-692
J-289	2,529	TRUE	Passed	500	2,530	24	23.1	J-290
J-290	2,334	TRUE	Passed	500	2,335	24	23.3	J-692
J-291	1,257	TRUE	Passed	500	1,258	24	24.2	J-692
J-292	2,769	TRUE	Passed	500	2,770	24	22.9	J-692
J-294	1,513	TRUE	Passed	500	1,514	24	24	J-692
J-296	6,662	TRUE	Passed	500	6,663	24	17.2	J-692
J-297	6,777	TRUE	Passed	500	6,778	24	16.7	J-692
J-298	8,949	TRUE	Passed	500	8,950	24	11.4	J-692
J-299	10,000	TRUE	Passed	500	10,001	24.2	8.9	J-692
J-300	4,456	TRUE	Passed	500	4,457	24	20.9	J-692
J-301	3,597	TRUE	Passed	500	3,598	24	22	J-692
J-302	4,061	TRUE	Passed	500	4,062	24	21.5	J-692
J-303	3,339	TRUE	Passed	500	3,340	24	22.4	J-692
J-304	5,977	TRUE	Passed	500	5,978	24	18.8	J-692
J-305	6,132	TRUE	Passed	500	6,133	24	18.5	J-692
J-306	2,616	TRUE	Passed	500	2,617	24	23.1	J-692
J-307	8,234	TRUE	Passed	500	8,235	24	14.7	J-692
J-308	7,301	TRUE	Passed	500	7,302	24	16.8	J-692
J-309	3,862	TRUE	Passed	500	3,863	24	21.6	J-692
J-310	3,670	TRUE	Passed	500	3,671	24	21.8	J-692
J-311	4,178	TRUE	Passed	500	4,179	24	21.2	J-692
J-312	4,107	TRUE	Passed	500	4,108	24	21.2	J-692
J-313	4,632	TRUE	Passed	500	4,633	24	20.3	J-692
J-314	3,458	TRUE	Passed	500	3,459	24	22	J-692
J-315	2,811	TRUE	Passed	500	2,812	24	22.7	J-692
J-316	4,784	TRUE	Passed	500	4,785	24	19.9	J-692
J-317	3,558	TRUE	Passed	500	3,559	24	21.9	J-692
J-318	7,026	TRUE	Passed	500	7,027	24	17.9	J-692
J-319	6,720	TRUE	Passed	500	6,721	24	18.3	J-692
J-319	6,750	TRUE	Passed	500	6,751	24	18.1	J-692
J-320 J-321	3,522	TRUE		500	3,523	24	22.5	J-692
J-321 J-322	3,749	TRUE	Passed	500	3,523	24	22.3	J-692
			Passed					
J-323	3,322	TRUE	Passed	500	3,323	24	22.7	J-692

J-324	4,575	TRUE	Passed	500	4,576	24	21.4	J-692
J-325	10,000	TRUE	Passed	500	10,001	38.7	7.5	J-692
J-326	10,000	TRUE	Passed	500	10,001	39.3	7.3	J-692
J-327	7,326	TRUE	Passed	500	7,327	24	14.4	J-692
J-328	10,000	TRUE	Passed	500	10,001	40.1	7.3	J-692
J-329	10,000	TRUE	Passed	500	10,001	29.7	6.9	J-692
J-330	1,843	TRUE	Passed	500	1,844	24	23.5	J-692
J-331	6,329	TRUE	Passed	500	6,330	24	16.4	J-692
J-332	6,626	TRUE	Passed	500	6,627	24	15.9	J-692
J-333	4,787	TRUE	Passed	500	4,788	24	19.4	J-692
J-334	8,292	TRUE	Passed	500	8,293	24	11.2	J-692
J-336	7,020	TRUE	Passed	500	7,021	24	14.7	J-692
J-338	7,755	TRUE	Passed	500	7,756	24	12.9	J-692
J-339	6,701	TRUE	Passed	500	6,702	24	15.3	J-692
J-340	10,000	TRUE	Passed	500	10,001	33.1	7.6	J-692
J-341	7,909	TRUE	Passed	500	7,910	24	15.1	J-692
J-342	4,261	TRUE	Passed	500	4,262	24	21	J-692
J-343	7,650	TRUE	Passed	500	7,651	24	15.1	J-692
J-345	5,147	TRUE	Passed	500	5,148	24	19.6	J-692
J-346	3,863	TRUE	Passed	500	3,864	24	21.4	J-692
J-347	10,000	TRUE	Passed	500	10,001	46.6	7.5	J-692
J-348	10,000	TRUE	Passed	500	10,001	48.2	7.6	J-692
J-349	10,000	TRUE	Passed	500	10,001	43.4	7.6	J-692
J-350	10,000	TRUE	Passed	500	10,001	41.5	7.6	J-692
J-351	8,954	TRUE	Passed	500	8,955	24	10.4	J-692
J-352	9,248	TRUE	Passed	500	9,249	24	9.6	J-692
J-353	9,816	TRUE	Passed	500	9,817	24	8	J-692
J-354	10,000	TRUE	Passed	500	10,001	31.4	8.3	J-692
J-355	9,190	TRUE	Passed	500	9,191	24	10.4	J-692
J-356	8,644	TRUE	Passed	500	8,645	24	11.2	J-692
J-357	10,000	TRUE	Passed	500	10,001	43.7	7.4	J-692
J-358	10,000	TRUE	Passed	500	10,001	29.4	8.5	J-692
J-359	10,000	TRUE	Passed	500	10,001	27.6	8.5	J-692
J-360	1,637	TRUE	Passed	500	1,638	24	23.8	J-692
J-361	8,790	TRUE	Passed	500	8,791	24	11.4	J-692
J-362	10,000	TRUE	Passed	500	10,001	44.6	7.7	J-692
J-363	8,325	TRUE	Passed	500	8,326	24	12.1	J-692
J-364	7,467	TRUE	Passed	500	7,468	24	14.2	J-692
J-365	7,879	TRUE	Passed	500	7,880	24	13.2	J-692
J-366	7,284	TRUE	Passed	500	7,285	24	14.6	J-692
J-367	8,930	TRUE	Passed	500	8,931	24	10.5	J-692
J-368	6,231	TRUE	Passed	500	6,232	24	17.5	J-692

J-369	9,037	TRUE	Passed	500	9,038	24	11	J-692
J-309 J-370	10,000	TRUE	Passed	500	10,001	31.9	8.4	J-692
J-370 J-371	3,762	TRUE	Passed	500	3,763	24	14.4	J-692
J-371 J-371	10,000	TRUE	Passed	500	10,001	30.4	8.3	J-692
J-371 J-372	7,283	TRUE	Passed	500	7,284	24	14.9	J-692
J-372 J-373	10,000	TRUE	Passed	500	10,001	47.1	7.6	J-692
J-374	10,000	TRUE	Passed	500	10,001	47.3	7.6	J-692
J-375	10,000	TRUE	Passed	500	10,001	44.8	7.6	J-692
J-375	8,299	TRUE		500	8,300	24	12.2	J-692
J-370	10,000	TRUE	Passed Passed	500	10,001	51.5	7.5	J-692
J-377	10,000	TRUE		500	10,001	40.7	7.7	J-692
	10,000	TRUE	Passed	500	-		7.7	J-692
J-379 J-380		TRUE	Passed	500	10,001	24		J-692
	6,978		Passed		6,979		15.5	
J-382	7,539	TRUE	Passed	500	7,540	24	14.5	J-692
J-383	6,931	TRUE	Passed	500	6,932	24	15.8	J-692
J-384	7,231	TRUE	Passed	500	7,232	24	15.2	J-692
J-385	9,576	TRUE	Passed	500	9,577	24	9.4	J-692
J-386	10,000	TRUE	Passed	500	10,001	26.1	8.2	J-692
J-387	8,803	TRUE	Passed	500	8,804	24	11.5	J-692
J-388	6,662	TRUE	Passed	500	6,663	24	16.4	J-692
J-389	5,244	TRUE	Passed	500	5,245	24	19.2	J-692
J-390	1,964	TRUE	Passed	500	1,965	24	23.5	J-692
J-391	7,043	TRUE	Passed	500	7,044	24	15.4	J-692
J-392	10,000	TRUE	Passed	500	10,001	39.4	7.7	J-692
J-393	7,836	TRUE	Passed	500	7,837	24	13.6	J-692
J-394	9,195	TRUE	Passed	500	9,196	24	10.2	J-692
J-395	9,363	TRUE	Passed	500	9,364	24	9.7	J-692
J-396	10,000	TRUE	Passed	500	10,001	40.2	7.7	J-692
J-397	6,418	TRUE	Passed	500	6,419	24	16.5	J-692
J-398	1,748	TRUE	Passed	500	1,749	24	23.6	J-692
J-399	10,000	TRUE	Passed	500	10,001	65	6.9	J-692
J-401	3,853	TRUE	Passed	500	3,854	24	12.9	J-692
J-401	10,000	TRUE	Passed	500	10,001	61.8	7.4	J-692
J-402	10,000	TRUE	Passed	500	10,001	62.5	7.4	J-692
J-403	10,000	TRUE	Passed	500	10,001	41.2	7.4	J-692
J-404	10,000	TRUE	Passed	500	10,001	26.2	7.9	J-692
J-405	4,715	TRUE	Passed	500	4,716	24	19.7	J-692
J-406	10,000	TRUE	Passed	500	10,001	58.1	7.4	J-692
J-407	10,000	TRUE	Passed	500	10,001	64.5	7.3	J-692
J-408	10,000	TRUE	Passed	500	10,001	44.9	7.6	J-692
J-409	3,517	TRUE	Passed	500	3,518	24	21.6	J-692
J-410	10,000	TRUE	Passed	500	10,001	51.3	7.6	J-692

J-411	3,582	TRUE	Passed	500	3,583	24	21.5	J-692
J-412	10,000	TRUE	Passed	500	10,001	56	7.6	J-692
J-413	10,000	TRUE	Passed	500	10,001	62.3	7.3	J-692
J-414	10,000	TRUE	Passed	500	10,001	58.3	5.4	J-692
J-415	2,017	TRUE	Passed	500	2,018	24	23.2	J-692
J-416	10,000	TRUE	Passed	500	10,001	58.9	7.5	J-692
J-417	10,000	TRUE	Passed	500	10,001	55.1	7.7	J-692
J-418	5,540	TRUE	Passed	500	5,541	24	18.6	J-692
J-419	3,522	TRUE	Passed	500	3,523	24	21.7	J-692
J-420	10,000	TRUE	Passed	500	10,001	34.4	8.8	J-692
J-421	9,496	TRUE	Passed	500	9,497	24	9.9	J-692
J-422	7,007	TRUE	Passed	500	7,009	24	15.7	J-692
J-423	9,392	TRUE	Passed	500	9,393	24	10.1	J-692
J-424	4,917	TRUE	Passed	500	4,918	24	19.6	J-692
J-425	4,216	TRUE	Passed	500	4,217	24	20.7	J-692
J-426	9,446	TRUE	Passed	500	9,447	24	9.5	J-692
J-427	8,013	TRUE	Passed	500	8,014	24	13.3	J-692
J-428	9,512	TRUE	Passed	500	9,513	24	9.7	J-692
J-429	9,483	TRUE	Passed	500	9,484	24	9.7	J-692
J-430	4,054	TRUE	Passed	500	4,055	24	20.9	J-692
J-431	7,438	TRUE	Passed	500	7,439	24	14.7	J-692
J-432	2,367	TRUE	Passed	500	2,368	24	23.1	J-692
J-433	3,983	TRUE	Passed	500	3,984	24	18.3	J-692
J-434	10,000	TRUE	Passed	500	10,001	61.8	24.2	J-692
J-435	10,000	TRUE	Passed	500	10,001	63.1	24.3	J-692
J-436	10,000	TRUE	Passed	500	10,001	59.7	23.7	J-692
J-437	9,025	TRUE	Passed	500	9,026	24	23	J-692
J-439	7,101	TRUE	Passed	500	7,103	24	22.8	J-692
J-440	6,970	TRUE	Passed	500	6,971	24	22.8	J-692
J-442	8,076	TRUE	Passed	500	8,077	24	21.5	J-443
J-443	2,219	TRUE	Passed	500	2,220	24	24.3	J-692
J-445	9,420	TRUE	Passed	500	9,421	24	20.3	J-692
J-447	6,436	TRUE	Passed	500	6,437	24	21.8	J-692
J-448	5,131	TRUE	Passed	500	5,132	24	22.6	J-692
J-449	6,115	TRUE	Passed	500	6,116	24	17.5	J-450
J-450	4,225	TRUE	Passed	500	4,226	24	23.1	J-692
J-451	5,968	TRUE	Passed	500	5,969	24	21.9	J-692
J-452	5,465	TRUE	Passed	500	5,466	24	22.1	J-692
J-453	5,034	TRUE	Passed	500	5,035	24	22.6	J-692
J-454	4,857	TRUE	Passed	500	4,858	24	22.7	J-692
J-455	6,541	TRUE	Passed	500	6,542	24	21.6	J-692
J-456	6,502	TRUE	Passed	500	6,503	24	21.5	J-692

1.457	F 222	TDUE	Dd	500	F 222	2.4	22.2	1.002
J-457	5,222	TRUE	Passed	500 500	5,223	24	22.2	J-692
J-458	3,030	TRUE	Passed		3,031	24	23.6	J-692
J-459	2,955	TRUE TRUE	Passed	500 500	2,956	24	23.6	J-692 J-692
J-460	4,012		Passed		4,013			
J-461	1,661	TRUE	Passed	500	1,662	24	23.4	J-463
J-462	1,455	TRUE	Passed	500	1,456	24	24.3	J-692
J-463	1,338	TRUE	Passed	500	1,339	24	24.4	J-692
J-464	5,251	TRUE	Passed	500	5,252	24	22.1	J-692
J-465	5,397	TRUE	Passed	500	5,398	24	22	J-692
J-466	5,699	TRUE	Passed	500	5,700	24	21.6	J-692
J-467	6,399	TRUE	Passed	500	6,400	24	20.9	J-692
J-468	6,313	TRUE	Passed	500	6,314	24	20.9	J-692
J-469	6,892	TRUE	Passed	500	6,893	24	20	J-692
J-470	8,284	TRUE	Passed	500	8,285	24	17.2	J-692
J-471	10,000	TRUE	Passed	500	10,001	38.1	14	J-692
J-472	7,090	TRUE	Passed	500	7,091	24	19.2	J-692
J-473	6,544	TRUE	Passed	500	6,545	24	20.3	J-692
J-474	5,988	TRUE	Passed	500	5,989	24	20.9	J-692
J-475	5,634	TRUE	Passed	500	5,635	24	21.4	J-692
J-476	2,361	TRUE	Passed	500	2,362	24	23.8	J-692
J-477	2,388	TRUE	Passed	500	2,389	24	23.8	J-692
J-478	5,553	TRUE	Passed	500	5,554	24	21.7	J-692
J-479	5,690	TRUE	Passed	500	5,691	24	21.8	J-692
J-480	6,038	TRUE	Passed	500	6,039	24	21.6	J-692
J-481	6,412	TRUE	Passed	500	6,413	24	21.5	J-692
J-482	3,322	TRUE	Passed	500	3,323	24	19.8	J-485
J-483	2,056	TRUE	Passed	500	2,057	24	22.8	J-485
J-484	1,890	TRUE	Passed	500	1,891	24	24.2	J-692
J-485	1,539	TRUE	Passed	500	1,540	24	24.4	J-692
J-486	9,617	TRUE	Passed	500	9,618	24	19.1	J-692
J-487	10,000	TRUE	Passed	500	10,001	38.5	20.2	J-692
J-489	10,000	TRUE	Passed	500	10,001	50.8	22.6	J-692
J-490	10,000	TRUE	Passed	500	10,001	36	22.4	J-692
J-491	10,000	TRUE	Passed	500	10,001	63	24.4	J-692
J-492	10,000	TRUE	Passed	500	10,001	48.3	21	J-692
J-493	10,000	TRUE	Passed	500	10,001	25.9	20.6	J-692
J-494	10,000	TRUE	Passed	500	10,001	26.9	20.6	J-692
J-497	10,000	TRUE	Passed	500	10,001	45.1	16.9	J-692
								J-692
								J-692
								J-692
								J-692
J-498 J-499 J-500 J-501	10,000 10,000 6,944 10,000	TRUE TRUE TRUE TRUE	Passed Passed Passed Passed	500 500 500 500	10,001 10,001 6,945 10,001	47.1 40 24 38.7	19.5 19.7 21.8 20.7	J-6 J-6

J-502	5,187	TRUE	Passed	500	5,188	24	23	J-692
J-504	3,297	TRUE	Passed	500	3,298	24	23.8	J-692
J-505	4,076	TRUE	Passed	500	4,077	24	23.4	J-692
J-507	4,577	TRUE	Passed	500	4,578	24	22.6	J-692
J-508	4,595	TRUE	Passed	500	4,596	24	22.5	J-692
J-509	5,335	TRUE	Passed	500	5,336	24	21.9	J-692
J-510	5,994	TRUE	Passed	500	5,995	24	22.5	J-692
J-511	2,392	TRUE	Passed	500	2,393	24	24.2	J-692
J-513	2,442	TRUE	Passed	500	2,443	24	24.2	J-692
J-514	2,754	TRUE	Passed	500	2,755	24	23.3	J-513
J-516	5,295	TRUE	Passed	500	5,296	24	22.1	J-692
J-517	5,696	TRUE	Passed	500	5,697	24	21.5	J-692
J-518	5,181	TRUE	Passed	500	5,182	24	20.2	J-549
J-519	5,644	TRUE	Passed	500	5,645	24	21.6	J-692
J-520	4,747	TRUE	Passed	500	4,748	24	21.4	J-692
J-521	3,939	TRUE	Passed	500	3,940	24	22.2	J-692
J-522	4,070	TRUE	Passed	500	4,071	24	21.5	J-603
J-523	4,434	TRUE	Passed	500	4,435	24	21.6	J-692
J-524	4,305	TRUE	Passed	500	4,306	24	21.8	
J-525	4,761	TRUE	Passed	500	4,763	24	21.3	J-692
J-526	4,637	TRUE	Passed	500	4,638	24	21.5	J-692
J-527	4,685	TRUE	Passed	500	4,686	24	21.2	J-692
J-528	4,360	TRUE	Passed	500	4,361	24	21.6	
J-529	4,575	TRUE	Passed	500	4,576	24	21.3	J-692
J-530	4,613	TRUE	Passed	500	4,614	24	21.3	J-692
J-531	2,967	TRUE	Passed	500	2,968	24	22.9	J-692
J-532	3,206	TRUE	Passed	500	3,208	24	22.7	J-692
J-533	8,293	TRUE	Passed	500	8,294	24	15.1	J-692
J-534	9,190	TRUE	Passed	500	9,191	24	13.3	J-692
J-535	8,559	TRUE	Passed	500	8,560	24	14.7	J-692
J-536	7,695	TRUE	Passed	500	7,696	24	16.3	J-692
J-537	8,801	TRUE	Passed	500	8,802	24	14.1	J-692
J-538	9,387	TRUE	Passed	500	9,388	24	12.2	J-692
J-539	10,000	TRUE	Passed	500	10,001	28.5	10.6	J-692
J-540	3,155	TRUE	Passed	500	3,156	24	22.7	J-692
J-541	3,399	TRUE	Passed	500	3,400	24	22.5	J-692
J-542	6,798	TRUE	Passed	500	6,799	24	18.5	J-692
J-543	9,176	TRUE	Passed	500	9,177	24	15.1	J-692
J-544	10,000	TRUE	Passed	500	10,001	26.3	14.7	J-692
J-545	5,667	TRUE	Passed	500	5,668	24	20.9	J-692
J-546	2,190	TRUE	Passed	500	2,191	24	23.8	J-692
J-547	5,285	TRUE	Passed	500	5,286	24	21.6	

J-548	1,889	TRUE	Passed	500	1,890	24	24.1	J-692
J-546 J-549	1,752	TRUE	Passed	500	1,753	24	24.1	J-692
J-550	4,652	TRUE	Passed	500	4,653	24	22.5	J-692
J-551	3,101	TRUE	Passed	500	3,102	24	23.5	J-692
J-552	2,501	TRUE	Passed	500	2,502	24	23.8	J-692
J-553	4,110	TRUE	Passed	500	4,111	24	23.5	J-692
J-554	2,683	TRUE	Passed	500	2,684	24	24.1	J-692
J-555	10,000	TRUE	Passed	500	10,001	31.8	14.4	J-692
J-556	4,231	TRUE		500	4,232	24	22.1	J-692
J-557	3,734	TRUE	Passed Passed	500	3,735	24	22.1	J-692
J-558	1,898	TRUE		500	1,899	24	23.9	J-692
			Passed	500		36		
J-559	10,000	TRUE	Passed		10,001		15.3	J-692
J-560	10,000	TRUE	Passed	500	10,001	44.5	16.4	J-692
J-561	3,843	TRUE	Passed	500	3,844	24	22.2	J-692
J-562	10,000	TRUE	Passed	500	10,001	31.6	14.8	J-692
J-563	2,984	TRUE	Passed	500	2,985	24	22.8	J-692
J-564	10,000	TRUE	Passed	500	10,001	33.7	11.4	J-692
J-565	10,000	TRUE	Passed	500	10,001	35.6	13.1	J-692
J-566	8,551	TRUE	Passed	500	8,552	24	14	J-692
J-567	10,000	TRUE	Passed	500	10,001	30.5	10.1	J-692
J-568	10,000	TRUE	Passed	500	10,001	28.1	7.2	J-692
J-569	8,300	TRUE	Passed	500	8,302	24	12.1	J-692
J-570	7,256	TRUE	Passed	500	7,257	24	15.2	J-692
J-571	8,584	TRUE	Passed	500	8,585	24	9.9	J-692
J-572	10,000	TRUE	Passed	500	10,001	40	3.3	J-692
J-573	7,961	TRUE	Passed	500	7,962	50.6	0	J-692
J-574	9,774	TRUE	Passed	500	9,775	24	5.6	J-692
J-576	10,000	TRUE	Passed	500	10,001	35.5	8.7	J-692
J-577	10,000	TRUE	Passed	500	10,001	33.9	9.6	J-692
J-578	3,350	TRUE	Passed	500	3,351	24	22.3	J-692
J-579	4,420	TRUE	Passed	500	4,421	24	21.2	J-692
J-580	4,471	TRUE	Passed	500	4,472	24	21.2	J-692
J-581	4,215	TRUE	Passed	500	4,216	24	21.3	J-692
J-582	6,628	TRUE	Passed	500	6,629	24	17.5	J-692
J-583	7,160	TRUE	Passed	500	7,161	24	16.5	J-692
J-584	8,107	TRUE	Passed	500	8,108	24	14.7	J-692
J-585	6,252	TRUE	Passed	500	6,253	24	18.1	J-692
J-587	5,805	TRUE	Passed	500	5,806	24	18.8	J-692
J-588	5,443	TRUE	Passed	500	5,444	24	19.4	J-692
J-589	5,585	TRUE	Passed	500	5,587	24	19.1	J-692
J-590	7,018	TRUE	Passed	500	7,019	24	16.7	J-692
J-591	6,449	TRUE	Passed	500	6,450	24	17.7	J-692

1.502	C 221	TDUE	Desced	F00	C 222	2.4	10.7	1.002
J-592	6,231	TRUE	Passed	500	6,232	24	18.7	J-692
J-593	4,611	TRUE	Passed	500	4,612	24	21.2	J-692
J-594	4,466	TRUE	Passed	500	4,467	24	20.3	J-596
J-595	3,640	TRUE	Passed	500	3,641	24	21.3	J-596
J-596	3,092	TRUE	Passed	500	3,093	24	22.9	J-692
J-597	3,198	TRUE	Passed	500	3,199	24	22.8	J-692
J-598	3,283	TRUE	Passed	500	3,284	24	22.7	J-692
J-599	3,476	TRUE	Passed	500	3,477	24	22.5	J-692
J-601	3,057	TRUE	Passed	500	3,058	24	22.9	J-692
J-602	4,380	TRUE	Passed	500	4,381	24	21.6	J-692
J-603	2,346	TRUE	Passed	500	2,347	24	23.5	J-692
J-604	4,393	TRUE	Passed	500	4,394	24	21.6	J-692
J-605	3,251	TRUE	Passed	500	3,252	24	22.7	J-692
J-606	3,368	TRUE	Passed	500	3,369	24	22.6	J-692
J-607	4,231	TRUE	Passed	500	4,232	24	21.8	J-692
J-608	4,360	TRUE	Passed	500	4,361	24	21.6	J-692
J-609	4,447	TRUE	Passed	500	4,448	24	21.5	J-692
J-610	4,373	TRUE	Passed	500	4,374	24	21.6	J-692
J-611	4,672	TRUE	Passed	500	4,673	24	21.2	J-692
J-612	4,146	TRUE	Passed	500	4,147	24	21.8	J-692
J-613	4,274	TRUE	Passed	500	4,275	24	21.6	J-692
J-614	6,456	TRUE	Passed	500	6,457	24	18.4	J-692
J-615	6,742	TRUE	Passed	500	6,743	24	18	J-692
J-616	6,894	TRUE	Passed	500	6,895	24	17.7	J-692
J-617	6,771	TRUE	Passed	500	6,772	24	17	J-692
J-620	7,726	TRUE	Passed	500	7,727	24	15.1	J-692
J-621	9,417	TRUE	Passed	500	9,418	24	11.2	J-692
J-622	9,034	TRUE	Passed	500	9,035	24	12.2	J-692
J-623	9,112	TRUE	Passed	500	9,113	24	11.7	J-692
J-625	10,000	TRUE	Passed	500	10,001	24.4	9.5	J-692
J-626	8,868	TRUE	Passed	500	8,869	24	12.7	J-692
J-627	8,816	TRUE	Passed	500	8,817	24	12.9	J-692
J-628	9,041	TRUE	Passed	500	9,042	24	12.5	J-692
J-629	9,498	TRUE	Passed	500	9,499	24	11.4	J-692
J-630	9,703	TRUE	Passed	500	9,704	24	10.9	J-692
J-631	9,781	TRUE	Passed	500	9,782	24	10.7	J-692
J-632	5,290	TRUE	Passed	500	5,291	24	19.3	J-692
J-633	3,173	TRUE	Passed	500	3,174	24	22.3	J-692
J-634	8,100	TRUE	Passed	500	8,101	24	13.8	J-692
J-636	10,000	TRUE	Passed	500	10,001	27.1	10.2	J-692
J-637	3,850	TRUE	Passed	500	3,851	24	21.6	J-692
J-638	10,000	TRUE	Passed	500	10,001	30.1	10.3	J-692

J-639	10,000	TRUE	Passed	500	10,001	35.5	9.5	J-692
J-640	10,000	TRUE	Passed	500	10,001	32.2	9.6	J-692
J-641	5,686	TRUE	Passed	500	5,687	24	19	J-692
J-642	4,134	TRUE	Passed	500	4,135	24	21.4	J-692
J-643	3,178	TRUE	Passed	500	3,179	24	22.7	J-692
J-644	5,436	TRUE	Passed	500	5,437	24	20.1	J-692
J-645	2,774	TRUE	Passed	500	2,775	24	23.1	J-692
J-646	7,497	TRUE	Passed	500	7,498	24	17.1	J-692
J-647	4,915	TRUE	Passed	500	4,916	24	20.6	J-692
J-648	3,031	TRUE	Passed	500	3,032	24	22.8	J-692
J-649	3,751	TRUE	Passed	500	3,752	24	22.2	J-692
J-650	1,895	TRUE	Passed	500	1,896	24	23.8	J-692
J-651	7,972	TRUE	Passed	500	7,973	24	16.6	J-692
J-652	3,098	TRUE	Passed	500	3,099	24	22.9	J-692
J-655	7,441	TRUE	Passed	500	7,442	24	16.8	J-692
J-656	3,612	TRUE	Passed	500	3,613	24	22.2	J-692
J-657	10,000	TRUE	Passed	500	10,001	33.2	8.3	J-692
J-659	10,000	TRUE	Passed	500	10,001	36.6	8.3	J-692
J-659	10,000	TRUE	Passed	500	10,001	38.1	7.9	J-692
J-660	10,000	TRUE	Passed	500	10,001	39.2	7.9	J-692
J-661	833	TRUE	Passed	500	837	24	24.4	J-692
J-662	10,000	TRUE	Passed	500	10,001	52.1	7.6	J-692
J-663	10,000	TRUE	Passed	500	10,001	43.4	8	J-692
J-664	10,000	TRUE	Passed	500	10,001	32	9	J-692
J-665	10,000	TRUE	Passed	500	10,001	34.3	9.3	J-692
J-666	10,000	TRUE	Passed	500	10,001	40.7	17.7	J-692
J-667	10,000	TRUE	Passed	500	10,001	25.4	17.4	J-692
J-668	10,000	TRUE	Passed	500	10,001	47.5	19.8	J-692
J-669	4,455	TRUE	Passed	500	4,456	24	21.6	J-692
J-670	5,049	TRUE	Passed	500	5,050	24	20.9	J-692
J-673	10,000	TRUE	Passed	500	10,001	39.7	8.2	J-692
J-674	4,273	TRUE	Passed	500	4,274	24	20.6	J-692
J-675	3,991	TRUE	Passed	500	3,992	24	21	J-692
J-676	5,611	TRUE	Passed	500	5,612	24	18.4	J-692
J-677	2,517	TRUE	Passed	500	2,518	24	22.9	J-692
J-678	1,884	TRUE	Passed	500	1,885	24	23.6	J-692
J-680	5,894	TRUE	Passed	500	5,894	24	5.8	J-692
J-682	4,863	TRUE	Passed	500	4,863	24	9.6	J-692
J-685	1,936	TRUE	Passed	500	1,961	24	20	J-692
J-686	5,367	TRUE	Passed	500	5,417	24	1.5	J-692
J-687	5,912	TRUE	Passed	500	5,937	33.4	0	J-692
J-689	7,058	TRUE	Passed	500	7,083	31.6	0	J-692

J-690	6,211	TRUE	Passed	500	6,236	38.7	0	J-692
J-691	5,808	TRUE	Passed	500	5,833	32.6	0	J-692
J-692	535	TRUE	Passed	500	535	24	25.8	J-695
J-693	5,667	TRUE	Passed	500	5,692	24	7.2	J-692
J-694	5,418	TRUE	Passed	500	5,443	24	2.7	J-692
J-695	1,136	TRUE	Passed	500	1,161	24	22.8	J-692
J-696	5,197	TRUE	Passed	500	5,202	24	13	J-692
J-697	6,139	TRUE	Passed	500	6,139	24	0.7	J-692
J-698	5,718	TRUE	Passed	500	5,743	24	3.8	J-692
J-699	7,209	TRUE	Passed	500	7,234	59.2	0	J-692
J-700	6,524	TRUE	Passed	500	6,549	27.7	0	J-692
J-702	5,101	TRUE	Passed	500	5,101	24	5.3	J-692
J-719	4,772	TRUE	Passed	500	4,772	24	23.6	J-692
J-724	4,595	TRUE	Passed	500	4,595	24	23.7	J-692
J-726	4,329	TRUE	Passed	500	4,329	24	23.4	J-692
J-727	8,248	TRUE	Passed	500	8,248	24	23.4	J-692
J-731	6,023	TRUE	Passed	500	6,024	24	19.6	J-692
J-904	7,126	TRUE	Passed	500	7,127	24	14.4	J-692
J-1031	9,777	TRUE	Passed	500	9,778	24	8.8	J-692
J-1031 J-1082	10,000	TRUE	Passed	500	10,001	57.9	7.5	J-692
J-1184	9,694	TRUE	Passed	500	9,695	24	22.3	J-692
J-1104 J-1201	8,471	TRUE	Passed	500	8,472	24	20.5	J-692
J-1201 J-1296	10,000	TRUE	Passed	500	10,001	42.6	20.7	J-692
J-1230	4,021	TRUE	Passed	500	4,022	24	23.5	J-692
J-1334 J-1340	4,142	TRUE	Passed	500	4,143	24	23.3	J-692
J-1549	3,102	TRUE	Passed	500	3,103	24	22.9	J-692
J-1549 J-1642	9,102	TRUE	Passed	500	9,103	24	11.6	J-692
J-1042 J-1704	10,000	TRUE	Passed	500	10,001	41.3	8.3	J-692
J-1704 J-1780	4,681	TRUE	Passed	500	4,681	24	23.7	J-692
J-1780	3,657	TRUE	Passed	500	3,657	24	15.8	J-692
					3,037	24	13.6	J-032
	5: 12-Inch SE E	•						
1-FLOW	8,805	TRUE	Passed	500	8,806	30	30.8	1-RES
1-RES	3,090	TRUE	Passed	500	3,094	30	48.5	J-692
2-FLOW	7,437	TRUE	Passed	500	7,438	30	30	2-RES
2-RES	4,093	TRUE	Passed	500	4,094	30	48.5	J-692
3-FLOW	2,846	TRUE	Passed	500	2,847	30	30.9	3-RES
3-RES	2,427	TRUE	Passed	500	2,428	30	40	3-FLOW
4-FLOW	3,236	TRUE	Passed	500	3,237	30	30.7	4-RES
4-RES	2,371	TRUE	Passed	500	2,372	30	42.4	4-FLOW
5-FLOW	1,779	TRUE	Passed	500	1,780	30	27.3	J-51
5-RES	1,521	TRUE	Passed	500	1,522	30	35.8	J-692
6-FLOW	1,979	TRUE	Passed	500	1,980	30	30.8	6-RES

6-RES	1,282	TRUE	Passed	500	1,283	30	46.9	6-FLOW
7-FLOW	1,610	TRUE	Passed	500	1,611	30	29	J-196
7-RES	1,498	TRUE	Passed	500	1,499	30	32.7	J-196
J-1	3,864	TRUE	Passed	500	3,865	30	32.2	J-92
J-2	6,189	TRUE	Passed	500	6,190	30	29.5	J-97
J-3	7,800	TRUE	Passed	500	7,801	30	39.6	J-97
J-11	7,358	TRUE	Passed	500	7,359	30	29.4	J-13
J-12	7,234	TRUE	Passed	500	7,235	30	32.3	J-14
J-13	3,508	TRUE	Passed	500	3,509	30	36.3	J-17
J-14	3,533	TRUE	Passed	500	3,534	30	47.1	J-92
J-15	6,653	TRUE	Passed	500	6,654	30	30.1	J-14
J-17	3,776	TRUE	Passed	500	3,777	30	30.4	J-13
l-18	10,000	TRUE	Passed	500	10,001	58.9	48.4	J-692
l-19	7,896	TRUE	Passed	500	7,897	30	27.6	J-25
I-20	3,901	TRUE	Passed	500	3,902	30	33.3	J-23
l-21	4,011	TRUE	Passed	500	4,012	30	35.1	J-20
J-22	1,978	TRUE	Passed	500	1,979	30	48.1	J-25
-23	3,532	TRUE	Passed	500	3,533	30	30.2	J-22
-24	1,838	TRUE	Passed	500	1,839	30	46.4	J-25
-25	3,104	TRUE	Passed	500	3,106	30	30.1	J-24
-26	1,775	TRUE	Passed	500	1,776	30	48.5	J-692
-27	3,166	TRUE	Passed	500	3,167	30	29.2	J-26
-28	2,027	TRUE	Passed	500	2,028	30	48.1	J-26
-29	3,361	TRUE	Passed	500	3,362	30	29.5	J-28
-30	4,464	TRUE	Passed	500	4,465	30	35	J-28
-31	1,670	TRUE	Passed	500	1,671	30	31.2	J-33
-33	1,695	TRUE	Passed	500	1,696	30	30.6	J-74
-34	1,653	TRUE	Passed	500	1,654	30	32.1	J-74
-35	1,747	TRUE	Passed	500	1,748	30	28.5	J-34
-36	1,822	TRUE	Passed	500	1,823	30	25.7	J-74
-37	1,795	TRUE	Passed	500	1,796	30	26.7	J-74
-38	1,804	TRUE	Passed	500	1,805	30	26.3	J-74
-39	1,793	TRUE	Passed	500	1,794	30	26.8	J-74
-40	1,800	TRUE	Passed	500	1,801	30	26.5	J-74
-41	1,845	TRUE	Passed	500	1,846	30	24.9	J-74
-42	1,762	TRUE	Passed	500	1,763	30	28.4	J-51
-43	1,829	TRUE	Passed	500	1,830	30	25.9	J-51
-44	1,565	TRUE	Passed	500	1,566	30	35.2	J-51
-45	1,620	TRUE	Passed	500	1,621	30	33.3	J-51
-46	1,711	TRUE	Passed	500	1,712	30	30	J-47
l-47	1,525	TRUE	Passed	500	1,526	30	35.8	J-692
J-48	1,686	TRUE	Passed	500	1,687	30	27.2	J-47

J-49	1,769	TRUE	Passed	500	1,770	30	28.2	J-51
J-49 J-50	1,664	TRUE	Passed	500	1,770	30	31.9	J-51 J-51
J-50 J-51	1,131	TRUE	Passed	500	1,132	30	39.2	J-692
J-51 J-52	1,131	TRUE	Passed	500	1,132	30	26.6	J-692 J-51
				500				
J-53	1,563	TRUE	Passed		1,564	30	31.6	J-54
J-54	1,603	TRUE	Passed	500	1,604	30	29.5	J-53
J-55	1,492	TRUE	Passed	500	1,493	30	33.7	J-56
J-56	1,581	TRUE	Passed	500	1,582	30	28.7	J-55
J-57	1,544	TRUE	Passed	500	1,545	30	35.6	J-51
J-58	1,625	TRUE	Passed	500	1,626	30	30.1	J-55
J-59	1,680	TRUE	Passed	500	1,682	30	27.9	J-55
J-60	1,637	TRUE	Passed	500	1,638	30	28.3	J-55
J-61	1,787	TRUE	Passed	500	1,788	30	27	J-51
J-64	1,812	TRUE	Passed	500	1,813	30	26	J-51
J-65	1,765	TRUE	Passed	500	1,766	30	28	J-51
J-66	1,859	TRUE	Passed	500	1,860	30	24.9	J-74
J-67	1,759	TRUE	Passed	500	1,760	30	28.7	J-51
J-68	1,822	TRUE	Passed	500	1,823	30	26.2	J-74
J-69	1,621	TRUE	Passed	500	1,622	30	33.2	J-74
J-70	1,717	TRUE	Passed	500	1,718	30	29.7	J-74
J-71	1,711	TRUE	Passed	500	1,712	30	28.4	J-74
J-72	1,677	TRUE	Passed	500	1,678	30	30.3	J-74
J-73	1,198	TRUE	Passed	500	1,199	30	38.6	J-692
J-74	1,626	TRUE	Passed	500	1,627	30	31.1	J-73
J-75	1,810	TRUE	Passed	500	1,811	30	25.5	J-74
J-76	1,781	TRUE	Passed	500	1,782	30	27.2	J-74
J-77	1,770	TRUE	Passed	500	1,771	30	28.4	J-74
J-78	1,882	TRUE	Passed	500	1,883	30	23.5	J-74
J-79	1,738	TRUE	Passed	500	1,739	30	29.1	J-74
J-80	1,744	TRUE	Passed	500	1,745	30	28.7	J-74
J-81	1,841	TRUE	Passed	500	1,842	30	25.3	J-74
J-82	1,897	TRUE	Passed	500	1,898	30	22.5	J-74
J-83	1,868	TRUE	Passed	500	1,869	30	23.7	J-74
J-84	1,876	TRUE	Passed	500	1,877	30	23.4	J-74
J-85	1,864	TRUE	Passed	500	1,865	30	23.8	J-74
J-86	1,850	TRUE	Passed	500	1,851	30	24.3	J-74
J-87	1,820	TRUE	Passed	500	1,831	30	25.5	J-74
J-88	1,786	TRUE	Passed	500	1,787	30	26.7	J-74
J-89	1,834	TRUE	Passed	500	1,835	30	24.8	J-74
				500		30	24.8	J-74 J-74
J-90	1,776	TRUE	Passed	500	1,777	30		J-74 J-692
J-91	1,433	TRUE	Passed		1,434		36.6	
J-92	3,937	TRUE	Passed	500	3,938	30	30.4	J-97

1.02	4 020	TDUE	Dd	F00	4 020	30	3F F	1.74
J-93	1,838	TRUE	Passed	500 500	1,839	30	25.5	J-74
J-94	3,963	TRUE	Passed		3,964	30	29.9	J-92
J-95 J-96	5,664	TRUE TRUE	Passed	500 500	5,665	30	29.9	J-97 J-97
	4,303		Passed		4,304			
J-97	3,944	TRUE	Passed	500	3,945	30	30.3	J-92
J-98	3,998	TRUE	Passed	500	3,999	30	29.9	J-97
J-99	3,250	TRUE	Passed	500	3,251	30	25.1	J-692
J-100	4,023	TRUE	Passed	500	4,024	30	21.2	J-692
J-101	3,150	TRUE	Passed	500	3,151	30	25.6	J-692
J-102	4,269	TRUE	Passed	500	4,270	30	19.3	J-692
J-103	4,962	TRUE	Passed	500	4,963	30	13.6	J-692
J-104	4,509	TRUE	Passed	500	4,510	30	18.1	J-692
J-105	5,232	TRUE	Passed	500	5,233	30	11.2	J-692
J-106	5,025	TRUE	Passed	500	5,026	30	13.2	J-692
J-107	4,713	TRUE	Passed	500	4,714	30	16.2	J-692
J-108	5,054	TRUE	Passed	500	5,055	30	12.9	J-692
J-109	5,023	TRUE	Passed	500	5,024	30	13.2	J-692
J-110	4,676	TRUE	Passed	500	4,677	30	16.3	J-692
J-111	4,306	TRUE	Passed	500	4,307	30	19.5	J-692
J-112	3,844	TRUE	Passed	500	3,845	30	22.6	J-692
J-113	3,365	TRUE	Passed	500	3,366	30	24.8	J-692
J-114	3,150	TRUE	Passed	500	3,151	30	26	J-692
J-115	3,836	TRUE	Passed	500	3,837	30	23	J-692
J-116	2,957	TRUE	Passed	500	2,958	30	27.1	J-692
J-117	3,484	TRUE	Passed	500	3,485	30	24.5	J-692
J-118	1,522	TRUE	Passed	500	1,523	30	35.8	J-692
J-118	3,111	TRUE	Passed	500	3,112	30	26.2	J-692
J-119	3,659	TRUE	Passed	500	3,660	30	23.9	J-692
J-121	2,817	TRUE	Passed	500	2,818	30	28	J-692
J-122	3,883	TRUE	Passed	500	3,884	30	22.8	J-692
J-123	4,236	TRUE	Passed	500	4,261	30	2.3	J-692
J-124	5,903	TRUE	Passed	500	5,904	30	3	J-692
J-125	4,009	TRUE	Passed	500	4,010	30	24.9	J-692
J-126	5,126	TRUE	Passed	500	5,127	30	13.9	J-692
J-127	4,248	TRUE	Passed	500	4,249	30	23.1	J-692
J-128	1,643	TRUE	Passed	500	1,644	30	37.8	J-692
J-129	3,846	TRUE	Passed	500	3,847	30	25.9	J-692
J-130	4,022	TRUE	Passed	500	4,023	30	25.2	J-692
J-133	4,071	TRUE	Passed	500	4,072	30	25.2	J-692
J-134	3,233	TRUE	Passed	500	3,234	30	28.5	J-692
J-135	3,629	TRUE	Passed	500	3,630	30	27	J-692
13 133	4,071	TRUE	1 03300	500	4,072	30	21	3 032

J-137	4,363	TRUE	Passed	500	4,364	30	23.9	J-692
J-138	4,990	TRUE	Passed	500	4,991	30	20	J-692
J-139	4,349	TRUE	Passed	500	4,350	30	17.3	J-692
J-140	3,282	TRUE	Passed	500	3,283	30	24.9	J-692
J-141	3,575	TRUE	Passed	500	3,576	30	23.7	J-692
J-142	4,839	TRUE	Passed	500	4,840	30	15.1	J-692
J-143	5,425	TRUE	Passed	500	5,426	30	9.1	J-692
J-144	5,934	TRUE	Passed	500	5,935	30	3.7	J-692
J-145	4,135	TRUE	Passed	500	4,136	30	21.4	J-692
J-146	5,717	TRUE	Passed	500	5,718	30	5.9	J-692
J-147	5,496	TRUE	Passed	500	5,497	30	8.3	J-692
J-148	5,403	TRUE	Passed	500	5,405	30	9.2	J-692
J-149	4,577	TRUE	Passed	500	4,578	30	16.7	J-692
J-150	3,920	TRUE	Passed	500	3,921	30	21.9	J-692
J-151	4,575	TRUE	Passed	500	4,576	30	16.4	J-692
J-152	2,580	TRUE	Passed	500	2,581	30	29.2	J-692
J-153	3,790	TRUE	Passed	500	3,791	30	22.7	J-692
J-154	3,701	TRUE	Passed	500	3,702	30	23.2	J-692
J-155	1,861	TRUE	Passed	500	1,862	30	31.1	J-196
J-156	2,183	TRUE	Passed	500	2,184	30	32.8	J-196
J-157	2,123	TRUE	Passed	500	2,124	30	28.4	J-237
J-158	1,169	TRUE	Passed	500	1,170	30	33	J-159
J-159	1,230	TRUE	Passed	500	1,231	30	30.1	J-158
J-160	3,187	TRUE	Passed	500	3,188	30	25.5	J-692
J-161	3,230	TRUE	Passed	500	3,231	30	25.3	J-692
J-162	3,229	TRUE	Passed	500	3,230	30	25.3	J-692
J-163	3,068	TRUE	Passed	500	3,069	30	26.2	J-692
J-164	3,241	TRUE	Passed	500	3,242	30	25.2	J-692
J-165	3,391	TRUE	Passed	500	3,392	30	24.5	J-692
J-166	4,874	TRUE	Passed	500	4,875	30	14.2	J-692
J-167	2,438	TRUE	Passed	500	2,439	30	30.2	J-692
J-168	2,776	TRUE	Passed	500	2,777	30	27.9	J-692
J-169	3,127	TRUE	Passed	500	3,128	30	25.8	J-692
J-170	4,579	TRUE	Passed	500	4,580	30	16.3	J-692
J-171	2,642	TRUE	Passed	500	2,643	30	28.6	J-692
J-172	6,648	TRUE	Passed	500	6,649	30.7	0	J-692
J-173	5,154	TRUE	Passed	500	5,155	30	17.8	J-692
J-174	5,291	TRUE	Passed	500	5,292	30	17.4	J-692
J-175	7,232	TRUE	Passed	500	7,233	32.6	0	J-692
J-176	10,000	TRUE	Passed	500	10,001	33.8	2.2	J-692
J-177	4,064	TRUE	Passed	500	4,065	30	34.1	J-692
J-178	6,326	TRUE	Passed	500	6,327	30	24.9	J-692

J-179	1,717	TRUE	Passed	500	1,718	30	43.7	J-692
J-180	1,806	TRUE	Passed	500	1,807	30	36.6	J-692
J-181	10,000	TRUE	Passed	500	10,001	87.7	44.3	J-692
J-183	10,000	TRUE	Passed	500	10,001	31.7	22.1	J-237
J-184	750	TRUE	Passed	500	751	30.1	48.5	J-692
J-185	7,310	TRUE	Passed	500	7,311	30	23.6	J-186
J-186	5,098	TRUE	Passed	500	5,099	30	46	J-156
J-187	5,166	TRUE	Passed	500	5,167	30	23.7	J-188
J-188	3,936	TRUE	Passed	500	3,937	30	46.4	J-237
J-189	4,124	TRUE	Passed	500	4,125	30	28.7	J-237
J-190	4,259	TRUE	Passed	500	4,260	30	31.9	J-237
J-191	3,461	TRUE	Passed	500	3,462	30	26.7	J-196
J-192	2,848	TRUE	Passed	500	2,849	30	28.6	J-196
J-193	2,447	TRUE	Passed	500	2,448	30	26.5	J-196
J-194	1,954	TRUE	Passed	500	1,955	30	26.7	J-196
J-195	1,706	TRUE	Passed	500	1,707	30	28	J-196
J-196	1,502	TRUE	Passed	500	1,503	30	32.9	J-197
J-197	1,588	TRUE	Passed	500	1,589	30	29.1	J-196
J-200	3,690	TRUE	Passed	500	3,691	30	30	J-201
J-201	3,400	TRUE	Passed	500	3,401	30	33.9	J-200
J-202	3,625	TRUE	Passed	500	3,626	30	31.1	J-206
J-203	3,626	TRUE	Passed	500	3,627	30	32.4	J-202
J-204	3,044	TRUE	Passed	500	3,045	30	30.5	J-205
J-205	2,593	TRUE	Passed	500	2,594	30	37.4	J-204
J-206	3,237	TRUE	Passed	500	3,238	30	31.9	J-207
J-207	2,828	TRUE	Passed	500	2,829	30	36.3	J-206
J-208	4,020	TRUE	Passed	500	4,021	30	29.9	J-209
J-209	3,332	TRUE	Passed	500	3,333	30	38.3	J-208
J-210	5,578	TRUE	Passed	500	5,579	30	29.9	J-97
J-211	5,606	TRUE	Passed	500	5,607	30	32.5	J-212
J-212	4,549	TRUE	Passed	500	4,550	30	30.5	J-213
J-213	3,518	TRUE	Passed	500	3,519	30	40.1	J-215
J-214	2,755	TRUE	Passed	500	2,756	30	29.5	J-215
J-215	2,296	TRUE	Passed	500	2,297	30	38.4	J-214
J-216	803	TRUE	Passed	500	804	30	48.5	J-692
J-217	3,322	TRUE	Passed	500	3,323	30	29.5	J-215
J-218	1,853	TRUE	Passed	500	1,854	30	48.5	J-692
J-219	4,044	TRUE	Passed	500	4,045	30	30	J-215
J-220	1,935	TRUE	Passed	500	1,936	30	48.5	J-692
J-221	2,332	TRUE	Passed	500	2,333	30	48.4	J-692
J-222	4,495	TRUE	Passed	500	4,496	30	33	J-221
J-223	4,956	TRUE	Passed	500	4,957	30	32	J-222

J-224	5,826	TRUE	Passed	500	5,827	30	37.1	J-223
J-225	6,061	TRUE	Passed	500	6,062	30	39	J-224
J-226	7,734	TRUE	Passed	500	7,735	30	32.9	J-334
J-227	5,756	TRUE	Passed	500	5,758	30	12.7	J-196
J-228	4,538	TRUE	Passed	500	4,539	30	32.9	J-229
J-229	4,548	TRUE	Passed	500	4,549	30	31.9	J-228
J-230	2,912	TRUE	Passed	500	2,913	30	48.1	J-692
J-231	4,380	TRUE	Passed	500	4,381	30	31	J-230
J-232	4,958	TRUE	Passed	500	4,959	30	33.6	J-231
J-233	6,701	TRUE	Passed	500	6,702	30	26.6	J-232
J-234	10,000	TRUE	Passed	500	10,001	44.5	24	J-237
J-235	10,000	TRUE	Passed	500	10,001	52.7	26.4	J-156
J-236	1,774	TRUE	Passed	500	1,775	30	28.7	J-237
J-237	1,568	TRUE	Passed	500	1,569	30	36.6	J-236
J-238	1,021	TRUE	Passed	500	1,022	30	48.5	J-692
J-239	10,000	TRUE	Passed	500	10,001	31.1	31.4	J-240
J-240	9,903	TRUE	Passed	500	9,904	30	32.6	J-239
J-241	8,213	TRUE	Passed	500	8,214	30	42.5	J-14
J-242	7,537	TRUE	Passed	500	7,538	30	37.9	J-13
J-243	9,636	TRUE	Passed	500	9,637	30	35.4	J-244
J-244	5,315	TRUE	Passed	500	5,316	30	46.5	J-317
J-245	9,907	TRUE	Passed	500	9,908	30	40.4	J-243
J-246	8,788	TRUE	Passed	500	8,789	30	40.2	J-242
J-247	10,000	TRUE	Passed	500	10,001	41.9	44.8	J-323
J-248	7,277	TRUE	Passed	500	7,278	30	33.5	J-318
J-249	2,447	TRUE	Passed	500	2,448	30	29.1	J-250
J-250	1,334	TRUE	Passed	500	1,335	30	48.5	J-692
J-251	7,386	TRUE	Passed	500	7,387	30	38.1	J-253
J-252	7,406	TRUE	Passed	500	7,407	30	45.1	J-253
J-253	3,164	TRUE	Passed	500	3,165	30	48.5	J-692
J-254	7,635	TRUE	Passed	500	7,636	30	26.5	J-324
J-255	6,900	TRUE	Passed	500	6,901	30	35.9	J-262
J-256	4,134	TRUE	Passed	500	4,135	30	48.4	J-692
J-257	6,958	TRUE	Passed	500	6,959	30	36.6	J-258
J-258	6,913	TRUE	Passed	500	6,914	30	37.3	J-257
J-259	4,388	TRUE	Passed	500	4,389	30	47.5	J-256
J-260	6,142	TRUE	Passed	500	6,143	30	33.5	J-731
J-262	6,815	TRUE	Passed	500	6,816	30	37.4	J-255
J-263	4,182	TRUE	Passed	500	4,183	30	39.8	J-266
J-264	7,111	TRUE	Passed	500	7,112	30	35	J-25
J-265	3,933	TRUE	Passed	500	3,934	30	29.5	J-266
J-266	2,782	TRUE	Passed	500	2,783	30	45.7	J-265

J-267	5,861	TRUE	Passed	500	5,862	30	32.1	J-268
J-268	5,140	TRUE	Passed	500	5,141	30	31.8	4-FLOW
I-269	6,021	TRUE	Passed	500	6,022	30	31.6	J-267
-270	7,360	TRUE	Passed	500	7,361	30	33.4	J-272
-271	6,324	TRUE	Passed	500	6,325	30	35	J-260
-272	6,464	TRUE	Passed	500	6,466	30	30.6	J-276
-273	4,965	TRUE	Passed	500	4,966	30	30.1	J-274
-274	4,583	TRUE	Passed	500	4,585	30	34.3	J-273
-275	6,176	TRUE	Passed	500	6,177	30	32.7	J-273
-276	5,929	TRUE	Passed	500	5,930	30	35.4	J-275
-277	6,048	TRUE	Passed	500	6,049	30	28.5	J-278
-278	4,402	TRUE	Passed	500	4,403	30	38.6	J-283
-279	3,953	TRUE	Passed	500	3,954	30	34.1	J-281
-280	1,451	TRUE	Passed	500	1,452	30	48.5	J-692
-281	3,226	TRUE	Passed	500	3,227	30	32.8	J-280
-282	3,068	TRUE	Passed	500	3,069	30	29.9	J-283
-283	2,427	TRUE	Passed	500	2,428	30	30.2	J-285
-284	1,391	TRUE	Passed	500	1,392	30	48.5	J-692
-285	2,050	TRUE	Passed	500	2,051	30	37.9	J-283
-286	4,394	TRUE	Passed	500	4,395	30	27.1	J-292
-287	3,562	TRUE	Passed	500	3,564	30	27.4	J-292
-288	2,069	TRUE	Passed	500	2,070	30	35.5	J-290
-289	2,338	TRUE	Passed	500	2,339	30	29.1	J-290
-290	2,150	TRUE	Passed	500	2,151	30	34.5	J-289
-291	1,156	TRUE	Passed	500	1,157	30	48.5	J-692
-292	2,530	TRUE	Passed	500	2,531	30	34	6-FLOW
-294	1,396	TRUE	Passed	500	1,397	30	44.6	6-FLOW
-296	6,290	TRUE	Passed	500	6,291	30	30.3	J-292
-297	6,445	TRUE	Passed	500	6,446	30	40.3	J-292
-298	8,609	TRUE	Passed	500	8,610	30	40.5	J-292
299	9,670	TRUE	Passed	500	9,671	30	37.5	J-292
-300	4,157	TRUE	Passed	500	4,158	30	29.9	J-301
301	3,339	TRUE	Passed	500	3,340	30	40.3	J-300
-302	3,769	TRUE	Passed	500	3,770	30	30.6	J-303
-303	3,092	TRUE	Passed	500	3,093	30	39.2	J-302
-304	5,586	TRUE	Passed	500	5,587	30	36.5	J-302
305	5,798	TRUE	Passed	500	5,800	30	25.1	J-306
-306	2,408	TRUE	Passed	500	2,410	30	48.5	J-692
-307	7,874	TRUE	Passed	500	7,875	30	30.5	J-306
-308	6,924	TRUE	Passed	500	6,925	30	40	J-320
-309	3,637	TRUE	Passed	500	3,638	30	45.9	J-311
-310	3,460	TRUE	Passed	500	3,461	30	46.2	J-314

J-311	3,944	TRUE	Passed	500	3,945	30	40.5	J-309
J-312	3,877	TRUE	Passed	500	3,878	30	48.3	J-692
J-313	4,392	TRUE	Passed	500	4,393	30	48.1	J-692
J-314	3,251	TRUE	Passed	500	3,252	30	48.3	J-692
J-315	2,620	TRUE	Passed	500	2,621	30	48.4	J-692
J-316	4,492	TRUE	Passed	500	4,493	30	44.2	J-317
J-317	3,315	TRUE	Passed	500	3,316	30	46.7	J-315
J-318	6,617	TRUE	Passed	500	6,618	30	34.3	J-319
J-319	6,322	TRUE	Passed	500	6,323	30	35	J-321
J-320	6,363	TRUE	Passed	500	6,364	30	34.5	J-319
J-321	3,272	TRUE	Passed	500	3,273	30	47.4	J-322
J-322	3,483	TRUE	Passed	500	3,484	30	42.1	J-323
J-323	3,072	TRUE	Passed	500	3,073	30	42.4	J-250
J-324	4,152	TRUE	Passed	500	4,153	30	48.4	J-692
J-325	10,000	TRUE	Passed	500	10,001	40.5	33.6	J-97
J-326	10,000	TRUE	Passed	500	10,001	41.7	35	J-97
J-327	6,957	TRUE	Passed	500	6,958	30	45.4	J-97
J-328	10,000	TRUE	Passed	500	10,001	42.7	35.7	J-97
J-329	10,000	TRUE	Passed	500	10,001	32	35.1	J-215
J-330	1,724	TRUE	Passed	500	1,725	30	48.5	J-692
J-331	6,002	TRUE	Passed	500	6,003	30	31.6	J-330
J-332	6,307	TRUE	Passed	500	6,308	30	42.9	J-331
J-333	4,534	TRUE	Passed	500	4,535	30	48	J-692
J-334	7,792	TRUE	Passed	500	7,793	30	33.4	J-226
J-336	6,589	TRUE	Passed	500	6,590	30	40.4	J-215
J-338	7,229	TRUE	Passed	500	7,230	30	35.9	J-339
J-339	6,205	TRUE	Passed	500	6,206	30	35.7	J-215
J-340	10,000	TRUE	Passed	500	10,001	34.4	33	J-97
J-341	7,559	TRUE	Passed	500	7,560	30	36.8	J-306
J-342	4,011	TRUE	Passed	500	4,012	30	48.2	J-692
J-343	7,286	TRUE	Passed	500	7,287	30	45.3	J-278
J-345	4,857	TRUE	Passed	500	4,858	30	48	J-692
J-346	3,627	TRUE	Passed	500	3,628	30	48.3	J-692
J-347	10,000	TRUE	Passed	500	10,001	49.9	38.5	J-97
J-348	10,000	TRUE	Passed	500	10,001	51.7	39.4	J-97
J-349	10,000	TRUE	Passed	500	10,001	46.9	39.7	J-97
J-350	10,000	TRUE	Passed	500	10,001	45.1	40	J-97
J-351	8,630	TRUE	Passed	500	8,631	30	40.1	J-365
J-352	8,916	TRUE	Passed	500	8,917	30	38.8	J-365
J-353	9,490	TRUE	Passed	500	9,491	30	38	J-352
J-354	10,000	TRUE	Passed	500	10,001	35	38.5	J-358
J-355	8,868	TRUE	Passed	500	8,869	30	42.8	J-361

J-356	8,318	TRUE	Passed	500	8,319	30	35.6	J-365
J-357	10,000	TRUE	Passed	500	10,001	46.5	36.6	J-97
J-358	10,000	TRUE	Passed	500	10,001	33.1	35.4	J-360
J-359	10,000	TRUE	Passed	500	10,001	31.3	28	J-360
J-360	1,510	TRUE	Passed	500	1,511	30	48.5	J-692
J-361	8,485	TRUE	Passed	500	8,486	30	43.4	J-355
J-362	10,000	TRUE	Passed	500	10,001	48.3	40.5	J-97
J-363	8,021	TRUE	Passed	500	8,022	30	38	J-364
J-364	7,142	TRUE	Passed	500	7,143	30	38.9	J-366
J-365	7,551	TRUE	Passed	500	7,552	30	40.5	J-364
J-366	6,977	TRUE	Passed	500	6,978	30	38.7	J-364
J-367	8,643	TRUE	Passed	500	8,644	30	36.9	J-398
J-368	5,913	TRUE	Passed	500	5,914	30	43.8	J-389
J-369	8,725	TRUE	Passed	500	8,726	30	41.1	J-368
J-370	10,000	TRUE	Passed	500	10,001	35.6	34.7	J-360
J-371	4,004	TRUE	Passed	500	4,005	30	22	J-692
J-371	10,000	TRUE	Passed	500	10,001	34.1	38.5	J-292
J-372	7,001	TRUE	Passed	500	7,002	30	47.3	J-692
J-373	10,000	TRUE	Passed	500	10,001	50.9	40.9	J-97
J-374	10,000	TRUE	Passed	500	10,001	51.1	41	J-97
J-375	10,000	TRUE	Passed	500	10,001	48.6	41.2	J-97
J-376	8,015	TRUE	Passed	500	8,016	30	45.8	J-97
J-377	10,000	TRUE	Passed	500	10,001	55.3	41.4	J-97
J-378	10,000	TRUE	Passed	500	10,001	44.5	41.3	J-97
J-379	10,000	TRUE	Passed	500	10,001	47.7	41.2	J-97
J-380	6,684	TRUE	Passed	500	6,685	30	47.3	J-692
J-382	7,229	TRUE	Passed	500	7,230	30	44	J-383
J-383	6,625	TRUE	Passed	500	6,626	30	41.7	J-388
J-384	6,926	TRUE	Passed	500	6,927	30	44.8	J-431
J-385	9,247	TRUE	Passed	500	9,248	30	38.4	J-429
J-386	9,979	TRUE	Passed	500	9,980	30	36.7	J-1031
J-387	8,489	TRUE	Passed	500	8,490	30	36.4	J-388
J-388	6,341	TRUE	Passed	500	6,342	30	41.7	J-389
J-389	4,973	TRUE	Passed	500	4,974	30	33.8	J-390
J-390	1,844	TRUE	Passed	500	1,845	30	48.5	J-692
J-391	6,745	TRUE	Passed	500	6,746	30	47.3	J-692
J-392	10,000	TRUE	Passed	500	10,001	43.2	41.4	J-97
J-393	7,590	TRUE	Passed	500	7,591	30	38.7	J-430
J-394	8,959	TRUE	Passed	500	8,960	30	29.3	J-424
J-395	9,136	TRUE	Passed	500	9,137	30	26.8	J-425
J-396	10,000	TRUE	Passed	500	10,001	44	41.5	J-97
J-397	6,151	TRUE	Passed	500	6,152	30	27.8	J-398

J-398	1,635	TRUE	Passed	500	1,636	30	48.5	J-692
J-399	10,000	TRUE	Passed	500	10,001	68.8	39.7	J-156
	4,391	TRUE		500	4,392	30	22	J-692
J-401	10,000	TRUE	Passed	500	10,001	65.9	42.4	J-156
J-401			Passed	500				
J-402	10,000	TRUE	Passed		10,001	66.5	42.3	J-156
J-403	10,000	TRUE	Passed	500 500	10,001	45.3	42.7	J-156
J-404	10,000	TRUE	Passed		10,001	30	43	J-660
J-405	4,574	TRUE	Passed	500	4,575	30	47.9	J-692
J-406	10,000	TRUE	Passed	500	10,001	62.1	41.9	J-156
J-407	10,000	TRUE	Passed	500	10,001	68.5	41.8	J-156
J-408	10,000	TRUE	Passed	500	10,001	48.8	41.8	J-156
J-409	3,384	TRUE	Passed	500	3,385	30	48.2	J-692
J-410	10,000	TRUE	Passed	500	10,001	55.2	41.9	J-97
J-411	3,452	TRUE	Passed	500	3,453	30	48.2	J-692
J-412	10,000	TRUE	Passed	500	10,001	59.9	41.9	J-97
J-413	10,000	TRUE	Passed	500	10,001	66.2	41.1	J-156
J-414	10,000	TRUE	Passed	500	10,001	61.5	34.1	J-156
J-415	1,940	TRUE	Passed	500	1,941	30	48.4	J-692
J-416	10,000	TRUE	Passed	500	10,001	62.7	41.5	J-97
J-417	10,000	TRUE	Passed	500	10,001	58.9	41.7	J-97
J-418	5,366	TRUE	Passed	500	5,367	30	29.9	J-419
J-419	3,390	TRUE	Passed	500	3,391	30	48.2	J-692
J-420	10,000	TRUE	Passed	500	10,001	38.3	35.9	J-421
J-421	9,204	TRUE	Passed	500	9,205	30	32.2	J-423
J-422	6,693	TRUE	Passed	500	6,694	30	45.8	J-431
J-423	9,080	TRUE	Passed	500	9,081	30	33.1	J-422
J-424	4,657	TRUE	Passed	500	4,658	30	44.9	J-678
J-425	3,988	TRUE	Passed	500	3,989	30	48.1	J-692
J-426	9,247	TRUE	Passed	500	9,248	30	24.5	J-425
J-427	7,704	TRUE	Passed	500	7,705	30	34.5	J-424
J-428	9,193	TRUE	Passed	500	9,194	30	35.1	J-423
J-429	9,165	TRUE	Passed	500	9,166	30	35.3	J-428
J-430	3,834	TRUE	Passed	500	3,835	30	48.1	J-692
J-431	7,127	TRUE	Passed	500	7,129	30	30.9	J-432
J-432	2,216	TRUE	Passed	500	2,217	30	48.4	J-692
J-433	2,411	TRUE	Passed	500	2,412	30	28.4	J-237
J-434	10,000	TRUE	Passed	500	10,001	61.9	48.5	J-692
J-435	10,000	TRUE	Passed	500	10,001	63.2	48.5	J-692
J-436	10,000	TRUE	Passed	500	10,001	59.9	48.5	J-692
J-437	8,363	TRUE	Passed	500	8,364	39.9	48.4	J-692
J-437 J-439	6,622	TRUE	Passed	500	6,623	30	31.7	J-719
	-				-			
J-440	6,514	TRUE	Passed	500	6,515	30	32.1	J-1780

J-442	7,597	TRUE	Passed	500	7,598	30	27.5	J-443
J-443	2,068	TRUE	Passed	500	2,069	30	48.5	J-692
J-445	8,833	TRUE	Passed	500	8,834	30	31.2	J-455
J-447	6,049	TRUE	Passed	500	6,050	30	27.3	J-450
J-448	4,818	TRUE	Passed	500	4,819	30	40.1	J-450
J-449	5,739	TRUE	Passed	500	5,740	30	23.5	J-450
J-450	3,911	TRUE	Passed	500	3,912	30	48.4	J-692
J-451	5,547	TRUE	Passed	500	5,548	30	35.3	J-452
J-452	5,056	TRUE	Passed	500	5,057	30	31.8	J-458
J-453	4,689	TRUE	Passed	500	4,690	30	40	J-454
J-454	4,512	TRUE	Passed	500	4,513	30	43.1	J-453
J-455	6,036	TRUE	Passed	500	6,037	30	38.2	J-454
J-456	6,080	TRUE	Passed	500	6,081	30	37.4	J-455
J-457	4,842	TRUE	Passed	500	4,843	30	40.2	J-452
J-458	2,803	TRUE	Passed	500	2,804	30	48.5	J-692
J-459	2,731	TRUE	Passed	500	2,732	30	33.4	J-463
J-460	3,756	TRUE	Passed	500	3,757	30	33.6	J-459
J-461	1,543	TRUE	Passed	500	1,544	30	29.4	J-463
J-462	1,356	TRUE	Passed	500	1,357	30	37.4	J-463
J-463	1,241	TRUE	Passed	500	1,242	30	42.6	J-461
J-464	4,902	TRUE	Passed	500	4,903	30	38.4	J-457
J-465	5,057	TRUE	Passed	500	5,058	30	36.6	J-464
J-466	5,359	TRUE	Passed	500	5,360	30	37.8	J-465
J-467	6,048	TRUE	Passed	500	6,049	30	29	J-460
J-468	5,974	TRUE	Passed	500	5,975	30	33.8	J-459
J-469	6,542	TRUE	Passed	500	6,543	30	35.5	J-474
J-470	7,885	TRUE	Passed	500	7,886	30	47.1	J-556
J-471	10,000	TRUE	Passed	500	10,001	40.3	37.1	J-556
J-472	6,692	TRUE	Passed	500	6,693	30	41.3	J-473
J-473	6,127	TRUE	Passed	500	6,128	30	36.8	J-475
J-474	5,676	TRUE	Passed	500	5,677	30	46.3	J-475
J-475	5,249	TRUE	Passed	500	5,250	30	41.1	J-478
J-476	2,216	TRUE	Passed	500	2,217	30	41.4	J-477
J-477	2,246	TRUE	Passed	500	2,247	30	39.2	J-476
J-478	5,190	TRUE	Passed	500	5,191	30	39.9	J-475
J-479	5,326	TRUE	Passed	500	5,327	30	40	J-478
J-480	5,655	TRUE	Passed	500	5,656	30	37.9	J-479
J-481	6,002	TRUE	Passed	500	6,003	30	35.9	J-480
J-482	3,101	TRUE	Passed	500	3,102	30	25.8	J-485
J-483	1,905	TRUE	Passed	500	1,906	30	28.8	J-485
J-484	1,751	TRUE	Passed	500	1,752	30	34.1	J-485
J-485	1,421	TRUE	Passed	500	1,422	30	45.3	J-484

J-486	9,043	TRUE	Passed	500	9,044	30	41.6	1-FLOW
J-487	10,000	TRUE	Passed	500	10,001	39.5	45.4	J-455
J-489	10,000	TRUE	Passed	500	10,001	51.2	48.3	J-692
J-490	10,000	TRUE	Passed	500	10,001	36.4	38.9	J-437
J-491	10,000	TRUE	Passed	500	10,001	63.1	48.5	J-692
J-492	10,000	TRUE	Passed	500	10,001	49.1	48	J-692
J-493	9,581	TRUE	Passed	500	9,582	30	36.6	J-494
J-494	9,701	TRUE	Passed	500	9,702	30	35.3	J-493
J-497	10,000	TRUE	Passed	500	10,001	46.8	47.2	J-692
J-498	10,000	TRUE	Passed	500	10,001	48.2	47.8	J-692
J-499	10,000	TRUE	Passed	500	10,001	41.1	40.2	J-500
I-500	6,497	TRUE	Passed	500	6,498	30	48.3	J-692
-501	10,000	TRUE	Passed	500	10,001	39.5	38.7	J-502
-502	4,773	TRUE	Passed	500	4,774	30	31.3	J-726
-504	3,038	TRUE	Passed	500	3,039	30	40.5	J-1334
I-505	3,749	TRUE	Passed	500	3,750	30	42.4	J-554
I-507	4,184	TRUE	Passed	500	4,185	30	33.1	J-508
-508	4,185	TRUE	Passed	500	4,186	30	34.1	J-507
-509	4,923	TRUE	Passed	500	4,924	30	30.9	J-508
-510	5,545	TRUE	Passed	500	5,546	30	32.6	J-513
-511	2,218	TRUE	Passed	500	2,219	30	37.9	J-513
-513	2,261	TRUE	Passed	500	2,262	30	37.5	J-514
-514	2,554	TRUE	Passed	500	2,555	30	29.3	J-513
-516	4,881	TRUE	Passed	500	4,882	30	38.4	J-508
-517	5,335	TRUE	Passed	500	5,336	30	30.4	J-549
-518	4,844	TRUE	Passed	500	4,845	30	26.2	J-549
-519	5,220	TRUE	Passed	500	5,221	30	29.8	J-508
-520	4,410	TRUE	Passed	500	4,411	30	32.7	J-521
-521	3,627	TRUE	Passed	500	3,628	30	37.2	J-603
-522	3,796	TRUE	Passed	500	3,797	30	27.5	J-603
-523	4,145	TRUE	Passed	500	4,146	30	27.8	J-603
-524	4,003	TRUE	Passed	500	4,004	30	29.9	J-521
-525	4,455	TRUE	Passed	500	4,456	30	31.6	J-521
1-526	4,301	TRUE	Passed	500	4,302	30	33.8	J-521
I-527	4,386	TRUE	Passed	500	4,387	30	32.8	J-528
-528	4,056	TRUE	Passed	500	4,057	30	35.7	J-610
-529	4,278	TRUE	Passed	500	4,279	30	37.2	J-613
-530	4,305	TRUE	Passed	500	4,306	30	38.6	J-596
I-531	2,744	TRUE	Passed	500	2,745	30	48.4	J-692
-532	2,960	TRUE	Passed	500	2,961	30	48.4	J-692
1-533	7,908	TRUE	Passed	500	7,909	30	32.3	J-532
I-534	8,811	TRUE	Passed	500	8,812	30	29.7	J-535

J-535	8,182	TRUE	Passed	500	8,183	30	30.9	J-536
J-536	7,346	TRUE	Passed	500	7,347	30	36.9	J-535
J-537	8,404	TRUE	Passed	500	8,405	30	36	J-647
J-538	8,987	TRUE	Passed	500	8,988	30	37.4	J-648
J-539	10,000	TRUE	Passed	500	10,001	31.7	32.7	J-538
J-540	2,952	TRUE	Passed	500	2,953	30	42.9	J-648
J-541	3,192	TRUE	Passed	500	3,193	30	46.6	J-648
J-542	6,442	TRUE	Passed	500	6,443	30	41.7	J-644
J-543	8,742	TRUE	Passed	500	8,743	30	35.3	J-542
J-544	9,802	TRUE	Passed	500	9,804	30	34.1	J-546
J-545	5,322	TRUE	Passed	500	5,323	30	29.6	J-546
J-546	2,037	TRUE	Passed	500	2,038	30	48.5	J-692
J-547	4,971	TRUE	Passed	500	4,972	30	30.7	J-548
J-548	1,765	TRUE	Passed	500	1,766	30	48.5	J-692
J-549	1,613	TRUE	Passed	500	1,614	30	48.5	J-692
J-550	4,293	TRUE	Passed	500	4,294	30	29.7	J-552
J-551	2,852	TRUE	Passed	500	2,853	30	46.4	J-552
J-552	2,295	TRUE	Passed	500	2,296	30	48.5	J-692
J-553	3,783	TRUE	Passed	500	3,784	30	29.9	J-554
J-554	2,463	TRUE	Passed	500	2,465	30	48	J-553
J-555	10,000	TRUE	Passed	500	10,001	34	35.5	J-556
J-556	3,936	TRUE	Passed	500	3,937	30	48.3	J-692
J-557	3,478	TRUE	Passed	500	3,479	30	30.9	J-558
J-558	1,761	TRUE	Passed	500	1,762	30	48.5	J-692
J-559	10,000	TRUE	Passed	500	10,001	38	39.8	J-557
J-560	10,000	TRUE	Passed	500	10,001	46.2	47.1	J-692
J-561	3,612	TRUE	Passed	500	3,613	30	48.3	J-692
J-562	10,000	TRUE	Passed	500	10,001	33.7	37.6	J-556
J-563	2,779	TRUE	Passed	500	2,780	30	48.4	J-692
J-564	10,000	TRUE	Passed	500	10,001	36.2	38.8	J-563
J-565	10,000	TRUE	Passed	500	10,001	37.9	40.8	J-556
J-566	8,188	TRUE	Passed	500	8,189	30	46.5	J-692
J-567	10,000	TRUE	Passed	500	10,001	33.2	39.8	J-578
J-568	9,994	TRUE	Passed	500	9,995	30	39.2	J-569
J-569	7,898	TRUE	Passed	500	7,899	30	38.2	J-570
J-570	6,934	TRUE	Passed	500	6,935	30	46.4	J-569
J-571	8,094	TRUE	Passed	500	8,095	30	43.8	J-574
J-572	10,000	TRUE	Passed	500	10,001	37.4	25.1	J-574
J-573	7,812	TRUE	Passed	500	7,813	30	41.2	J-692
J-574	9,115	TRUE	Passed	500	9,116	30	33.5	J-571
J-576	10,000	TRUE	Passed	500	10,001	38.5	41.7	J-578
J-577	10,000	TRUE	Passed	500	10,001	36.9	38.8	J-578

1.570	2 442	TD.1.F		500	2 4 4 2	20	40.0	1.602
J-578	3,112	TRUE	Passed	500	3,113	30	48.3	J-692
J-579	4,146	TRUE	Passed	500	4,147	30	48.1	J-578
J-580	4,214	TRUE	Passed	500	4,215	30	47.8	J-644
J-581	3,983	TRUE	Passed	500	3,984	30	48.1	J-692
J-582	6,312	TRUE	Passed	500	6,313	30	39.3	J-581
J-583	6,831	TRUE	Passed	500	6,832	30	45.3	J-584
J-584	7,732	TRUE	Passed	500	7,733	30	36.9	J-585
J-585	5,925	TRUE	Passed	500	5,926	30	38.8	J-587
J-587	5,493	TRUE	Passed	500	5,494	30	38.3	J-588
J-588	5,129	TRUE	Passed	500	5,131	30	43.2	J-587
J-589	5,293	TRUE	Passed	500	5,294	30	38.9	J-588
J-590	6,720	TRUE	Passed	500	6,721	30	28.6	J-591
J-591	6,153	TRUE	Passed	500	6,154	30	36.1	J-590
J-592	5,879	TRUE	Passed	500	5,880	30	36	J-596
J-593	4,302	TRUE	Passed	500	4,303	30	36.1	J-596
J-594	4,182	TRUE	Passed	500	4,183	30	26.1	J-596
J-595	3,388	TRUE	Passed	500	3,389	30	27.1	J-596
J-596	2,843	TRUE	Passed	500	2,844	30	35	J-597
J-597	2,955	TRUE	Passed	500	2,956	30	31.4	J-596
J-598	3,040	TRUE	Passed	500	3,041	30	32	J-597
J-599	3,231	TRUE	Passed	500	3,232	30	31.3	J-1549
J-601	2,842	TRUE	Passed	500	2,843	30	34.6	J-1549
J-602	4,098	TRUE	Passed	500	4,099	30	31.8	J-1549
J-603	2,161	TRUE	Passed	500	2,162	30	48.5	J-692
J-604	4,111	TRUE	Passed	500	4,112	30	30.5	J-596
J-605	3,019	TRUE	Passed	500	3,020	30	31	J-596
J-606	3,127	TRUE	Passed	500	3,128	30	29.6	J-596
J-607	3,958	TRUE	Passed	500	3,959	30	31.3	J-596
J-608	4,086	TRUE	Passed	500	4,087	30	31.4	J-596
J-609	4,160	TRUE	Passed	500	4,161	30	31.4	J-596
J-610	4,067	TRUE	Passed	500	4,068	30	34.3	J-596
J-611	4,374	TRUE	Passed	500	4,375	30	28.6	J-596
J-612	3,859	TRUE	Passed	500	3,860	30	35.9	J-596
J-613	3,988	TRUE	Passed	500	3,989	30	38.9	J-596
J-614	6,086	TRUE	Passed	500	6,087	30	34.6	J-596
J-615	6,376	TRUE	Passed	500	6,377	30	30.5	J-614
J-616	6,521	TRUE	Passed	500	6,522	30	32.3	J-615
J-617	6,447	TRUE	Passed	500	6,448	30	40.8	3-FLOW
J-620	7,419	TRUE	Passed	500	7,420	30	28.9	J-617
J-621	9,104	TRUE	Passed	500	9,105	30	28.9	J-617
J-622	8,701	TRUE	Passed	500	8,702	30	33.3	J-626
J-623	8,865	TRUE	Passed	500	8,866	30	35.2	J-617

J-625	9,805	TRUE	Passed	500	9,806	30	28.8	J-623
J-626	8,517	TRUE	Passed	500	8,518	30	33.6	J-627
J-627	8,447	TRUE	Passed	500	8,448	30	35.2	J-628
J-628	8,661	TRUE	Passed	500	8,662	30	33.7	J-627
J-629	9,148	TRUE	Passed	500	9,149	30	31.7	J-628
J-630	9,359	TRUE	Passed	500	9,360	30	32.2	J-629
J-631	9,414	TRUE	Passed	500	9,415	30	36.4	J-630
J-632	5,016	TRUE	Passed	500	5,017	30	30	J-633
J-633	2,981	TRUE	Passed	500	2,982	30	48.3	J-692
J-634	7,810	TRUE	Passed	500	7,811	30	30.5	J-633
J-636	10,000	TRUE	Passed	500	10,001	30.4	34.1	J-631
J-637	3,632	TRUE	Passed	500	3,633	30	48.2	J-692
J-638	10,000	TRUE	Passed	500	10,001	33.3	36.6	J-539
J-639	10,000	TRUE	Passed	500	10,001	38.9	41.5	J-665
J-640	10,000	TRUE	Passed	500	10,001	35.4	40	J-641
J-641	5,376	TRUE	Passed	500	5,377	30	44.7	J-642
J-642	3,887	TRUE	Passed	500	3,888	30	48.2	J-692
J-643	2,961	TRUE	Passed	500	2,962	30	48.1	J-645
J-644	5,124	TRUE	Passed	500	5,125	30	37.8	J-645
J-645	2,570	TRUE	Passed	500	2,571	30	48.4	J-692
J-646	7,122	TRUE	Passed	500	7,123	30	39.8	J-648
J-647	4,631	TRUE	Passed	500	4,632	30	45.2	J-648
J-648	2,803	TRUE	Passed	500	2,804	30	48.4	J-692
J-649	3,531	TRUE	Passed	500	3,532	30	29.8	J-650
J-650	1,771	TRUE	Passed	500	1,772	30	48.5	J-692
J-651	7,586	TRUE	Passed	500	7,587	30	29.4	J-652
J-652	2,904	TRUE	Passed	500	2,905	30	48.4	J-692
J-655	7,084	TRUE	Passed	500	7,085	30	31.6	J-656
J-656	3,404	TRUE	Passed	500	3,405	30	48.3	J-692
J-657	10,000	TRUE	Passed	500	10,001	36.9	44.4	J-578
J-659	10,000	TRUE	Passed	500	10,001	39.5	41.5	J-568
J-659	10,000	TRUE	Passed	500	10,001	41.8	44.6	J-578
J-660	10,000	TRUE	Passed	500	10,001	43	42	J-404
J-661	801	TRUE	Passed	500	805	30	48.5	J-692
J-662	10,000	TRUE	Passed	500	10,001	56.1	44.6	J-156
J-663	10,000	TRUE	Passed	500	10,001	47.3	44.3	J-633
J-664	10,000	TRUE	Passed	500	10,001	35.5	43.1	J-578
J-665	10,000	TRUE	Passed	500	10,001	37.7	41.6	J-639
J-666	10,000	TRUE	Passed	500	10,001	42.1	47.9	J-692
J-667	8,696	TRUE	Passed	500	8,697	30	34.8	J-25
J-668	10,000	TRUE	Passed	500	10,001	48.4	48.2	J-692
J-669	3,933	TRUE	Passed	500	3,934	30	40.2	J-21

J-670	4,456	TRUE	Passed	500	4,457	30	33.3	J-21
J-673	10,000	TRUE	Passed	500	10,001	43.2	43.6	J-674
J-674	4,141	TRUE	Passed	500	4,143	30	48	J-692
J-675	3,849	TRUE	Passed	500	3,850	30	48.1	J-692
J-676	5,436	TRUE	Passed	500	5,437	30	31	J-675
J-677	2,357	TRUE	Passed	500	2,358	30	29.3	J-678
J-678	1,755	TRUE	Passed	500	1,756	30	45.2	J-677
J-680	4,644	TRUE	Passed	500	4,644	30	15.6	J-692
J-682	4,728	TRUE	Passed	500	4,728	30	16	J-692
J-685	1,972	TRUE	Passed	500	1,997	30	28.1	J-692
J-686	3,347	TRUE	Passed	500	3,397	30	17.1	J-692
J-687	3,015	TRUE	Passed	500	3,040	30	43.2	J-692
J-689	5,948	TRUE	Passed	500	5,973	30	39.7	J-692
J-690	5,122	TRUE	Passed	500	5,147	30	29.6	J-687
J-691	5,062	TRUE	Passed	500	5,087	30	16.8	J-692
J-692	1,595	TRUE	Passed	500	1,595	30	34.2	J-695
J-693	3,316	TRUE	Passed	500	3,341	30	22.2	J-692
J-694	3,609	TRUE	Passed	500	3,634	30	12.5	J-695
J-695	1,643	TRUE	Passed	500	1,668	30	32.3	J-692
J-696	1,880	TRUE	Passed	500	1,885	30	26.1	J-51
J-697	6,301	TRUE	Passed	500	6,301	30.9	0	J-692
J-698	3,008	TRUE	Passed	500	3,033	30	43.9	J-692
J-699	7,424	TRUE	Passed	500	7,449	30	29	J-689
J-700	3,985	TRUE	Passed	500	4,010	30	41.7	J-692
J-702	4,738	TRUE	Passed	500	4,738	30	19.1	J-692
J-719	4,447	TRUE	Passed	500	4,447	30	39.8	J-724
J-724	4,283	TRUE	Passed	500	4,283	30	34.2	J-1780
J-726	3,988	TRUE	Passed	500	3,988	30	31.6	J-504
J-727	7,612	TRUE	Passed	500	7,612	30	48.5	J-692
J-731	5,421	TRUE	Passed	500	5,422	30	41.2	J-260
J-904	6,696	TRUE	Passed	500	6,697	30	41.9	J-336
J-1031	9,440	TRUE	Passed	500	9,441	30	38.1	J-385
J-1082	10,000	TRUE	Passed	500	10,001	62	44.1	J-156
J-1184	9,055	TRUE	Passed	500	9,056	30	37.7	J-439
J-1201	7,959	TRUE	Passed	500	7,960	30	26.3	J-455
J-1296	10,000	TRUE	Passed	500	10,001	43.4	48	J-692
J-1334	3,709	TRUE	Passed	500	3,710	30	29.9	J-504
J-1340	3,828	TRUE	Passed	500	3,829	30	39.8	J-508
J-1549	2,871	TRUE	Passed	500	2,872	30	35.4	J-601
J-1642	8,783	TRUE	Passed	500	8,784	30	41.9	J-633
J-1704	10,000	TRUE	Passed	500	10,001	44.5	42.6	J-659
J-1780	4,364	TRUE	Passed	500	4,364	30	32.5	J-724

J-1806	3,526	TRUE	Passed	500	3,526	30	23.5	J-692
Scenario 6:	16-Inch SE Ex	pansion - Pres	sure Zone A	ddition				
1-FLOW	8,889	TRUE	Passed	500	8,890	30	30.8	1-RES
1-RES	3,097	TRUE	Passed	500	3,100	30	43.1	J-692
2-FLOW	7,466	TRUE	Passed	500	7,467	30	30	2-RES
2-RES	4,099	TRUE	Passed	500	4,100	30	43.1	J-692
3-FLOW	2,863	TRUE	Passed	500	2,864	30	30.9	3-RES
3-RES	2,438	TRUE	Passed	500	2,439	30	40.1	3-FLOW
4-FLOW	3,242	TRUE	Passed	500	3,243	30	30.7	4-RES
4-RES	2,375	TRUE	Passed	500	2,376	30	42.4	4-FLOW
5-FLOW	2,500	TRUE	Passed	500	2,501	30	27.1	J-692
5-RES	1,822	TRUE	Passed	500	1,823	30	30.7	J-692
6-FLOW	1,984	TRUE	Passed	500	1,985	30	30.8	6-RES
6-RES	1,285	TRUE	Passed	500	1,286	30	43.2	J-692
7-FLOW	1,618	TRUE	Passed	500	1,619	30	29	J-196
7-RES	1,505	TRUE	Passed	500	1,506	30	32.8	J-196
J-1	3,892	TRUE	Passed	500	3,893	30	32.2	J-92
J-2	6,263	TRUE	Passed	500	6,264	30	29.6	J-97
J-3	7,920	TRUE	Passed	500	7,921	30	40.1	J-97
J-11	7,427	TRUE	Passed	500	7,428	30	29.5	J-13
J-12	7,317	TRUE	Passed	500	7,318	30	32.5	J-14
J-13	3,526	TRUE	Passed	500	3,527	30	36.3	J-17
J-14	3,554	TRUE	Passed	500	3,555	30	43	J-692
J-15	6,730	TRUE	Passed	500	6,731	30	30.3	J-14
J-17	3,795	TRUE	Passed	500	3,796	30	30.4	J-13
J-18	10,000	TRUE	Passed	500	10,001	59	43	J-692
J-19	7,931	TRUE	Passed	500	7,932	30	27.6	J-30
J-20	3,910	TRUE	Passed	500	3,911	30	33.3	J-23
J-21	4,021	TRUE	Passed	500	4,022	30	35.2	J-20
J-22	1,982	TRUE	Passed	500	1,983	30	43.3	J-692
J-23	3,539	TRUE	Passed	500	3,540	30	30.2	J-22
J-24	1,842	TRUE	Passed	500	1,843	30	43.3	J-692
J-25	3,110	TRUE	Passed	500	3,111	30	30.1	J-24
J-26	1,778	TRUE	Passed	500	1,779	30	43.3	J-692
J-27	3,172	TRUE	Passed	500	3,173	30	29.2	J-26
J-28	2,030	TRUE	Passed	500	2,031	30	43.3	J-692
J-29	3,367	TRUE	Passed	500	3,368	30	29.5	J-28
J-30	4,473	TRUE	Passed	500	4,474	30	35	J-28
J-31	2,030	TRUE	Passed	500	2,031	30	29.5	J-692
J-33	2,097	TRUE	Passed	500	2,098	30	29.1	J-692
J-34	2,039	TRUE	Passed	500	2,040	30	29.4	J-692
J-35	2,230	TRUE	Passed	500	2,231	30	28.4	J-692

J-36	2,422	TRUE	Passed	500	2,423	30	27.5	J-692
J-37	2,350	TRUE	Passed	500	2,351	30	27.8	J-692
J-38	2,453	TRUE	Passed	500	2,454	30	27.3	J-692
J-39	2,340	TRUE	Passed	500	2,341	30	27.9	J-692
J-40	2,359	TRUE	Passed	500	2,360	30	27.8	J-692
J-41	2,523	TRUE	Passed	500	2,524	30	26.3	J-74
J-42	2,303	TRUE	Passed	500	2,304	30	28.1	J-692
J-43	2,559	TRUE	Passed	500	2,560	30	26.8	J-692
J-44	1,930	TRUE	Passed	500	1,931	30	30	J-692
J-45	2,034	TRUE	Passed	500	2,035	30	29.5	J-692
J-46	2,278	TRUE	Passed	500	2,279	30	28.2	J-692
J-47	1,840	TRUE	Passed	500	1,841	30	30.6	J-692
J-48	2,157	TRUE	Passed	500	2,158	30	27.2	J-47
J-49	2,326	TRUE	Passed	500	2,327	30	28	J-692
J-50	2,061	TRUE	Passed	500	2,062	30	29.3	J-692
J-51	1,200	TRUE	Passed	500	1,201	30	34.8	J-692
J-52	2,155	TRUE	Passed	500	2,156	30	26.7	J-51
J-53	1,949	TRUE	Passed	500	1,950	30	29.9	J-692
J-54	2,033	TRUE	Passed	500	2,034	30	29.5	J-692
J-55	1,800	TRUE	Passed	500	1,801	30	30.8	J-692
J-56	1,974	TRUE	Passed	500	1,975	30	28.7	J-55
J-57	1,906	TRUE	Passed	500	1,907	30	30.2	J-692
J-58	2,052	TRUE	Passed	500	2,053	30	29.4	J-692
J-59	2,189	TRUE	Passed	500	2,190	30	28.5	J-55
J-60	2,092	TRUE	Passed	500	2,093	30	28.6	J-55
J-61	2,516	TRUE	Passed	500	2,517	30	27	J-692
J-64	2,594	TRUE	Passed	500	2,595	30	26.1	J-51
J-65	2,470	TRUE	Passed	500	2,471	30	27.2	J-692
J-66	2,617	TRUE	Passed	500	2,618	30	25.2	J-74
J-67	2,438	TRUE	Passed	500	2,439	30	27.4	J-692
J-68	2,547	TRUE	Passed	500	2,548	30	26.7	J-74
J-69	2,026	TRUE	Passed	500	2,027	30	29.5	J-692
J-70	2,309	TRUE	Passed	500	2,310	30	28	J-692
J-71	2,224	TRUE	Passed	500	2,225	30	28.5	J-692
J-72	2,182	TRUE	Passed	500	2,183	30	28.7	J-692
J-73	1,287	TRUE	Passed	500	1,288	30	34.2	J-692
J-74	2,104	TRUE	Passed	500	2,105	30	29.1	J-692
J-75	2,487	TRUE	Passed	500	2,488	30	25.8	J-74
J-76	2,443	TRUE	Passed	500	2,444	30	27.4	J-692
J-77	2,470	TRUE	Passed	500	2,471	30	27.2	J-692
J-78	2,597	TRUE	Passed	500	2,598	30	24.8	J-74
J-79	2,331	TRUE	Passed	500	2,332	30	27.9	J-692

J-80	2,355	TRUE	Passed	500	2,356	30	27.8	J-692
J-81	2,552	TRUE	Passed	500	2,553	30	26.1	J-74
J-82	2,587	TRUE	Passed	500	2,588	30	24.4	J-74
J-83	2,538	TRUE	Passed	500	2,539	30	25.5	J-74
J-84	2,556	TRUE	Passed	500	2,557	30	25.1	J-74
J-85	2,556	TRUE	Passed	500	2,557	30	25	J-74
J-86	2,529	TRUE	Passed	500	2,530	30	25.4	J-74
J-87	2,428	TRUE	Passed	500	2,429	30	27.5	J-692
J-88	2,348	TRUE	Passed	500	2,349	30	27.8	J-692
J-89	2,509	TRUE	Passed	500	2,510	30	25.6	J-74
J-90	2,332	TRUE	Passed	500	2,333	30	27.9	J-692
J-91	1,628	TRUE	Passed	500	1,629	30	31.9	J-692
J-92	3,967	TRUE	Passed	500	3,968	30	30.4	J-97
J-93	2,565	TRUE	Passed	500	2,566	30	26	J-74
J-94	3,994	TRUE	Passed	500	3,995	30	29.9	J-92
J-95	5,729	TRUE	Passed	500	5,730	30	30	J-97
J-96	4,338	TRUE	Passed	500	4,339	30	30.3	J-97
J-97	3,975	TRUE	Passed	500	3,976	30	30.3	J-92
J-98	4,026	TRUE	Passed	500	4,027	30	29.9	J-97
J-99	3,279	TRUE	Passed	500	3,280	30	25	J-692
J-100	4,206	TRUE	Passed	500	4,207	30	22.1	J-692
J-101	3,162	TRUE	Passed	500	3,163	30	25.4	J-692
J-102	4,509	TRUE	Passed	500	4,510	30	20.5	J-692
J-103	5,304	TRUE	Passed	500	5,305	30	15.4	J-692
J-104	4,705	TRUE	Passed	500	4,706	30	19.6	J-692
J-105	5,680	TRUE	Passed	500	5,681	30	12.6	J-692
J-106	5,419	TRUE	Passed	500	5,420	30	14.6	J-692
J-107	4,963	TRUE	Passed	500	4,964	30	17.9	J-692
J-108	5,442	TRUE	Passed	500	5,443	30	14.4	J-692
J-109	5,380	TRUE	Passed	500	5,381	30	14.9	J-692
J-110	4,942	TRUE	Passed	500	4,943	30	18	J-692
J-111	4,499	TRUE	Passed	500	4,500	30	20.7	J-692
J-112	3,957	TRUE	Passed	500	3,958	30	23.3	J-692
J-113	3,389	TRUE	Passed	500	3,390	30	24.9	J-692
J-114	3,126	TRUE	Passed	500	3,127	30	25.6	J-692
J-115	3,903	TRUE	Passed	500	3,904	30	23.6	J-692
J-116	2,910	TRUE	Passed	500	2,911	30	26.3	J-692
J-117	3,503	TRUE	Passed	500	3,504	30	24.7	J-692
J-118	1,748	TRUE	Passed	500	1,749	30	31.1	J-692
J-118	3,077	TRUE	Passed	500	3,078	30	25.7	J-692
J-119	3,690	TRUE	Passed	500	3,691	30	24.3	J-692
J-121	2,751	TRUE	Passed	500	2,752	30	26.8	J-692

J-122	3,942	TRUE	Passed	500	3,943	30	23.4	J-692
J-122 J-123	5,983	TRUE		500	6,008	30	0.4	J-692
J-123 J-124	6,666	TRUE	Passed	500	6,667	30	3.1	J-692
J-124 J-125	4,216	TRUE	Passed Passed	500	4,217	30	24.8	J-692
J-125 J-126	5,672	TRUE	Passed	500	5,673	30	14.2	J-692
J-127	4,475	TRUE	Passed	500 500	4,476	30	23.5	J-692
J-128	1,550	TRUE	Passed		1,551	30	34.4	J-692
J-129	3,941	TRUE	Passed	500	3,942	30	25.9	J-692
J-130	4,109	TRUE	Passed	500	4,110	30	25.3	J-692
J-133	4,117	TRUE	Passed	500	4,118	30	25.4	J-692
J-134	3,181	TRUE	Passed	500	3,183	30	27.5	J-692
J-135	3,603	TRUE	Passed	500	3,604	30	26.5	J-692
J-136	4,088	TRUE	Passed	500	4,089	30	25.5	J-692
J-137	4,419	TRUE	Passed	500	4,420	30	24.4	J-692
J-138	5,138	TRUE	Passed	500	5,139	30	21.4	J-692
J-139	4,897	TRUE	Passed	500	4,898	30	17.3	J-692
J-140	3,312	TRUE	Passed	500	3,313	30	25	J-692
J-141	3,657	TRUE	Passed	500	3,658	30	24.2	J-692
J-142	5,120	TRUE	Passed	500	5,121	30	16.9	J-692
J-143	5,902	TRUE	Passed	500	5,903	30	10.8	J-692
J-144	6,585	TRUE	Passed	500	6,586	30	4.9	J-692
J-145	4,229	TRUE	Passed	500	4,230	30	22.4	J-692
J-146	6,308	TRUE	Passed	500	6,309	30	7.3	J-692
J-147	6,017	TRUE	Passed	500	6,018	30	9.8	J-692
J-148	5,874	TRUE	Passed	500	5,875	30	11	J-692
J-149	4,901	TRUE	Passed	500	4,903	30	18	J-692
J-150	4,080	TRUE	Passed	500	4,081	30	22.7	J-692
J-151	4,947	TRUE	Passed	500	4,948	30	17.6	J-692
J-152	2,518	TRUE	Passed	500	2,519	30	27.7	J-692
J-153	3,917	TRUE	Passed	500	3,918	30	23.4	J-692
J-154	3,810	TRUE	Passed	500	3,811	30	23.8	J-692
J-155	1,872	TRUE	Passed	500	1,873	30	31.1	J-196
J-156	2,200	TRUE	Passed	500	2,201	30	32.9	J-196
J-157	2,137	TRUE	Passed	500	2,138	30	28.4	J-237
J-158	1,173	TRUE	Passed	500	1,174	30	33	J-159
J-159	1,234	TRUE	Passed	500	1,236	30	30.1	J-158
J-160	3,196	TRUE	Passed	500	3,197	30	25.3	J-692
J-161	3,247	TRUE	Passed	500	3,248	30	25.2	J-692
J-162	3,245	TRUE	Passed	500	3,246	30	25.2	J-692
J-163	3,057	TRUE	Passed	500	3,058	30	25.7	J-692
J-164	3,260	TRUE	Passed	500	3,261	30	25.1	J-692
J-165	3,438	TRUE	Passed	500	3,439	30	24.7	J-692

J-166	5,218	TRUE	Daccod	500	5,219	30	16	J-692
J-166 J-167	2,360	TRUE	Passed Passed	500	2,361	30	28.5	J-692
J-168	2,724	TRUE	Passed	500	2,725	30	26.9	J-692
J-169	3,128	TRUE	Passed	500	3,129	30	25.5	J-692
J-170	4,963	TRUE	Passed	500	4,964	30	17.5	J-692
J-170	2,600	TRUE	Passed	500	2,601	30	27.3	J-692
J-171	7,466	TRUE	Passed	500	7,467	30	1	J-692
J-172 J-173	5,333	TRUE	Passed	500	5,334	30	19.5	J-692
J-173 J-174								J-692
J-174 J-175	5,478	TRUE TRUE	Passed	500 500	5,479	30 30.9	19.2	J-692
	8,219		Passed		8,220			
J-176	10,000	TRUE	Passed	500	10,001	39.1	9	J-692
J-177	3,967	TRUE	Passed	500	3,968	30	31.3	J-692
J-178	6,326	TRUE	Passed	500	6,327	30	25	J-692
J-179	1,671	TRUE	Passed	500	1,672	30	38.9	J-692
J-180	1,737	TRUE	Passed	500	1,738	30	33.6	J-692
J-181	10,000	TRUE	Passed	500	10,001	87.2	39.7	J-692
J-183	10,000	TRUE	Passed	500	10,001	36.8	25.5	J-237
J-184	751	TRUE	Passed	500	752	30	43.1	J-692
J-185	7,462	TRUE	Passed	500	7,463	30	23.6	J-186
J-186	5,172	TRUE	Passed	500	5,173	30	40.6	J-692
J-187	5,238	TRUE	Passed	500	5,239	30	23.7	J-188
J-188	3,983	TRUE	Passed	500	3,984	30	41.8	J-692
J-189	4,185	TRUE	Passed	500	4,186	30	28.7	J-237
J-190	4,323	TRUE	Passed	500	4,324	30	32.1	J-237
J-191	3,497	TRUE	Passed	500	3,498	30	26.8	J-196
J-192	2,874	TRUE	Passed	500	2,875	30	28.7	J-196
J-193	2,466	TRUE	Passed	500	2,467	30	26.5	J-196
J-194	1,965	TRUE	Passed	500	1,966	30	26.7	J-196
J-195	1,715	TRUE	Passed	500	1,716	30	28	J-196
J-196	1,509	TRUE	Passed	500	1,510	30	32.9	J-197
J-197	1,596	TRUE	Passed	500	1,597	30	29.1	J-196
J-200	3,713	TRUE	Passed	500	3,714	30	30	J-201
J-201	3,419	TRUE	Passed	500	3,420	30	34	J-200
J-202	3,648	TRUE	Passed	500	3,649	30	31.1	J-206
J-203	3,649	TRUE	Passed	500	3,650	30	32.4	J-202
J-204	3,058	TRUE	Passed	500	3,059	30	30.5	J-205
J-205	2,602	TRUE	Passed	500	2,603	30	37.5	J-204
J-206	3,254	TRUE	Passed	500	3,255	30	31.9	J-207
J-207	2,839	TRUE	Passed	500	2,840	30	36.3	J-206
J-208	4,049	TRUE	Passed	500	4,050	30	29.9	J-209
J-209	3,351	TRUE	Passed	500	3,352	30	38.3	J-208
J-210	5,642	TRUE	Passed	500	5,643	30	30	J-97

J-211	5,669	TRUE	Passed	500	5,670	30	32.6	J-212
J-212	4,590	TRUE	Passed	500	4,591	30	30.5	J-213
J-213	3,540	TRUE	Passed	500	3,541	30	40.2	J-215
J-214	2,769	TRUE	Passed	500	2,770	30	29.5	J-215
J-215	2,306	TRUE	Passed	500	2,307	30	38.5	J-214
J-216	804	TRUE	Passed	500	805	30	43.3	J-692
J-217	3,343	TRUE	Passed	500	3,344	30	29.5	J-215
J-218	1,858	TRUE	Passed	500	1,859	30	43.2	J-692
J-219	4,077	TRUE	Passed	500	4,078	30	30	J-215
J-220	1,941	TRUE	Passed	500	1,942	30	43.2	J-692
J-221	2,340	TRUE	Passed	500	2,341	30	43.1	J-692
J-222	4,537	TRUE	Passed	500	4,538	30	33	J-221
J-223	5,009	TRUE	Passed	500	5,010	30	32.1	J-222
J-224	5,897	TRUE	Passed	500	5,898	30	37.3	J-223
J-225	6,138	TRUE	Passed	500	6,139	30	39.3	J-224
J-226	7,870	TRUE	Passed	500	7,871	30	33	J-334
J-227	5,819	TRUE	Passed	500	5,820	30	13.1	J-196
J-228	4,612	TRUE	Passed	500	4,613	30	33	J-229
J-229	4,621	TRUE	Passed	500	4,622	30	32	J-228
J-230	2,939	TRUE	Passed	500	2,940	30	42.7	J-692
J-231	4,445	TRUE	Passed	500	4,446	30	31	J-230
J-232	5,039	TRUE	Passed	500	5,040	30	33.8	J-231
J-233	6,820	TRUE	Passed	500	6,821	30	26.9	J-232
J-234	10,000	TRUE	Passed	500	10,001	47.9	27	J-237
J-235	10,000	TRUE	Passed	500	10,001	55.5	29.1	J-156
J-236	1,784	TRUE	Passed	500	1,785	30	28.7	J-237
J-237	1,576	TRUE	Passed	500	1,577	30	36.6	J-236
J-238	1,024	TRUE	Passed	500	1,025	30	43.1	J-692
J-239	10,000	TRUE	Passed	500	10,001	32.3	32.6	J-240
J-240	10,000	TRUE	Passed	500	10,001	30.7	33.3	J-239
J-241	8,320	TRUE	Passed	500	8,321	30	41.6	J-692
J-242	7,589	TRUE	Passed	500	7,590	30	38.2	J-13
J-243	9,761	TRUE	Passed	500	9,763	30	35.6	J-244
J-244	5,355	TRUE	Passed	500	5,356	30	42.7	J-692
J-245	10,000	TRUE	Passed	500	10,001	30.1	40.8	J-243
J-246	8,831	TRUE	Passed	500	8,832	30	40.4	J-242
J-247	10,000	TRUE	Passed	500	10,001	42.5	41.9	J-692
J-248	7,335	TRUE	Passed	500	7,336	30	33.6	J-318
J-249	2,451	TRUE	Passed	500	2,452	30	29.1	J-250
J-250	1,335	TRUE	Passed	500	1,336	30	43.3	J-692
J-251	7,432	TRUE	Passed	500	7,433	30	38.2	J-253
J-252	7,454	TRUE	Passed	500	7,455	30	42.6	J-692

J-253	3,169	TRUE	Passed	500	3,170	30	43.2	J-692
J-254	7,681	TRUE	Passed	500	7,682	30	26.5	J-324
I-255	6,935	TRUE	Passed	500	6,936	30	35.9	J-262
-256	4,144	TRUE	Passed	500	4,145	30	43.1	J-692
-257	6,995	TRUE	Passed	500	6,996	30	36.7	J-258
-258	6,951	TRUE	Passed	500	6,952	30	37.3	J-257
-259	4,400	TRUE	Passed	500	4,401	30	43.1	J-692
-260	6,171	TRUE	Passed	500	6,172	30	33.5	J-731
-262	6,848	TRUE	Passed	500	6,849	30	37.4	J-255
-263	4,192	TRUE	Passed	500	4,193	30	39.8	J-266
-264	7,145	TRUE	Passed	500	7,146	30	35.1	J-25
-265	3,942	TRUE	Passed	500	3,943	30	29.5	J-266
-266	2,786	TRUE	Passed	500	2,787	30	43.2	J-692
-267	5,887	TRUE	Passed	500	5,888	30	32.1	J-268
-268	5,158	TRUE	Passed	500	5,159	30	31.8	4-FLOW
-269	6,048	TRUE	Passed	500	6,049	30	31.6	J-267
-270	7,409	TRUE	Passed	500	7,410	30	33.5	J-272
271	6,356	TRUE	Passed	500	6,357	30	35	J-260
-272	6,510	TRUE	Passed	500	6,511	30	30.6	J-276
273	4,991	TRUE	Passed	500	4,992	30	30.1	J-274
274	4,604	TRUE	Passed	500	4,605	30	34.3	J-273
275	6,222	TRUE	Passed	500	6,224	30	32.7	J-273
-276	5,970	TRUE	Passed	500	5,971	30	35.4	J-275
-277	6,102	TRUE	Passed	500	6,103	30	28.5	J-278
278	4,434	TRUE	Passed	500	4,435	30	38.7	J-283
-279	3,977	TRUE	Passed	500	3,978	30	34.2	J-281
-280	1,453	TRUE	Passed	500	1,454	30	43.2	J-692
-281	3,241	TRUE	Passed	500	3,242	30	32.8	J-280
-282	3,080	TRUE	Passed	500	3,081	30	29.9	J-283
-283	2,434	TRUE	Passed	500	2,435	30	30.2	J-285
284	1,394	TRUE	Passed	500	1,395	30	43.2	J-692
-285	2,055	TRUE	Passed	500	2,056	30	37.9	J-283
286	4,428	TRUE	Passed	500	4,429	30	27.1	J-283
-287	3,582	TRUE	Passed	500	3,583	30	27.1	J-292 J-292
-288	2,074	TRUE	Passed	500	2,075	30	35.5	J-292 J-290
289	2,344	TRUE		500	2,345	30	29.1	J-290 J-290
	2,156		Passed	500	2,345	30	34.5	J-290 J-289
-290 -291	1,158	TRUE TRUE	Passed	500	1,159	30	43.2	J-289 J-692
			Passed		-			
-292	2,540	TRUE	Passed	500	2,541	30	33.9	6-FLOW
-294	1,399	TRUE	Passed	500	1,400	30	43.2	J-692
-296	6,369	TRUE	Passed	500	6,370	30	30.4	J-292
-297	6,530	TRUE	Passed	500	6,531	30	40.6	J-292

1 200	0.700	TDUE	D	F00	0.704	20	40.6	1.602
J-298	8,780	TRUE	Passed	500 500	8,781	30	40.6 37.7	J-692
J-299	9,893	TRUE	Passed		9,894	30		J-343
J-300	4,185	TRUE	Passed	500	4,186	30	29.9	J-301
J-301	3,356	TRUE	Passed	500	3,357	30	40.4	J-300
J-302	3,790	TRUE	Passed	500	3,791	30	30.6	J-303
J-303	3,104	TRUE	Passed	500	3,105	30	39.3	J-302
J-304	5,637	TRUE	Passed	500	5,638	30	36.6	J-302
J-305	5,849	TRUE	Passed	500	5,850	30	25.1	J-306
J-306	2,416	TRUE	Passed	500	2,417	30	43.1	J-692
J-307	7,969	TRUE	Passed	500	7,970	30	30.7	J-306
J-308	6,996	TRUE	Passed	500	6,997	30	40.2	J-320
J-309	3,655	TRUE	Passed	500	3,656	30	43	J-692
J-310	3,476	TRUE	Passed	500	3,477	30	43	J-692
J-311	3,966	TRUE	Passed	500	3,967	30	40.6	J-309
J-312	3,899	TRUE	Passed	500	3,900	30	42.9	J-692
J-313	4,422	TRUE	Passed	500	4,423	30	42.7	J-692
J-314	3,266	TRUE	Passed	500	3,267	30	43	J-692
J-315	2,629	TRUE	Passed	500	2,630	30	43.1	J-692
J-316	4,524	TRUE	Passed	500	4,526	30	42.8	J-692
J-317	3,331	TRUE	Passed	500	3,332	30	43	J-692
J-318	6,669	TRUE	Passed	500	6,670	30	34.4	J-319
J-319	6,373	TRUE	Passed	500	6,374	30	35.1	J-321
J-320	6,416	TRUE	Passed	500	6,417	30	34.6	J-319
J-321	3,282	TRUE	Passed	500	3,283	30	43.1	J-692
J-322	3,494	TRUE	Passed	500	3,495	30	42.1	J-323
J-323	3,079	TRUE	Passed	500	3,081	30	42.5	J-250
J-324	4,164	TRUE	Passed	500	4,165	30	43.1	J-692
J-325	10,000	TRUE	Passed	500	10,001	41.8	34.8	J-97
J-326	10,000	TRUE	Passed	500	10,001	43.1	36.2	J-97
J-327	7,053	TRUE	Passed	500	7,054	30	41.6	J-692
J-328	10,000	TRUE	Passed	500	10,001	44.2	36.9	J-97
J-329	10,000	TRUE	Passed	500	10,001	33.5	36.4	J-97
J-330	1,728	TRUE	Passed	500	1,729	30	43.2	J-692
J-331	6,077	TRUE	Passed	500	6,078	30	31.6	J-330
J-332	6,390	TRUE	Passed	500	6,391	30	41.8	J-692
J-333	4,572	TRUE	Passed	500	4,573	30	42.5	J-692
J-334	7,933	TRUE	Passed	500	7,934	30	33.5	J-226
J-334 J-336	6,674	TRUE	Passed	500	6,675	30	40.8	J-226 J-215
	-	TRUE		500	-	30		J-339
J-338	7,334		Passed		7,335		36	
J-339	6,280	TRUE	Passed	500	6,281	30	36	J-215
J-340	10,000	TRUE	Passed	500	10,001	35.6	34.2	J-97
J-341	7,650	TRUE	Passed	500	7,651	30	37.1	J-306

J-342	4,037	TRUE	Passed	500	4,038	30	42.9	J-692
J-343	7,392	TRUE	Passed	500	7,393	30	41.7	J-692
J-345	4,901	TRUE	Passed	500	4,902	30	42.6	J-692
J-346	3,650	TRUE	Passed	500	3,651	30	42.9	J-692
J-347	10,000	TRUE	Passed	500	10,001	51.4	39.6	J-692
J-348	10,000	TRUE	Passed	500	10,001	53.3	39.5	J-692
J-349	10,000	TRUE	Passed	500	10,001	48.5	39.4	J-692
J-350	10,000	TRUE	Passed	500	10,001	46.7	39.4	J-692
J-351	8,801	TRUE	Passed	500	8,802	30	40.3	J-692
J-352	9,101	TRUE	Passed	500	9,102	30	39.2	J-365
J-353	9,692	TRUE	Passed	500	9,693	30	38.4	J-352
J-354	10,000	TRUE	Passed	500	10,001	36.6	39.6	J-692
J-355	9,044	TRUE	Passed	500	9,045	30	40.3	J-692
J-356	8,480	TRUE	Passed	500	8,481	30	35.9	J-365
J-357	10,000	TRUE	Passed	500	10,001	48	37.8	J-97
J-358	10,000	TRUE	Passed	500	10,001	34.6	37	J-360
J-359	10,000	TRUE	Passed	500	10,001	32.9	29.6	J-360
J-360	1,514	TRUE	Passed	500	1,515	30	43.2	J-692
J-361	8,636	TRUE	Passed	500	8,637	30	40.5	J-692
J-362	10,000	TRUE	Passed	500	10,001	50	39.3	J-692
J-363	8,171	TRUE	Passed	500	8,172	30	38.4	J-364
J-364	7,268	TRUE	Passed	500	7,269	30	39.1	J-366
J-365	7,687	TRUE	Passed	500	7,688	30	40.8	J-364
J-366	7,090	TRUE	Passed	500	7,091	30	39	J-364
J-367	8,818	TRUE	Passed	500	8,820	30	37.3	J-398
J-368	5,988	TRUE	Passed	500	5,989	30	42.1	J-692
J-369	8,893	TRUE	Passed	500	8,894	30	40.4	J-692
J-370	10,000	TRUE	Passed	500	10,001	37.1	36.3	J-360
J-371	4,088	TRUE	Passed	500	4,089	30	22.8	J-692
J-371	10,000	TRUE	Passed	500	10,001	35.7	39.5	J-692
J-372	7,104	TRUE	Passed	500	7,105	30	41.4	J-692
J-373	10,000	TRUE	Passed	500	10,001	52.6	39.2	J-692
J-374	10,000	TRUE	Passed	500	10,001	52.9	39.1	J-692
J-375	10,000	TRUE	Passed	500	10,001	50.4	39	J-692
J-376	8,161	TRUE	Passed	500	8,162	30	40.5	J-692
J-377	10,000	TRUE	Passed	500	10,001	57.2	39	J-692
J-378	10,000	TRUE	Passed	500	10,001	46.3	39.1	J-692
J-379	10,000	TRUE	Passed	500	10,001	49.5	39.1	J-692
J-380	6,790	TRUE	Passed	500	6,791	30	41.4	J-692
J-382	7,349	TRUE	Passed	500	7,350	30	41.2	J-692
J-383	6,726	TRUE	Passed	500	6,727	30	41.6	J-692
J-384	7,044	TRUE	Passed	500	7,045	30	41.3	J-692

J-385	9,483	TRUE	Passed	500	9,484	30	38.8	J-429
J-386	10,000	TRUE	Passed	500	10,001	31.5	38.3	J-1031
-387	8,655	TRUE	Passed	500	8,656	30	36.7	J-388
-388	6,437	TRUE	Passed	500	6,438	30	41.8	J-692
-389	5,024	TRUE	Passed	500	5,025	30	33.8	J-390
-390	1,849	TRUE	Passed	500	1,850	30	43.2	J-692
-391	6,848	TRUE	Passed	500	6,849	30	41.5	J-692
-392	10,000	TRUE	Passed	500	10,001	45.1	39	J-692
-393	7,708	TRUE	Passed	500	7,709	30	39.2	J-430
-394	9,122	TRUE	Passed	500	9,123	30	29.7	J-424
-395	9,300	TRUE	Passed	500	9,301	30	27.1	J-425
-396	10,000	TRUE	Passed	500	10,001	45.9	39	J-692
-397	6,237	TRUE	Passed	500	6,238	30	27.8	J-398
398	1,639	TRUE	Passed	500	1,640	30	43.2	J-692
399	10,000	TRUE	Passed	500	10,001	70.9	38.4	J-692
-401	4,657	TRUE	Passed	500	4,658	30	22.4	J-692
401	10,000	TRUE	Passed	500	10,001	68.1	38.4	J-692
-402	10,000	TRUE	Passed	500	10,001	68.8	38.4	J-692
-403	10,000	TRUE	Passed	500	10,001	47.5	38.4	J-692
404	10,000	TRUE	Passed	500	10,001	32.6	38	J-692
405	4,609	TRUE	Passed	500	4,610	30	42.3	J-692
-406	10,000	TRUE	Passed	500	10,001	64.2	38.5	J-692
-407	10,000	TRUE	Passed	500	10,001	70.7	38.4	J-692
-408	10,000	TRUE	Passed	500	10,001	50.8	38.8	J-692
-409	3,401	TRUE	Passed	500	3,402	30	42.8	J-692
-410	10,000	TRUE	Passed	500	10,001	57.2	38.8	J-692
-411	3,469	TRUE	Passed	500	3,470	30	42.8	J-692
-412	10,000	TRUE	Passed	500	10,001	61.8	38.9	J-692
-413	10,000	TRUE	Passed	500	10,001	68.2	38.7	J-692
414	10,000	TRUE	Passed	500	10,001	63.9	36.6	J-156
415	1,946	TRUE	Passed	500	1,947	30	43	J-692
416	10,000	TRUE	Passed	500	10,001	64.6	38.9	J-692
-417	10,000	TRUE	Passed	500	10,001	60.8	39	J-692
-418	5,412	TRUE	Passed	500	5,413	30	29.9	J-419
-419	3,407	TRUE	Passed	500	3,408	30	42.8	J-692
-420	10,000	TRUE	Passed	500	10,001	40.1	37.7	J-421
-421	9,428	TRUE	Passed	500	9,429	30	32.4	J-423
-422	6,812	TRUE	Passed	500	6,813	30	41.4	J-692
-423	9,310	TRUE	Passed	500	9,311	30	33.2	J-422
-424	4,710	TRUE	Passed	500	4,712	30	42.4	J-692
-425	4,025	TRUE	Passed	500	4,026	30	42.7	J-692
-426	9,394	TRUE	Passed	500	9,395	30	24.9	J-425

J-427	7,858	TRUE	Passed	500	7,859	30	34.7	J-424
J-427 J-428	9,432	TRUE	Passed	500	9,433	30	35.3	J-423
J-429	9,397	TRUE	Passed	500	9,398	30	35.6	J-428
J-430	3,867	TRUE	Passed	500	3,868	30	42.7	J-692
J-431	7,257	TRUE	Passed	500	7,258	30	30.9	J-432
J-432	2,225	TRUE	Passed	500	2,226	30	43.1	J-692
J-433	2,430	TRUE	Passed	500	2,431	30	28.4	J-237
J-434	10,000	TRUE	Passed	500	10,001	61.9	43.2	J-692
J-435	10,000	TRUE	Passed	500	10,001	63.2	43.2	J-692
J-436	10,000	TRUE	Passed	500	10,001	59.9	43.2	J-692
J-437	8,378	TRUE	Passed	500	8,379	30.3	43.1	J-692
J-437 J-439	6,637	TRUE	Passed	500	6,638	30	31.7	J-719
J-439 J-440	6,529	TRUE	Passed	500	6,530	30	32.1	J-1780
J-440 J-442	7,627	TRUE	Passed	500	7,629	30	27.5	J-443
J-442 J-443	2,071	TRUE		500	2,072	30	43.3	J-692
J-445 J-445	8,888	TRUE	Passed Passed	500	8,889	30	31.4	J-455
J-445 J-447	6,078	TRUE		500	6,079	30	27.3	J-455
J-447 J-448		TRUE	Passed	500				
	4,834		Passed		4,835	30	40.2	J-450
J-449	5,767	TRUE	Passed	500	5,768	30	23.5	J-450
J-450	3,923	TRUE	Passed	500	3,924	30	43.1	J-692
J-451	5,579	TRUE	Passed	500	5,580	30	35.4	J-452
J-452	5,086	TRUE	Passed	500	5,087	30	31.8	J-458
J-453	4,709	TRUE	Passed	500	4,710	30	40.1	J-454
J-454	4,531	TRUE	Passed	500	4,532	30	43	J-692
J-455	6,076	TRUE	Passed	500	6,077	30	38.3	J-454
J-456	6,117	TRUE	Passed	500	6,118	30	37.5	J-455
J-457	4,870	TRUE	Passed	500	4,871	30	40.3	J-452
J-458	2,809	TRUE	Passed	500	2,810	30	43.2	J-692
J-459	2,738	TRUE	Passed	500	2,739	30	33.4	J-463
J-460	3,771	TRUE	Passed	500	3,772	30	33.7	J-459
J-461	1,546	TRUE	Passed	500	1,547	30	29.4	J-463
J-462	1,359	TRUE	Passed	500	1,360	30	37.5	J-463
J-463	1,243	TRUE	Passed	500	1,244	30	42.6	J-461
J-464	4,929	TRUE	Passed	500	4,930	30	38.5	J-457
J-465	5,085	TRUE	Passed	500	5,086	30	36.7	J-464
J-466	5,391	TRUE	Passed	500	5,393	30	37.9	J-465
J-467	6,091	TRUE	Passed	500	6,092	30	29.1	J-460
J-468	6,016	TRUE	Passed	500	6,017	30	33.9	J-459
J-469	6,599	TRUE	Passed	500	6,600	30	35.6	J-474
J-470	8,004	TRUE	Passed	500	8,005	30	41.3	J-692
J-471	10,000	TRUE	Passed	500	10,001	42	38.7	J-556
J-472	6,774	TRUE	Passed	500	6,775	30	41.5	J-473

J-473	6,190	TRUE	Passed	500	6,192	30	36.9	J-475
J-474	5,717	TRUE	Passed	500	5,718	30	42.6	J-692
I-475	5,292	TRUE	Passed	500	5,293	30	41.2	J-478
-476	2,220	TRUE	Passed	500	2,221	30	41.4	J-477
-477	2,249	TRUE	Passed	500	2,250	30	39.3	J-476
-478	5,225	TRUE	Passed	500	5,226	30	40	J-475
-479	5,358	TRUE	Passed	500	5,359	30	40.1	J-478
-480	5,689	TRUE	Passed	500	5,690	30	38.1	J-479
-481	6,039	TRUE	Passed	500	6,040	30	36	J-480
-482	3,107	TRUE	Passed	500	3,108	30	25.8	J-485
-483	1,908	TRUE	Passed	500	1,909	30	28.8	J-485
-484	1,754	TRUE	Passed	500	1,755	30	34.1	J-485
-485	1,423	TRUE	Passed	500	1,424	30	43.3	J-692
486	9,119	TRUE	Passed	500	9,120	30	41.9	1-FLOW
487	10,000	TRUE	Passed	500	10,001	39.9	42.3	J-692
489	10,000	TRUE	Passed	500	10,001	51.3	43	J-692
490	10,000	TRUE	Passed	500	10,001	36.6	39.1	J-437
491	10,000	TRUE	Passed	500	10,001	63.1	43.3	J-692
492	10,000	TRUE	Passed	500	10,001	49.4	42.6	J-692
493	9,636	TRUE	Passed	500	9,637	30	36.7	J-494
494	9,755	TRUE	Passed	500	9,756	30	35.4	J-493
497	10,000	TRUE	Passed	500	10,001	47.8	41.2	J-692
498	10,000	TRUE	Passed	500	10,001	48.8	42.1	J-692
-499	10,000	TRUE	Passed	500	10,001	41.6	40.7	J-500
-500	6,525	TRUE	Passed	500	6,526	30	42.9	J-692
-501	10,000	TRUE	Passed	500	10,001	39.9	39.1	J-502
-502	4,787	TRUE	Passed	500	4,788	30	31.3	J-726
-504	3,043	TRUE	Passed	500	3,044	30	40.5	J-1334
-505	3,757	TRUE	Passed	500	3,758	30	42.5	J-554
507	4,209	TRUE	Passed	500	4,210	30	33.1	J-508
508	4,211	TRUE	Passed	500	4,212	30	34.1	J-507
509	4,958	TRUE	Passed	500	4,959	30	31	J-508
-510	5,566	TRUE	Passed	500	5,567	30	32.6	J-513
-511	2,221	TRUE	Passed	500	2,222	30	37.9	J-513
-513	2,264	TRUE	Passed	500	2,265	30	37.6	J-514
-514	2,558	TRUE	Passed	500	2,559	30	29.3	J-513
-516	4,912	TRUE	Passed	500	4,913	30	38.5	J-508
-517	5,372	TRUE	Passed	500	5,373	30	30.4	J-549
-518	4,873	TRUE	Passed	500	4,874	30	26.2	J-549
-519	5,261	TRUE	Passed	500	5,262	30	29.8	J-508
-520	4,451	TRUE	Passed	500	4,452	30	32.9	J-521
-521	3,658	TRUE	Passed	500	3,659	30	37.2	J-603

J-522	3,826	TRUE	Passed	500	3,827	30	27.5	J-603
J-523	4,180	TRUE	Passed	500	4,181	30	27.8	J-603
J-524	4,038	TRUE	Passed	500	4,039	30	29.9	J-521
J-525	4,496	TRUE	Passed	500	4,497	30	31.8	J-521
J-526	4,343	TRUE	Passed	500	4,344	30	33.9	J-521
J-527	4,426	TRUE	Passed	500	4,427	30	32.9	J-528
J-528	4,093	TRUE	Passed	500	4,094	30	35.8	J-610
J-529	4,319	TRUE	Passed	500	4,320	30	37.3	J-613
J-530	4,347	TRUE	Passed	500	4,348	30	38.8	J-596
J-531	2,759	TRUE	Passed	500	2,760	30	43.1	J-692
J-532	2,980	TRUE	Passed	500	2,981	30	43	J-692
J-533	8,066	TRUE	Passed	500	8,067	30	32.5	J-532
J-534	9,000	TRUE	Passed	500	9,001	30	29.7	J-535
J-535	8,345	TRUE	Passed	500	8,346	30	30.9	J-536
J-536	7,472	TRUE	Passed	500	7,473	30	37.2	J-535
J-537	8,589	TRUE	Passed	500	8,590	30	36.3	J-647
J-538	9,225	TRUE	Passed	500	9,226	30	37.8	J-648
J-539	10,000	TRUE	Passed	500	10,001	33.7	34.7	J-538
J-540	2,971	TRUE	Passed	500	2,972	30	43	J-692
J-541	3,212	TRUE	Passed	500	3,213	30	43	J-692
J-542	6,533	TRUE	Passed	500	6,534	30	41.9	J-692
J-543	8,905	TRUE	Passed	500	8,906	30	35.6	J-542
J-544	9,989	TRUE	Passed	500	9,990	30	34.2	J-546
J-545	5,368	TRUE	Passed	500	5,369	30	29.6	J-546
J-546	2,041	TRUE	Passed	500	2,042	30	43.2	J-692
J-547	5,003	TRUE	Passed	500	5,004	30	30.7	J-548
J-548	1,768	TRUE	Passed	500	1,769	30	43.2	J-692
J-549	1,616	TRUE	Passed	500	1,617	30	43.2	J-692
J-550	4,318	TRUE	Passed	500	4,319	30	29.7	J-552
J-551	2,861	TRUE	Passed	500	2,862	30	43.1	J-692
J-552	2,300	TRUE	Passed	500	2,301	30	43.2	J-692
J-553	3,790	TRUE	Passed	500	3,791	30	29.9	J-554
J-554	2,467	TRUE	Passed	500	2,469	30	43.2	J-692
J-555	10,000	TRUE	Passed	500	10,001	35.5	37	J-556
J-556	3,967	TRUE	Passed	500	3,968	30	42.9	J-692
J-557	3,500	TRUE	Passed	500	3,501	30	30.9	J-558
J-558	1,765	TRUE	Passed	500	1,766	30	43.2	J-692
J-559	10,000	TRUE	Passed	500	10,001	39.3	40.6	J-692
J-560	10,000	TRUE	Passed	500	10,001	47.3	41	J-692
J-561	3,638	TRUE	Passed	500	3,639	30	42.9	J-692
J-562	10,000	TRUE	Passed	500	10,001	35.2	39.1	J-556
J-563	2,799	TRUE	Passed	500	2,800	30	43	J-692

J-564	10,000	TRUE	Passed	500	10,001	38.6	38.7	J-692
I-565	10,000	TRUE	Passed	500	10,001	39.9	39.5	J-692
-566	8,408	TRUE	Passed	500	8,409	30	39.7	J-692
-567	10,000	TRUE	Passed	500	10,001	36	38.2	J-692
-568	10,000	TRUE	Passed	500	10,001	34.7	36.2	J-692
-569	8,256	TRUE	Passed	500	8,257	30	38.3	J-692
-570	7,149	TRUE	Passed	500	7,150	30	39.9	J-692
-571	8,622	TRUE	Passed	500	8,623	30	37.1	J-692
-572	10,000	TRUE	Passed	500	10,001	48.3	33.8	J-574
-573	10,000	TRUE	Passed	500	10,001	30.6	20.1	J-692
-574	9,946	TRUE	Passed	500	9,947	30	34	J-571
-576	10,000	TRUE	Passed	500	10,001	41.6	37.6	J-692
-577	10,000	TRUE	Passed	500	10,001	39.7	38.1	J-692
578	3,142	TRUE	Passed	500	3,143	30	42.9	J-692
579	4,194	TRUE	Passed	500	4,195	30	42.6	J-692
580	4,256	TRUE	Passed	500	4,257	30	42.7	J-692
581	4,022	TRUE	Passed	500	4,023	30	42.7	J-692
582	6,420	TRUE	Passed	500	6,422	30	39.6	J-581
583	6,953	TRUE	Passed	500	6,954	30	41.4	J-692
584	7,903	TRUE	Passed	500	7,904	30	37.2	J-585
585	6,021	TRUE	Passed	500	6,022	30	39	J-587
587	5,574	TRUE	Passed	500	5,575	30	38.6	J-588
-588	5,203	TRUE	Passed	500	5,204	30	42.3	J-692
.589	5,364	TRUE	Passed	500	5,365	30	39.2	J-588
-590	6,824	TRUE	Passed	500	6,825	30	28.6	J-591
591	6,243	TRUE	Passed	500	6,244	30	36.2	J-590
-592	5,965	TRUE	Passed	500	5,966	30	36.3	J-596
-593	4,345	TRUE	Passed	500	4,346	30	36.3	J-596
594	4,218	TRUE	Passed	500	4,219	30	26.1	J-596
595	3,411	TRUE	Passed	500	3,412	30	27.1	J-596
596	2,861	TRUE	Passed	500	2,862	30	35.1	J-597
597	2,973	TRUE	Passed	500	2,974	30	31.5	J-596
598	3,059	TRUE	Passed	500	3,060	30	32	J-597
599	3,252	TRUE	Passed	500	3,253	30	31.3	J-1549
601	2,857	TRUE	Passed	500	2,858	30	34.6	J-1549
602	4,132	TRUE	Passed	500	4,133	30	31.9	J-1549
603	2,169	TRUE	Passed	500	2,170	30	43.1	J-692
604	4,145	TRUE	Passed	500	4,146	30	30.6	J-596
-605	3,037	TRUE	Passed	500	3,039	30	31	J-596
-606	3,147	TRUE	Passed	500	3,148	30	29.7	J-596
-607	3,990	TRUE	Passed	500	3,991	30	31.4	J-596
-608	4,120	TRUE	Passed	500	4,121	30	31.5	J-596

J-609	4,196	TRUE	Passed	500	4,197	30	31.5	J-596
J-610	4,105	TRUE	Passed	500	4,197	30	34.4	J-596
J-611	4,415	TRUE	Passed	500	4,416	30	28.6	J-596
J-612	3,892	TRUE	Passed	500	3,893	30	36	J-596
J-613	4,023	TRUE	Passed	500	4,024	30	39.1	J-596
J-613	6,181	TRUE	Passed	500	6,182	30	34.8	J-596
J-615	6,477	TRUE	Passed	500	6,478	30	30.5	J-614
	-			500	-			J-614 J-615
J-616	6,629	TRUE	Passed		6,630	30	32.3	
J-617	6,557	TRUE	Passed	500	6,558	30	41	3-FLOW
J-620	7,553	TRUE	Passed	500	7,554	30	29	J-617
J-621	9,315	TRUE	Passed	500	9,316	30	29	J-617
J-622	8,902	TRUE	Passed	500	8,903	30	33.5	J-626
J-623	9,025	TRUE	Passed	500	9,026	30	35.8	J-617
J-625	10,000	TRUE	Passed	500	10,001	30	28.8	J-623
J-626	8,719	TRUE	Passed	500	8,720	30	33.8	J-627
J-627	8,655	TRUE	Passed	500	8,656	30	35.4	J-628
J-628	8,886	TRUE	Passed	500	8,887	30	33.9	J-627
J-629	9,380	TRUE	Passed	500	9,381	30	32	J-628
J-630	9,600	TRUE	Passed	500	9,601	30	32.4	J-629
J-631	9,680	TRUE	Passed	500	9,681	30	36.5	J-630
J-632	5,092	TRUE	Passed	500	5,093	30	30	J-633
J-633	3,005	TRUE	Passed	500	3,006	30	42.9	J-692
J-634	7,986	TRUE	Passed	500	7,987	30	30.8	J-633
J-636	10,000	TRUE	Passed	500	10,001	32.5	36.1	J-631
J-637	3,663	TRUE	Passed	500	3,664	30	42.8	J-692
J-638	10,000	TRUE	Passed	500	10,001	35.4	38.6	J-539
J-639	10,000	TRUE	Passed	500	10,001	41.3	38.5	J-692
J-640	10,000	TRUE	Passed	500	10,001	37.9	38.4	J-692
J-641	5,466	TRUE	Passed	500	5,467	30	42	J-692
J-642	3,928	TRUE	Passed	500	3,929	30	42.7	J-692
J-643	2,982	TRUE	Passed	500	2,983	30	43	J-692
J-644	5,187	TRUE	Passed	500	5,188	30	38.1	J-645
J-645	2,585	TRUE	Passed	500	2,586	30	43.1	J-692
J-646	7,240	TRUE	Passed	500	7,241	30	40.3	J-648
J-647	4,681	TRUE	Passed	500	4,682	30	42.6	J-692
J-648	2,822	TRUE	Passed	500	2,823	30	43	J-692
J-649	3,555	TRUE	Passed	500	3,556	30	29.8	J-650
J-650	1,776	TRUE	Passed	500	1,777	30	43.2	J-692
J-651	7,713	TRUE	Passed	500	7,714	30	29.4	J-652
J-652	2,919	TRUE		500	2,921	30	43	J-692
J-655	7,203	TRUE	Passed	500	7,204	30	31.6	J-656
			Passed					
J-656	3,427	TRUE	Passed	500	3,428	30	42.9	J-692

1.657	10.000	TDUE	D	500	10.001	20.4	20.2	1.602
J-657	10,000	TRUE	Passed	500	10,001	39.4	38.3	J-692
J-659	10,000	TRUE	Passed	500	10,001	42.9	37.3	J-692
J-659	10,000	TRUE	Passed	500	10,001	44.5	38	J-692
J-660	10,000	TRUE	Passed	500	10,001	45.7	38	J-692
J-661	802	TRUE	Passed	500	806	30	43.2	J-692
J-662	10,000	TRUE	Passed	500	10,001	58.5	38.3	J-692
J-663	10,000	TRUE	Passed	500	10,001	49.7	38.3	J-692
J-664	10,000	TRUE	Passed	500	10,001	37.9	38.3	J-692
J-665	10,000	TRUE	Passed	500	10,001	40.1	38.4	J-692
J-666	10,000	TRUE	Passed	500	10,001	42.4	42.5	J-692
J-667	8,726	TRUE	Passed	500	8,727	30	34.9	J-25
J-668	10,000	TRUE	Passed	500	10,001	48.6	42.8	J-692
J-669	3,942	TRUE	Passed	500	3,943	30	40.2	J-21
J-670	4,467	TRUE	Passed	500	4,468	30	33.3	J-21
J-673	10,000	TRUE	Passed	500	10,001	46.1	37.8	J-692
J-674	4,175	TRUE	Passed	500	4,176	30	42.4	J-692
J-675	3,871	TRUE	Passed	500	3,872	30	42.7	J-692
J-676	5,483	TRUE	Passed	500	5,484	30	31	J-675
J-677	2,368	TRUE	Passed	500	2,369	30	29.3	J-678
J-678	1,760	TRUE	Passed	500	1,761	30	43.2	J-692
J-680	5,073	TRUE	Passed	500	5,073	30	16.6	J-692
J-682	4,998	TRUE	Passed	500	4,998	30	17.7	J-692
J-685	2,437	TRUE	Passed	500	2,462	30	26.7	J-692
J-686	5,174	TRUE	Passed	500	5,224	30	10.7	J-692
J-687	5,426	TRUE	Passed	500	5,451	30	29.4	J-692
J-689	8,003	TRUE	Passed	500	8,028	30	22.6	J-692
J-690	7,731	TRUE	Passed	500	7,756	30	16	J-692
J-691	6,929	TRUE	Passed	500	6,954	30	7	J-692
J-692	1,718	TRUE	Passed	500	1,718	30	32.4	J-695
J-693	4,258	TRUE	Passed	500	4,283	30	19.5	J-692
J-694	5,160	TRUE	Passed	500	5,185	30	9.8	J-692
J-695	1,922	TRUE	Passed	500	1,947	30	29.7	J-692
J-696	2,870	TRUE	Passed	500	2,875	30	25.4	J-692
J-697	7,151	TRUE	Passed	500	7,151	30	0.3	J-692
J-698	5,593	TRUE	Passed	500	5,618	30	29.6	J-692
J-699	10,000	TRUE	Passed	500	10,025	33.7	13.4	J-692
J-700	6,795	TRUE	Passed	500	6,820	30	24.8	J-692
J-700 J-702	5,800	TRUE	Passed	500	5,800	30	15.3	J-692
J-702 J-719	4,452	TRUE	Passed	500	4,452	30	39.8	J-724
J-719 J-724	4,288	TRUE	Passed	500	4,432	30	34.2	J-1780
J-724 J-726	3,996	TRUE	Passed	500	3,996	30	31.6	J-1780 J-504
J-727	7,621	TRUE	Passed	500	7,621	30	43.1	J-692

J-731	5,442	TRUE	Passed	500	5,443	30	41.3	J-260
J-904	6,788	TRUE	Passed	500	6,789	30	41.8	J-692
J-1031	9,683	TRUE	Passed	500	9,684	30	38.5	J-385
J-1082	10,000	TRUE	Passed	500	10,001	64.3	38.3	J-692
J-1184	9,077	TRUE	Passed	500	9,078	30	37.8	J-439
J-1201	8,009	TRUE	Passed	500	8,010	30	26.4	J-455
J-1296	10,000	TRUE	Passed	500	10,001	43.8	42.5	J-692
J-1334	3,715	TRUE	Passed	500	3,716	30	29.9	J-504
J-1340	3,843	TRUE	Passed	500	3,844	30	39.9	J-508
J-1549	2,888	TRUE	Passed	500	2,889	30	35.5	J-601
J-1642	9,022	TRUE	Passed	500	9,023	30	39.4	J-692
J-1042 J-1704	10,000	TRUE	Passed	500	10,001	47.6	37.5	J-692
J-1704 J-1780	4,369	TRUE	Passed	500	4,369	30	32.5	J-724
J-1806	3,664	TRUE	Passed	500	3,664	30	24	J-692
			rasseu	300	3,004	30	24	J-032
	7: 12-Inch North	<u> </u>						
	mum residual pressure v		i so that fire flo					
1-FLOW	9,379	TRUE	Passed	500	9,380	24	19.2	J-692
1-RES	3,308	TRUE	Passed	500	3,311	24	23.6	J-692
2-FLOW	8,636	TRUE	Passed	500	8,637	24	20.3	J-692
2-RES	4,485	TRUE	Passed	500	4,486	24	23.1	J-692
3-FLOW	3,029	TRUE	Passed	500	3,030	24	22.9	J-692
3-RES	2,584	TRUE	Passed	500	2,585	24	23.3	J-692
4-FLOW	3,658	TRUE	Passed	500	3,659	24	22.7	J-692
4-RES	2,644	TRUE	Passed	500	2,645	24	23.5	J-692
5-FLOW	4,038	TRUE	Passed	500	4,039	24	19.2	J-692
5-RES	2,084	TRUE	Passed	500	2,085	24	22.7	J-692
6-FLOW	2,153	TRUE	Passed	500	2,154	24	23.7	J-692
6-RES	1,397	TRUE	Passed	500	1,398	24	24.2	J-692
7-FLOW	2,364	TRUE	Passed	500	2,365	24	21.8	J-692
7-RES	2,122	TRUE	Passed	500	2,123	24	22.3	J-692
J-1	5,785	TRUE	Passed	500	5,786	24	15.7	J-692
J-2	7,960	TRUE	Passed	500	7,961	24	12	J-692
J-3	8,588	TRUE	Passed	500	8,589	24	12.7	J-692
J-11	9,116	TRUE	Passed	500	9,117	24	12.6	J-692
J-12	8,801	TRUE	Passed	500	8,802	24	11.6	J-692
J-13	5,196	TRUE	Passed	500	5,197	24	18.4	J-692
J-14	4,179	TRUE	Passed	500	4,180	24	20.2	J-692
J-15	8,177	TRUE	Passed	500	8,178	24	12	J-692
J-17	6,433	TRUE	Passed	500	6,434	24	15.8	J-692
J-18	10,000	TRUE	Passed	500	10,001	58.5	22.2	J-692
J-19	10,000	TRUE	Passed	500	10,001	25.1	15.8	J-692
J-20	4,521	TRUE	Passed	500	4,522	24	21.9	J-692

J-21	4,625	TRUE	Passed	500	4,626	24	21.9	J-692
J-22	2,213	TRUE	Passed	500	2,214	24	23.8	J-692
J-23	4,078	TRUE	Passed	500	4,079	24	22.3	J-692
J-24	2,078	TRUE	Passed	500	2,079	24	23.8	J-692
J-25	3,630	TRUE	Passed	500	3,631	24	22.7	J-692
J-26	2,006	TRUE	Passed	500	2,007	24	23.8	J-692
J-27	3,735	TRUE	Passed	500	3,736	24	22.5	J-692
J-28	2,308	TRUE	Passed	500	2,309	24	23.6	J-692
J-29	4,061	TRUE	Passed	500	4,062	24	22.1	J-692
J-30	7,080	TRUE	Passed	500	7,081	24	17.9	J-692
J-31	2,855	TRUE	Passed	500	2,856	24	22.1	J-692
I-33	3,132	TRUE	Passed	500	3,133	24	21.7	J-692
I-34	3,059	TRUE	Passed	500	3,060	24	21.8	J-692
-35	3,784	TRUE	Passed	500	3,785	24	20.7	J-692
-36	5,145	TRUE	Passed	500	5,146	24	18.1	J-692
-37	5,742	TRUE	Passed	500	5,743	24	17.5	J-692
-38	5,380	TRUE	Passed	500	5,381	24	17.1	J-692
-39	4,717	TRUE	Passed	500	4,718	24	19.1	J-692
-40	4,641	TRUE	Passed	500	4,642	24	19.1	J-692
-41	5,441	TRUE	Passed	500	5,442	24	17	J-692
-42	3,297	TRUE	Passed	500	3,298	24	20.9	J-692
-43	4,649	TRUE	Passed	500	4,651	24	18.1	J-692
-44	2,461	TRUE	Passed	500	2,462	24	22.3	J-692
-45	2,621	TRUE	Passed	500	2,622	24	22	J-692
-46	3,375	TRUE	Passed	500	3,376	24	20.7	J-692
-47	2,219	TRUE	Passed	500	2,220	24	22.6	J-692
-48	2,913	TRUE	Passed	500	2,914	24	21.2	J-47
-49	3,415	TRUE	Passed	500	3,416	24	20.7	J-692
-50	2,634	TRUE	Passed	500	2,635	24	22	J-692
-51	1,144	TRUE	Passed	500	1,145	24	23.9	J-692
-52	2,807	TRUE	Passed	500	2,808	24	20.7	J-51
-53	2,370	TRUE	Passed	500	2,371	24	22.3	J-692
-54	2,552	TRUE	Passed	500	2,553	24	22	J-692
-55	2,076	TRUE	Passed	500	2,077	24	22.7	J-692
-56	2,413	TRUE	Passed	500	2,414	24	22.2	J-692
-57	2,329	TRUE	Passed	500	2,330	24	22.4	J-692
-58	2,560	TRUE	Passed	500	2,561	24	22	J-692
-59	2,895	TRUE	Passed	500	2,896	24	21.4	J-692
-60	2,659	TRUE	Passed	500	2,660	24	21.8	J-692
-61	4,215	TRUE	Passed	500	4,216	24	18.9	J-692
-64	4,144	TRUE	Passed	500	4,145	24	18.8	J-692
I-65	4,215	TRUE	Passed	500	4,216	24	18.9	J-692

J-66	5,248	TRUE	Passed	500	5,249	24	16.9	J-692
J-67	4,698	TRUE	Passed	500	4,699	24	18	J-692
J-68	5,016	TRUE	Passed	500	5,017	24	17.4	J-692
J-69	2,769	TRUE	Passed	500	2,770	24	21.9	J-692
J-70	4,076	TRUE	Passed	500	4,077	24	19.5	J-692
J-71	3,428	TRUE	Passed	500	3,429	24	20.8	J-692
J-72	3,412	TRUE	Passed	500	3,413	24	20.8	J-692
J-73	1,314	TRUE	Passed	500	1,315	24	23.8	J-692
J-74	3,384	TRUE		500	3,385	24	20.9	J-692
J-74 J-75	5,227	TRUE	Passed Passed	500	5,228	24	17.2	J-692
J-75		TRUE		500	4,936	24	17.2	J-692
	4,935		Passed					
J-77	4,794	TRUE	Passed	500	4,795	24	17.8	J-692
J-78	5,434	TRUE	Passed	500	5,435	24	16.9	J-692
J-79	4,478	TRUE	Passed	500	4,479	24	19	J-692
J-80	5,015	TRUE	Passed	500	5,016	24	17.9	J-692
J-81	5,273	TRUE	Passed	500	5,274	24	17.1	J-692
J-82	6,054	TRUE	Passed	500	6,055	24	15.8	J-692
J-83	6,199	TRUE	Passed	500	6,200	24	15.4	J-692
J-84	6,200	TRUE	Passed	500	6,201	24	15.4	J-692
J-85	5,708	TRUE	Passed	500	5,709	24	16.4	J-692
J-86	5,390	TRUE	Passed	500	5,391	24	17	J-692
J-87	4,718	TRUE	Passed	500	4,719	24	18.6	J-692
J-88	4,119	TRUE	Passed	500	4,120	24	19.8	J-692
J-89	5,242	TRUE	Passed	500	5,243	24	17.3	J-692
J-90	3,909	TRUE	Passed	500	3,910	24	20.1	J-692
J-91	1,863	TRUE	Passed	500	1,864	24	23.2	J-692
J-92	6,443	TRUE	Passed	500	6,444	24	13.7	J-692
J-93	5,234	TRUE	Passed	500	5,235	24	17	J-692
J-94	6,409	TRUE	Passed	500	6,410	24	13.9	J-692
J-95	7,511	TRUE	Passed	500	7,512	24	12.8	J-692
J-96	6,296	TRUE	Passed	500	6,297	24	14.7	J-692
J-97	6,506	TRUE	Passed	500	6,507	24	13.5	J-692
J-98	6,673	TRUE	Passed	500	6,674	24	12.6	J-692
J-99	3,725	TRUE	Passed	500	3,726	24	15.8	J-692
J-100	5,392	TRUE	Passed	500	5,393	24	8.2	J-692
J-101	3,425	TRUE	Passed	500	3,426	24	16.7	J-692
J-102	5,513	TRUE	Passed	500	5,514	24	7	J-692
J-103	5,003	TRUE	Passed	500	5,004	24	6.5	J-692
J-104	4,306	TRUE	Passed	500	4,307	24	10.3	J-692
J-105	5,117	TRUE	Passed	500	5,118	24	5.2	J-692
J-106	4,877	TRUE	Passed	500	4,878	24	6.8	J-692
J-107	4,589	TRUE	Passed	500	4,590	24	8.8	J-692

1.100	4.022	TDUE	Danad	F00	4.022	24	C.E.	1.000
J-108	4,932	TRUE	Passed	500	4,933	24	6.5	J-692
J-109	4,916	TRUE	Passed		4,917	24	6.6	J-692
J-110	4,620	TRUE	Passed	500	4,621	24	8.8	J-692
J-111	4,182	TRUE	Passed	500	4,183	24	11.3	J-692
J-112	3,702	TRUE	Passed	500	3,703	24	13.9	J-692
J-113	3,181	TRUE	Passed	500	3,182	24	16.2	J-692
J-114	2,915	TRUE	Passed	500	2,916	24	17.1	J-692
J-115	3,533	TRUE	Passed	500	3,534	24	14.2	J-692
J-116	2,713	TRUE	Passed	500	2,715	24	17.9	J-692
J-117	3,201	TRUE	Passed	500	3,202	24	15.7	J-692
J-118	2,126	TRUE	Passed	500	2,127	24	23	J-692
J-118	2,842	TRUE	Passed	500	2,843	24	17.2	J-692
J-119	3,322	TRUE	Passed	500	3,323	24	15.1	J-692
J-121	2,529	TRUE	Passed	500	2,530	24	18.4	J-692
J-122	3,415	TRUE	Passed	500	3,416	24	14.4	J-692
J-123	4,505	TRUE	Passed	500	4,530	29.1	0	J-692
J-124	5,124	TRUE	Passed	500	5,125	24	2.8	J-692
J-125	3,342	TRUE	Passed	500	3,343	24	13.4	J-692
J-126	4,272	TRUE	Passed	500	4,273	24	7.9	J-692
J-127	3,379	TRUE	Passed	500	3,381	24	13.4	J-692
J-128	1,340	TRUE	Passed	500	1,341	24	22.2	J-692
J-129	3,079	TRUE	Passed	500	3,080	24	15.1	J-692
J-130	3,119	TRUE	Passed	500	3,120	24	15	J-692
J-133	3,125	TRUE	Passed	500	3,126	24	15.1	J-692
J-134	2,569	TRUE	Passed	500	2,570	24	17.8	J-692
J-135	2,844	TRUE	Passed	500	2,845	24	16.6	J-692
J-136	3,188	TRUE	Passed	500	3,189	24	14.9	J-692
J-137	3,388	TRUE	Passed	500	3,389	24	13.9	J-692
J-138	3,755	TRUE	Passed	500	3,756	24	11.9	J-692
J-139	5,095	TRUE	Passed	500	5,096	24	6.8	J-692
J-140	3,180	TRUE	Passed	500	3,181	24	16.4	J-692
J-141	3,485	TRUE	Passed	500	3,486	24	15	J-692
J-142	4,712	TRUE	Passed	500	4,713	24	7.9	J-692
J-143	5,530	TRUE	Passed	500	5,531	24	2.7	J-692
J-144	5,457	TRUE	Passed	500	5,458	24	2.1	J-692
J-145	3,647	TRUE	Passed	500	3,648	24	13.3	J-692
J-146	5,539	TRUE	Passed	500	5,540	24	2	J-692
J-147	5,398	TRUE	Passed	500	5,399	24	3.1	J-692
J-147 J-148	5,653	TRUE	Passed	500	5,654	24	2.3	J-692
J-148 J-149	5,895	TRUE	Passed	500	5,896	24	4.1	J-692
J-149 J-150	5,638	TRUE	Passed	500	5,639	24	7.6	J-692
J-150 J-151				500				
1-121	5,618	TRUE	Passed	500	5,619	24	4.8	J-692

1.450	2 020	TOUE		500	2 024	2.4	10.6	1.602
J-152	2,820	TRUE	Passed	500	2,821	24	19.6	J-692
J-153	5,956	TRUE	Passed	500	5,957	24	7.1	J-692
J-154	5,663	TRUE	Passed	500	5,664	24	8.7	J-692
J-155	3,486	TRUE	Passed	500	3,487	24	19.3	J-692
J-156	3,461	TRUE	Passed	500	3,462	24	19.7	J-692
J-157	3,700	TRUE	Passed	500	3,701	24	18.8	J-692
J-158	2,977	TRUE	Passed	500	2,978	24	19.4	J-692
J-159	4,115	TRUE	Passed	500	4,116	24	15.7	J-692
J-160	4,314	TRUE	Passed	500	4,315	24	14.6	J-692
J-161	4,298	TRUE	Passed	500	4,299	24	14.5	J-692
J-162	4,343	TRUE	Passed	500	4,344	24	14.4	J-692
J-163	3,799	TRUE	Passed	500	3,800	24	16.2	J-692
J-164	4,120	TRUE	Passed	500	4,121	24	15	J-692
J-165	4,482	TRUE	Passed	500	4,483	24	13.5	J-692
J-166	5,950	TRUE	Passed	500	5,951	24	3.1	J-692
J-167	2,542	TRUE	Passed	500	2,543	24	20.2	J-692
J-168	3,146	TRUE	Passed	500	3,147	24	18.4	J-692
J-169	3,945	TRUE	Passed	500	3,946	24	15.7	J-692
J-170	5,568	TRUE	Passed	500	5,569	24	4.9	J-692
J-171	2,583	TRUE	Passed	500	2,584	24	19.2	J-692
J-172	4,959	TRUE	Passed	500	4,960	24	4.8	J-692
J-173	3,783	TRUE	Passed	500	3,784	24	12.1	J-692
J-174	3,857	TRUE	Passed	500	3,858	24	11.7	J-692
J-175	4,630	TRUE	Passed	500	4,631	24	6.9	J-692
J-176	3,695	TRUE	Passed	500	3,696	24	12.5	J-692
J-177	2,496	TRUE	Passed	500	2,497	24	18.3	J-692
J-178	3,140	TRUE	Passed	500	3,141	24	15.4	J-692
J-179	1,231	TRUE	Passed	500	1,232	24	22.6	J-692
J-180	1,562	TRUE	Passed	500	1,563	24	21.4	J-692
J-181	3,376	TRUE	Passed	500	3,377	24	14.2	J-692
J-183	10,000	TRUE	Passed	500	10,001	31.8	3.9	J-692
J-184	779	TRUE	Passed	500	780	24	24.3	J-692
J-185	7,695	TRUE	Passed	500	7,696	24	11.1	J-692
J-186	5,330	TRUE	Passed	500	5,331	24	17.3	J-692
J-187	5,569	TRUE	Passed	500	5,570	24	16.4	J-692
J-188	4,208	TRUE	Passed	500	4,209	24	19.4	J-692
J-189	5,331	TRUE	Passed	500	5,332	24	16.4	J-692
J-190	5,372	TRUE	Passed	500	5,373	24	16.5	J-692
J-191	4,586	TRUE	Passed	500	4,587	24	18.2	J-692
J-191	3,993	TRUE	Passed	500	3,994	24	19.2	J-692
J-192 J-193	3,933	TRUE	Passed	500	3,934	24	19.2	J-692
				500				
J-194	3,327	TRUE	Passed	500	3,328	24	19.8	J-692

J-195	2,587	TRUE	Passed	500	2,588	24	21.4	J-692
J-196	2,141	TRUE	Passed	500	2,142	24	22.2	J-692
J-197	2,317	TRUE	Passed	500	2,318	24	21.9	J-692
J-200	5,269	TRUE	Passed	500	5,270	24	16.8	J-692
J-201	4,634	TRUE	Passed	500	4,635	24	18.3	J-692
J-202	5,102	TRUE	Passed	500	5,103	24	17.2	J-692
J-203	5,074	TRUE	Passed	500	5,075	24	17.4	J-692
J-204	3,889	TRUE	Passed	500	3,890	24	19.9	J-692
J-205	3,158	TRUE	Passed	500	3,159	24	21.2	J-692
J-206	4,257	TRUE	Passed	500	4,258	24	19.1	J-692
J-207	3,499	TRUE	Passed	500	3,500	24	20.6	J-692
J-208	5,716	TRUE	Passed	500	5,717	24	16.1	J-692
J-209	4,325	TRUE	Passed	500	4,326	24	19.2	J-692
J-210	7,445	TRUE	Passed	500	7,446	24	12.9	J-692
J-211	6,269	TRUE	Passed	500	6,270	24	16.9	J-692
J-212	5,001	TRUE	Passed	500	5,002	24	19.3	J-692
J-213	3,844	TRUE	Passed	500	3,845	24	21.2	J-692
J-214	3,019	TRUE	Passed	500	3,020	24	22.3	J-692
J-215	2,519	TRUE	Passed	500	2,520	24	22.9	
J-216	882	TRUE	Passed	500	883	24	24.4	J-692
J-217	3,638	TRUE	Passed	500	3,640	24	21.5	J-692
J-218	2,018	TRUE	Passed	500	2,019	24	23.4	J-692
J-219	4,432	TRUE	Passed	500	4,433	24	20.3	J-692
J-220	2,105	TRUE	Passed	500	2,106	24	23.3	J-692
J-221	2,523	TRUE	Passed	500	2,524	24	22.9	J-692
J-222	4,913	TRUE	Passed	500	4,914	24	19.6	J-692
J-223	5,424	TRUE	Passed	500	5,425	24	18.7	J-692
J-224	6,312	TRUE	Passed	500	6,313	24	17.1	J-692
J-225	6,541	TRUE	Passed	500	6,542	24	16.7	J-692
J-226	8,378	TRUE	Passed	500	8,379	24	12.5	J-692
J-227	6,861	TRUE	Passed	500	6,862	24	13.6	J-692
J-228	5,475	TRUE	Passed	500	5,476	24	16.8	J-692
J-229	5,379	TRUE	Passed	500	5,380	24	17.1	J-692
J-230	3,183	TRUE	Passed	500	3,184	24	21.5	J-692
J-231	4,965	TRUE	Passed	500	4,966	24	18.1	J-692
J-232	5,525	TRUE	Passed	500	5,526	24	17.1	J-692
J-233	7,214	TRUE	Passed	500	7,215	24	13.4	J-692
J-234	10,000	TRUE	Passed	500	10,001	44.7	5.6	J-692
J-235	10,000	TRUE	Passed	500	10,001	52.7	6.7	J-692
J-236	2,589	TRUE	Passed	500	2,590	24	21.3	J-692
J-237	2,154	TRUE	Passed	500	2,155	24	22.2	J-692
J-238	1,181	TRUE	Passed	500	1,182	24	23.7	J-692

J-239	10,000	TRUE	Passed	500	10,001	31.4	9.6	J-692
J-240	10,000	TRUE	Passed	500	10,001	29.9	9.7	J-692
J-241	8,900	TRUE	Passed	500	8,901	24	13.7	J-692
J-242	8,663	TRUE	Passed	500	8,664	24	16.4	J-692
J-243	10,000	TRUE	Passed	500	10,001	26.2	13.1	J-692
J-244	5,705	TRUE	Passed	500	5,706	24	19.8	J-692
J-245	10,000	TRUE	Passed	500	10,001	28	14.4	J-692
J-246	9,757	TRUE	Passed	500	9,758	24	18.1	J-692
J-247	10,000	TRUE	Passed	500	10,001	40.5	15.8	J-692
J-248	7,764	TRUE	Passed	500	7,765	24	18	J-692
J-249	2,654	TRUE	Passed	500	2,655	24	23.1	J-250
J-250	1,454	TRUE	Passed	500	1,455	24	24.3	J-692
J-251	8,025	TRUE	Passed	500	8,026	24	17.7	J-692
J-252	7,947	TRUE	Passed	500	7,948	24	18.1	J-692
J-253	3,429	TRUE	Passed	500	3,430	24	23.1	J-692
J-254	8,587	TRUE	Passed	500	8,588	24	16.8	J-692
J-255	7,887	TRUE	Passed	500	7,888	24	17.9	J-692
J-256	4,545	TRUE	Passed	500	4,546	24	21.9	J-692
J-257	7,834	TRUE	Passed	500	7,835	24	17.9	J-692
J-258	7,799	TRUE	Passed	500	7,800	24	17.8	J-692
J-259	4,835	TRUE	Passed	500	4,836	24	21.6	J-692
J-260	6,887	TRUE	Passed	500	6,888	24	19.1	J-692
J-262	7,946	TRUE	Passed	500	7,947	24	18	J-692
J-263	4,645	TRUE	Passed	500	4,646	24	21.8	J-692
J-264	8,479	TRUE	Passed	500	8,480	24	17.5	J-692
J-265	4,354	TRUE	Passed	500	4,355	24	22.1	J-692
J-266	3,057	TRUE	Passed	500	3,058	24	23.2	J-692
J-267	6,703	TRUE	Passed	500	6,704	24	19.4	J-692
J-268	5,889	TRUE	Passed	500	5,890	24	20.5	J-692
J-269	6,855	TRUE	Passed	500	6,856	24	19.2	J-692
J-270	8,365	TRUE	Passed	500	8,366	24	16.9	J-692
J-271	7,115	TRUE	Passed	500	7,116	24	18.8	J-692
J-272	7,159	TRUE	Passed	500	7,160	24	18.4	J-692
J-273	5,431	TRUE	Passed	500	5,432	24	20.6	J-692
J-274	5,009	TRUE	Passed	500	5,010	24	21.1	J-692
J-275	6,776	TRUE	Passed	500	6,777	24	18.7	J-692
J-276	6,548	TRUE	Passed	500	6,549	24	19.2	J-692
J-277	6,600	TRUE	Passed	500	6,601	24	18.8	J-692
J-278	4,849	TRUE	Passed	500	4,850	24	21.1	J-692
J-279	4,294	TRUE	Passed	500	4,295	24	21.7	J-692
J-280	1,579	TRUE	Passed	500	1,580	24	24.1	J-692
J-281	3,512	TRUE	Passed	500	3,513	24	22.5	J-692

J-282	3,340	TRUE	Passed	500	3,341	24	22.7	J-692
J-283	2,649	TRUE	Passed	500	2,650	24	23.3	J-692
J-284	1,516	TRUE	Passed	500	1,517	24	24.2	J-692
J-285	2,239	TRUE	Passed	500	2,240	24	23.7	J-692
J-286	4,748	TRUE	Passed	500	4,749	24	21.1	J-692
J-287	3,864	TRUE	Passed	500	3,865	24	21.4	J-292
J-288	2,245	TRUE	Passed	500	2,246	24	23.6	J-692
J-289	2,535	TRUE	Passed	500	2,536	24	23.1	J-290
J-290	2,339	TRUE	Passed	500	2,340	24	23.5	J-692
J-291	1,259	TRUE	Passed	500	1,260	24	24.3	J-692
J-292	2,778	TRUE	Passed	500	2,779	24	23.2	J-692
J-294	1,516	TRUE	Passed	500	1,517	24	24.1	J-692
J-296	6,734	TRUE	Passed	500	6,735	24	18.1	J-692
J-297	6,851	TRUE	Passed	500	6,852	24	17.6	J-692
J-298	9,108	TRUE	Passed	500	9,109	24	12.9	J-692
J-299	10,000	TRUE	Passed	500	10,001	25.7	11.1	J-692
J-300	4,481	TRUE	Passed	500	4,482	24	21.4	J-692
J-301	3,612	TRUE	Passed	500	3,613	24	22.3	J-692
J-302	4,081	TRUE	Passed	500	4,082	24	21.9	J-692
J-303	3,351	TRUE	Passed	500	3,352	24	22.7	J-692
J-304	6,029	TRUE	Passed	500	6,030	24	19.4	J-692
J-305	6,179	TRUE	Passed	500	6,180	24	19.1	J-306
J-306	2,622	TRUE	Passed	500	2,623	24	23.3	J-692
J-307	8,331	TRUE	Passed	500	8,332	24	15.8	J-692
J-308	7,371	TRUE	Passed	500	7,372	24	17.6	J-692
J-309	3,877	TRUE	Passed	500	3,878	24	22	J-692
J-310	3,683	TRUE	Passed	500	3,684	24	22.1	J-692
J-311	4,196	TRUE	Passed	500	4,197	24	21.6	J-692
J-312	4,125	TRUE	Passed	500	4,126	24	21.6	J-692
J-313	4,657	TRUE	Passed	500	4,658	24	20.9	J-692
J-314	3,470	TRUE	Passed	500	3,471	24	22.4	J-692
J-315	2,819	TRUE	Passed	500	2,820	24	23	J-692
J-316	4,814	TRUE	Passed	500	4,815	24	20.5	J-692
J-317	3,572	TRUE	Passed	500	3,573	24	22.2	J-692
J-318	7,080	TRUE	Passed	500	7,081	24	18.7	J-692
J-319	6,771	TRUE	Passed	500	6,772	24	19	J-692
J-320	6,803	TRUE	Passed	500	6,804	24	18.8	J-692
J-321	3,532	TRUE	Passed	500	3,533	24	22.7	J-692
J-322	3,760	TRUE	Passed	500	3,761	24	22.6	J-692
J-323	3,331	TRUE	Passed	500	3,332	24	23	J-692
J-324	4,592	TRUE	Passed	500	4,593	24	21.8	J-692

J-326	10,000	TRUE	Passed	500	10,001	41	9.5	J-692
J-327	7,423	TRUE	Passed	500	7,424	24	15.5	J-692
J-328	10,000	TRUE	Passed	500	10,001	41.8	9.5	J-692
J-329	10,000	TRUE	Passed	500	10,001	31.3	9.1	J-692
J-330	1,846	TRUE	Passed	500	1,848	24	23.7	J-692
J-331	6,396	TRUE	Passed	500	6,398	24	17.3	J-692
J-332	6,700	TRUE	Passed	500	6,701	24	16.8	J-692
J-333	4,819	TRUE	Passed	500	4,820	24	20	J-692
-334	8,441	TRUE	Passed	500	8,442	24	12.4	J-692
-336	7,110	TRUE	Passed	500	7,111	24	15.6	J-692
-338	7,875	TRUE	Passed	500	7,876	24	13.9	J-692
-339	6,784	TRUE	Passed	500	6,785	24	16.1	J-692
-340	10,000	TRUE	Passed	500	10,001	34.6	9.6	J-692
-341	7,999	TRUE	Passed	500	8,000	24	16.2	J-692
-342	4,282	TRUE	Passed	500	4,283	24	21.4	J-692
-343	7,748	TRUE	Passed	500	7,749	24	16.2	J-692
-345	5,182	TRUE	Passed	500	5,183	24	20.2	J-692
-346	3,880	TRUE	Passed	500	3,881	24	21.8	J-692
-347	10,000	TRUE	Passed	500	10,001	48.2	9.8	J-692
-348	10,000	TRUE	Passed	500	10,001	49.9	9.9	J-692
-349	10,000	TRUE	Passed	500	10,001	45	10	J-692
-350	10,000	TRUE	Passed	500	10,001	43.1	10	J-692
-351	9,115	TRUE	Passed	500	9,116	24	12	J-692
-352	9,426	TRUE	Passed	500	9,427	24	11.3	J-692
-353	10,000	TRUE	Passed	500	10,001	24.1	9.8	J-692
-354	10,000	TRUE	Passed	500	10,001	32.9	10.6	J-692
-355	9,356	TRUE	Passed	500	9,357	24	12	J-692
-356	8,793	TRUE	Passed	500	8,794	24	12.7	J-692
-357	10,000	TRUE	Passed	500	10,001	45.3	9.6	J-692
-358	10,000	TRUE	Passed	500	10,001	30.9	10.8	J-692
-359	10,000	TRUE	Passed	500	10,001	29.2	10.7	J-692
-360	1,639	TRUE	Passed	500	1,640	24	23.9	J-692
-361	8,930	TRUE	Passed	500	8,931	24	13	J-692
-362	10,000	TRUE	Passed	500	10,001	46.3	10.1	J-692
-363	8,457	TRUE	Passed	500	8,458	24	13.6	J-692
-364	7,574	TRUE	Passed	500	7,575	24	15.4	J-692
-365	7,999	TRUE	Passed	500	8,000	24	14.5	J-692
-366	7,380	TRUE	Passed	500	7,381	24	15.8	J-692
-367	9,082	TRUE	Passed	500	9,083	24	12.2	J-692
-368	6,292	TRUE	Passed	500	6,293	24	18.4	J-692
-369	9,192	TRUE	Passed	500	9,193	24	12.6	J-692
-370	10,000	TRUE	Passed	500	10,001	33.4	10.7	J-692

J-371	3,575	TRUE	Passed	500	3,576	24	13.7	J-692
J-371	10,000	TRUE	Passed	500	10,001	31.9	10.6	J-692
J-372	7,369	TRUE	Passed	500	7,370	24	16.1	J-692
J-373	10,000	TRUE	Passed	500	10,001	48.8	10.1	J-692
J-374	10,000	TRUE	Passed	500	10,001	49	10.1	J-692
J-375	10,000	TRUE	Passed	500	10,001	46.4	10.1	J-692
J-376	8,423	TRUE	Passed	500	8,424	24	13.7	J-692
J-377	10,000	TRUE	Passed	500	10,001	53.2	10.1	J-692
J-378	10,000	TRUE	Passed	500	10,001	42.3	10.2	J-692
J-379	10,000	TRUE	Passed	500	10,001	45.6	10.2	J-692
J-380	7,060	TRUE	Passed	500	7,061	24	16.7	J-692
J-382	7,638	TRUE	Passed	500	7,639	24	15.7	J-692
J-383	7,012	TRUE	Passed	500	7,013	24	16.9	J-692
J-384	7,321	TRUE	Passed	500	7,322	24	16.4	J-692
J-385	9,780	TRUE	Passed	500	9,781	24	11.2	J-692
J-386	10,000	TRUE	Passed	500	10,001	27.7	10.6	J-692
J-387	8,951	TRUE	Passed	500	8,952	24	13.1	J-692
J-388	6,738	TRUE	Passed	500	6,739	24	17.5	J-692
J-389	5,282	TRUE	Passed	500	5,283	24	19.9	J-692
J-390	1,968	TRUE	Passed	500	1,969	24	23.7	J-692
J-391	7,126	TRUE	Passed	500	7,127	24	16.6	J-692
J-392	10,000	TRUE	Passed	500	10,001	41.1	10.2	J-692
J-393	7,928	TRUE	Passed	500	7,929	24	15.1	J-692
J-394	9,331	TRUE	Passed	500	9,332	24	12	J-692
J-395	9,500	TRUE	Passed	500	9,501	24	11.6	J-692
J-396	10,000	TRUE	Passed	500	10,001	41.8	10.2	J-692
J-397	6,482	TRUE	Passed	500	6,483	24	17.6	J-692
J-398	1,751	TRUE	Passed	500	1,752	24	23.8	J-692
J-399	10,000	TRUE	Passed	500	10,001	66.7	9.7	J-692
J-401	3,497	TRUE	Passed	500	3,498	24	12.8	J-692
J-401	10,000	TRUE	Passed	500	10,001	63.3	10.4	J-692
J-402	10,000	TRUE	Passed	500	10,001	64.1	10.3	J-692
J-403	10,000	TRUE	Passed	500	10,001	42.7	10.4	J-692
J-404	10,000	TRUE	Passed	500	10,001	27.3	11.4	J-692
J-405	4,732	TRUE	Passed	500	4,733	24	20.6	J-692
J-406	10,000	TRUE	Passed	500	10,001	59.7	10.3	J-692
J-407	10,000	TRUE	Passed	500	10,001	66.1	10.2	J-692
J-408	10,000	TRUE	Passed	500	10,001	46.6	10.2	J-692
J-409	3,527	TRUE	Passed	500	3,528	24	22.1	J-692
J-410	10,000	TRUE	Passed	500	10,001	53	10.2	J-692
J-411	3,593	TRUE	Passed	500	3,594	24	22	J-692
J-412	10,000	TRUE	Passed	500	10,001	57.6	10.2	J-692

J-413	10,000	TRUE	Passed	500	10,001	64	10	J-692
J-413 J-414	10,000	TRUE	Passed	500	10,001	60.1	8.4	J-692
J-415	2,020	TRUE	Passed	500	2,021	24	23.4	J-692
J-416	10,000	TRUE	Passed	500	10,001	60.6	10	J-692
J-417	10,000	TRUE	Passed	500	10,001	56.7	10.2	J-692
J-418	5,569	TRUE	Passed	500	5,570	24	19.5	J-692
J-419	3,532	TRUE	Passed	500	3,533	24	22.2	J-692
J-420	10,000	TRUE	Passed	500	10,001	35.8	11.4	J-692
J-421	9,670	TRUE	Passed	500	9,671	24	11.8	J-692
J-422	7,093	TRUE	Passed	500	7,094	24	16.9	J-692
J-423	9,574	TRUE	Passed	500	9,575	24	11.9	J-692
J-424	4,952	TRUE	Passed	500	4,953	24	20.3	J-692
J-425	4,238	TRUE	Passed	500	4,239	24	21.2	J-692
J-426	9,569	TRUE	Passed	500	9,570	24	11.5	J-692
J-427	8,133	TRUE	Passed	500	8,134	24	14.7	J-692
J-427	9,705	TRUE	Passed	500	9,706	24	11.5	J-692
J-429	9,675	TRUE	Passed	500	9,676	24	11.5	J-692
J-429	4,074	TRUE	Passed	500	4,075	24	21.5	J-692
J-430 J-431	7,536	TRUE	Passed	500	7,537	24	16	J-692
J-431 J-432	2,373	TRUE	Passed	500	2,374	24	23.3	J-692
J-432 J-433	4,001	TRUE	Passed	500	4,002	24	18.3	J-692
J-434	10,000	TRUE	Passed	500	10,001	61.8	24.2	J-692
J-435	10,000	TRUE	Passed	500	10,001	63.1	24.2	J-692
J-435 J-436	10,000	TRUE	Passed	500	10,001	59.9	23.5	J-692
J-437	9,481	TRUE		500	9,482	24	21.7	J-692
J-437 J-439	9,481	TRUE	Passed	500	9,482	24	20.1	J-692
			Passed		-			J-692
J-440	9,385	TRUE	Passed	500 500	9,386	24	20.1	
J-442	8,766	TRUE TRUE	Passed		8,767	24	20.2	J-692 J-692
J-443	2,234		Passed	500	2,235	24	24.2	
J-445	9,910	TRUE	Passed	500	9,911	24	19.1	J-692
J-447	6,520	TRUE	Passed	500	6,521	24	21.5	J-692
J-448	5,174	TRUE	Passed	500	5,175	24	22.5	J-692
J-449	6,184	TRUE	Passed	500	6,185	24	17.5	J-450
J-450	4,252	TRUE	Passed	500	4,253	24	23.1	J-692
J-451	6,030	TRUE	Passed	500	6,031	24	21.8	J-692
J-452	5,506	TRUE	Passed	500	5,507	24	22.1	J-692
J-453	5,072	TRUE	Passed	500	5,073	24	22.5	J-692
J-454	4,893	TRUE	Passed	500	4,894	24	22.6	J-692
J-455	6,643	TRUE	Passed	500	6,644	24	21.4	J-692
J-456	6,565	TRUE	Passed	500	6,566	24	21.4	J-692
J-457	5,253	TRUE	Passed	500	5,254	24	22.3	J-692
J-458	3,037	TRUE	Passed	500	3,038	24	23.7	J-692

	1							
J-459	2,960	TRUE	Passed	500	2,961	24	23.7	J-692
J-460	4,021	TRUE	Passed	500	4,022	24	23	J-692
J-461	1,663	TRUE	Passed	500	1,664	24	23.4	J-463
J-462	1,456	TRUE	Passed	500	1,457	24	24.4	J-692
J-463	1,339	TRUE	Passed	500	1,340	24	24.4	J-692
J-464	5,276	TRUE	Passed	500	5,277	24	22.2	J-692
J-465	5,421	TRUE	Passed	500	5,422	24	22.1	J-692
J-466	5,721	TRUE	Passed	500	5,722	24	21.8	J-692
J-467	6,423	TRUE	Passed	500	6,424	24	21.2	J-692
J-468	6,333	TRUE	Passed	500	6,334	24	21.2	J-692
J-469	6,909	TRUE	Passed	500	6,910	24	20.6	J-692
J-470	8,298	TRUE	Passed	500	8,299	24	18.5	J-692
J-471	10,000	TRUE	Passed	500	10,001	38.3	16	J-692
J-472	7,103	TRUE	Passed	500	7,104	24	20.1	J-692
J-473	6,561	TRUE	Passed	500	6,562	24	20.9	J-692
J-474	6,000	TRUE	Passed	500	6,001	24	21.4	J-692
J-475	5,650	TRUE	Passed	500	5,651	24	21.8	J-692
J-476	2,363	TRUE	Passed	500	2,364	24	24	J-692
J-477	2,390	TRUE	Passed	500	2,391	24	23.9	J-692
J-478	5,572	TRUE	Passed	500	5,573	24	21.9	J-692
J-479	5,715	TRUE	Passed	500	5,717	24	21.9	J-692
J-480	6,074	TRUE	Passed	500	6,075	24	21.7	J-692
J-481	6,460	TRUE	Passed	500	6,461	24	21.4	J-692
J-482	3,327	TRUE	Passed	500	3,328	24	19.8	J-485
J-483	2,058	TRUE	Passed	500	2,059	24	22.8	J-485
J-484	1,892	TRUE	Passed	500	1,893	24	24.3	J-692
J-485	1,539	TRUE	Passed	500	1,540	24	24.4	J-692
J-486	9,665	TRUE	Passed	500	9,666	24	19.2	J-692
J-487	10,000	TRUE	Passed	500	10,001	39.5	19.8	J-692
J-489	10,000	TRUE	Passed	500	10,001	52.1	22	J-692
J-490	10,000	TRUE	Passed	500	10,001	40.4	21.4	J-692
J-491	10,000	TRUE	Passed	500	10,001	63	24.3	J-692
J-492	10,000	TRUE	Passed	500	10,001	48.5	21.1	J-692
J-493	10,000	TRUE	Passed	500	10,001	26.2	20.4	J-692
J-494	10,000	TRUE	Passed	500	10,001	27.1	20.5	J-692
J-497	10,000	TRUE	Passed	500	10,001	45.4	17.9	J-692
J-498	10,000	TRUE	Passed	500	10,001	47.7	19.7	J-692
J-499	10,000	TRUE	Passed	500	10,001	41	19.8	J-692
J-500	6,989	TRUE	Passed	500	6,990	24	21.9	J-692
J-501	10,000	TRUE	Passed	500	10,001	43	20.6	J-692
J-502	7,271	TRUE	Passed	500	7,272	24	21.5	J-692
J-504	5,239	TRUE	Passed	500	5,240	24	22.6	J-692

LEGE	4,735	TDLIF	Dassad	F00	4.726	24	22.9	J-692
J-505 J-507	4,666	TRUE TRUE	Passed	500 500	4,736	24	22.9	J-692
			Passed	500	4,667	24		J-692
J-508	4,688	TRUE TRUE	Passed	500	4,689	24	22.6	
J-509	5,428		Passed		5,429			J-692
J-510	6,129	TRUE	Passed	500	6,130	24	22.4	J-692
J-511	2,401	TRUE	Passed	500	2,402	24	24.2	J-692
J-513	2,452	TRUE	Passed	500	2,453	24	24.2	J-692
J-514	2,767	TRUE	Passed	500	2,768	24	23.3	J-513
J-516	5,372	TRUE	Passed	500	5,373	24	22.3	J-692
J-517	5,757	TRUE	Passed	500	5,758	24	21.8	J-692
J-518	5,233	TRUE	Passed	500	5,234	24	20.2	J-549
J-519	5,742	TRUE	Passed	500	5,743	24	21.8	J-692
J-520	4,770	TRUE	Passed	500	4,771	24	21.9	J-692
J-521	3,954	TRUE	Passed	500	3,955	24	22.5	J-692
J-522	4,084	TRUE	Passed	500	4,085	24	21.5	J-603
J-523	4,451	TRUE	Passed	500	4,452	24	21.9	J-603
J-524	4,322	TRUE	Passed	500	4,323	24	22.2	J-692
J-525	4,782	TRUE	Passed	500	4,783	24	21.8	J-692
J-526	4,659	TRUE	Passed	500	4,660	24	22	J-692
J-527	4,704	TRUE	Passed	500	4,705	24	21.8	J-692
J-528	4,377	TRUE	Passed	500	4,378	24	22.1	J-692
J-529	4,593	TRUE	Passed	500	4,594	24	21.8	J-692
J-530	4,632	TRUE	Passed	500	4,633	24	21.8	J-692
J-531	2,974	TRUE	Passed	500	2,975	24	23.2	J-692
J-532	3,215	TRUE	Passed	500	3,216	24	23.1	J-692
J-533	8,362	TRUE	Passed	500	8,363	24	16.7	J-692
J-534	9,267	TRUE	Passed	500	9,268	24	15.4	J-692
J-535	8,623	TRUE	Passed	500	8,624	24	16.4	J-692
J-536	7,744	TRUE	Passed	500	7,745	24	17.8	J-692
J-537	8,875	TRUE	Passed	500	8,876	24	15.9	J-692
J-538	9,483	TRUE	Passed	500	9,484	24	14.5	J-692
J-539	10,000	TRUE	Passed	500	10,001	29.3	13.3	J-692
J-540	3,162	TRUE	Passed	500	3,163	24	23	J-692
J-541	3,405	TRUE	Passed	500	3,406	24	22.9	J-692
J-542	6,825	TRUE	Passed	500	6,826	24	19.6	J-692
J-543	9,228	TRUE	Passed	500	9,229	24	16.7	J-692
J-544	10,000	TRUE	Passed	500	10,001	26.8	16.4	J-692
J-544 J-545	5,692	TRUE	Passed	500	5,693	24	21.5	J-692
	-	TRUE		500		24		J-692
J-546	2,193		Passed		2,194		24	
J-547	5,318	TRUE	Passed	500	5,320	24	22	J-692
J-548	1,891	TRUE	Passed	500	1,892	24	24.2	J-692
J-549	1,755	TRUE	Passed	500	1,756	24	24.3	J-692

J-550	4,723	TRUE	Passed	500	4,724	24	22.6	J-692
J-550 J-551	3,123	TRUE	Passed	500	3,124	24	23.6	J-692
J-551 J-552	2,514	TRUE	Passed	500	2,515	24	23.9	J-692
J-553	4,964	TRUE	Passed	500	4,965	24	22.9	J-692
J-554	2,900	TRUE	Passed	500	2,901	24	23.9	J-692
J-555	10,000	TRUE	Passed	500	10,001	32	16.2	J-692
J-556	4,237	TRUE	Passed	500	4,238	24	22.5	J-692
J-557	3,738	TRUE	Passed	500	3,739	24	22.9	J-692
J-558	1,900	TRUE		500	1,901	24	24.1	J-692
J-556 J-559	10,000	TRUE	Passed Passed	500	10,001	36.2	16.8	J-692
J-559 J-560	10,000	TRUE		500	,	44.7	17.6	J-692
			Passed		10,001			
J-561	3,849	TRUE	Passed	500	3,850	24	22.7	J-692
J-562	10,000	TRUE	Passed	500	10,001	31.8	16.5	J-692
J-563	2,988	TRUE	Passed	500	2,989	24	23.2	J-692
J-564	10,000	TRUE	Passed	500	10,001	33.8	14.2	J-692
J-565	10,000	TRUE	Passed	500	10,001	35.8	15.3	J-692
J-566	8,554	TRUE	Passed	500	8,555	24	16.3	J-692
J-567	10,000	TRUE	Passed	500	10,001	30.7	13.3	J-692
J-568	10,000	TRUE	Passed	500	10,001	27.2	11.7	J-692
J-569	8,230	TRUE	Passed	500	8,231	24	15.5	J-692
J-570	7,234	TRUE	Passed	500	7,235	24	17.5	J-692
J-571	8,398	TRUE	Passed	500	8,399	24	14.4	J-692
J-572	10,000	TRUE	Passed	500	10,001	34.5	9.9	J-692
J-573	8,046	TRUE	Passed	500	8,047	24	10.1	J-692
J-574	9,438	TRUE	Passed	500	9,439	24	11.9	J-692
J-576	10,000	TRUE	Passed	500	10,001	35.8	12.3	J-692
J-577	10,000	TRUE	Passed	500	10,001	34.3	12.9	J-692
J-578	3,358	TRUE	Passed	500	3,359	24	22.8	J-692
J-579	4,432	TRUE	Passed	500	4,433	24	21.8	J-692
J-580	4,483	TRUE	Passed	500	4,484	24	21.9	J-692
J-581	4,226	TRUE	Passed	500	4,227	24	21.9	J-692
J-582	6,664	TRUE	Passed	500	6,665	24	18.9	J-692
J-583	7,210	TRUE	Passed	500	7,211	24	18	J-692
J-584	8,184	TRUE	Passed	500	8,185	24	16.5	J-692
J-585	6,294	TRUE	Passed	500	6,295	24	19.2	J-692
J-587	5,841	TRUE	Passed	500	5,842	24	19.8	J-692
J-588	5,476	TRUE	Passed	500	5,477	24	20.3	J-692
J-589	5,618	TRUE	Passed	500	5,619	24	20.1	J-692
J-590	7,068	TRUE	Passed	500	7,069	24	18.1	J-692
J-591	6,491	TRUE	Passed	500	6,492	24	18.9	J-692
J-592	6,268	TRUE	Passed	500	6,269	24	19.7	J-692
J-593	4,630	TRUE	Passed	500	4,631	24	21.8	J-692

J-594	4,483	TRUE	Passed	500	4,484	24	20.3	J-596
J-594 J-595	3,650	TRUE	Passed	500	3,651	24	21.3	J-596
J-595	3,100	TRUE		500	3,101	24	23.2	J-692
J-596 J-597	3,100	TRUE	Passed	500	3,101	24	23.1	J-692
			Passed	500		24		J-692
J-598	3,291	TRUE	Passed		3,292		23	
J-599	3,486	TRUE	Passed	500	3,487	24	22.9	J-692
J-601	3,064	TRUE	Passed	500	3,066	24	23.2	J-692
J-602	4,396	TRUE	Passed	500	4,397	24	22.1	J-692
J-603	2,350	TRUE	Passed	500	2,351	24	23.7	J-692
J-604	4,409	TRUE	Passed	500	4,410	24	22.1	J-692
J-605	3,259	TRUE	Passed	500	3,260	24	23.1	J-692
J-606	3,377	TRUE	Passed	500	3,378	24	23	J-692
J-607	4,246	TRUE	Passed	500	4,247	24	22.2	J-692
J-608	4,375	TRUE	Passed	500	4,376	24	22.1	J-692
J-609	4,464	TRUE	Passed	500	4,465	24	22	J-692
J-610	4,390	TRUE	Passed	500	4,391	24	22.1	J-692
J-611	4,690	TRUE	Passed	500	4,691	24	21.8	J-692
J-612	4,161	TRUE	Passed	500	4,162	24	22.3	J-692
J-613	4,289	TRUE	Passed	500	4,290	24	22.1	J-692
J-614	6,497	TRUE	Passed	500	6,498	24	19.5	J-692
J-615	6,786	TRUE	Passed	500	6,787	24	19.1	J-692
J-616	6,940	TRUE	Passed	500	6,941	24	18.9	J-692
J-617	6,825	TRUE	Passed	500	6,826	24	18.3	J-692
J-620	7,796	TRUE	Passed	500	7,797	24	16.7	J-692
J-621	9,536	TRUE	Passed	500	9,537	24	13.5	J-692
J-622	9,141	TRUE	Passed	500	9,142	24	14.4	J-692
J-623	9,209	TRUE	Passed	500	9,210	24	13.8	J-692
J-625	10,000	TRUE	Passed	500	10,001	25.6	12.2	J-692
J-626	8,970	TRUE	Passed	500	8,971	24	14.8	J-692
J-627	8,919	TRUE	Passed	500	8,920	24	15	J-692
J-628	9,147	TRUE	Passed	500	9,148	24	14.6	J-692
J-629	9,605	TRUE	Passed	500	9,606	24	13.8	J-692
J-630	9,811	TRUE	Passed	500	9,812	24	13.4	J-692
J-631	9,896	TRUE	Passed	500	9,897	24	13.3	J-692
J-632	5,317	TRUE	Passed	500	5,318	24	20.3	J-692
J-633	3,182	TRUE	Passed	500	3,183	24	22.7	J-692
J-634	8,166	TRUE	Passed	500	8,167	24	15.9	J-692
J-636	10,000	TRUE	Passed	500	10,001	28	13.1	J-692
J-637	3,862	TRUE	Passed	500	3,863	24	22.2	J-692
J-638	10,000	TRUE		500	10,001	30.9	13.2	J-692
J-639	10,000	TRUE	Passed	500	10,001	36.3	12.7	J-692
			Passed					
J-640	10,000	TRUE	Passed	500	10,001	32.8	12.8	J-692

J-641	5,712	TRUE	Passed	500	5,713	24	20.1	J-692
J-642	4,145	TRUE	Passed	500	4,146	24	22	J-692
J-643	3,184	TRUE	Passed	500	3,185	24	23	J-692
J-644	5,453	TRUE	Passed	500	5,454	24	21	J-692
J-645	2,778	TRUE	Passed	500	2,779	24	23.4	J-692
J-646	7,538	TRUE	Passed	500	7,539	24	18.4	J-692
J-647	4,933	TRUE	Passed	500	4,934	24	21.4	J-692
J-648	3,037	TRUE	Passed	500	3,038	24	23.1	J-692
J-649	3,759	TRUE	Passed	500	3,760	24	22.6	J-692
J-650	1,897	TRUE	Passed	500	1,898	24	24	J-692
J-651	8,014	TRUE	Passed	500	8,015	24	18	J-692
J-652	3,103	TRUE	Passed	500	3,104	24	23.2	J-692
J-655	7,486	TRUE	Passed	500	7,487	24	18.2	J-692
J-656	3,620	TRUE	Passed	500	3,621	24	22.6	J-692
J-657	10,000	TRUE	Passed	500	10,001	34.2	11.7	J-692
J-659	10,000	TRUE	Passed	500	10,001	36.8	12.1	J-692
J-659	10,000	TRUE	Passed	500	10,001	39.1	11.5	J-692
J-660	10,000	TRUE	Passed	500	10,001	40.3	11.4	J-692
J-661	833	TRUE	Passed	500	837	24	24.5	J-692
J-662	10,000	TRUE	Passed	500	10,001	53.4	11	J-692
J-663	10,000	TRUE	Passed	500	10,001	44.6	11.5	J-692
J-664	10,000	TRUE	Passed	500	10,001	32.8	12.3	J-692
J-665	10,000	TRUE	Passed	500	10,001	35.1	12.6	J-692
J-666	10,000	TRUE	Passed	500	10,001	41.1	18.6	J-692
J-667	10,000	TRUE	Passed	500	10,001	25.7	18.4	J-692
J-668	10,000	TRUE	Passed	500	10,001	47.7	20.4	J-692
J-669	4,466	TRUE	Passed	500	4,467	24	22	J-692
J-670	5,065	TRUE	Passed	500	5,066	24	21.4	J-692
J-673	10,000	TRUE	Passed	500	10,001	40.5	11.8	J-692
J-674	4,282	TRUE	Passed	500	4,283	24	21.4	J-692
J-675	4,003	TRUE	Passed	500	4,004	24	21.6	J-692
J-676	5,641	TRUE	Passed	500	5,642	24	19.3	J-692
J-677	2,524	TRUE	Passed	500	2,525	24	23.2	J-692
J-678	1,887	TRUE	Passed	500	1,888	24	23.7	J-692
J-680	5,568	TRUE	Passed	500	5,568	24	4.5	J-692
J-682	4,561	TRUE	Passed	500	4,561	24	8.8	J-692
J-685	1,368	TRUE	Passed	500	1,393	24	20.4	J-692
J-686	3,840	TRUE	Passed	500	3,890	24	5.6	J-692
J-687	4,833	TRUE	Passed	500	4,858	24	3.9	J-692
J-689	6,414	TRUE	Passed	500	6,439	24	9.4	J-692
J-690	6,025	TRUE	Passed	500	6,050	25.3	0	J-692
J-691	4,983	TRUE	Passed	500	5,008	28.8	0	

J-692	382	FALSE	dual Pressure F	500	382	24	25.9	J-695
J-693	4,504	TRUE	Passed	500	4,529	24	11.2	J-692
J-694	3,776	TRUE	Passed	500	3,801	24	7.1	J-695
J-695	752	TRUE	Passed	500	777	24	23.2	J-692
J-696	4,466	TRUE	Passed	500	4,471	24	17.5	J-692
J-697	5,418	TRUE	Passed	500	5,418	24	1.7	J-692
J-698	5,147	TRUE	Passed	500	5,172	24	13.1	J-692
J-699	8,033	TRUE	Passed	500	8,058	24	4.2	J-692
J-700	4,849	TRUE	Passed	500	4,874	24	12.4	J-692
J-702	4,040	TRUE	Passed	500	4,040	24	8.7	J-692
J-714	4,933	TRUE	Passed	500	4,933	24	22.7	J-692
J-715	2,506	TRUE	Passed	500	2,506	24	23.3	J-692
J-716	3,407	TRUE	Passed	500	3,407	24	21.6	J-692
J-717	3,354	TRUE	Passed	500	3,354	24	21.6	J-692
J-718	3,469	TRUE	Passed	500	3,469	24	21.2	J-692
J-719	8,222	TRUE	Passed	500	8,222	24	20.8	J-692
J-720	4,003	TRUE	Passed	500	4,003	24	22.4	J-692
J-721	4,848	TRUE	Passed	500	4,848	24	17.7	J-692
J-722	3,084	TRUE	Passed	500	3,084	24	22.5	J-692
J-723	5,279	TRUE	Passed	500	5,279	24	20.3	J-692
J-724	7,349	TRUE	Passed	500	7,349	24	20.7	J-692
J-725	6,257	TRUE	Passed	500	6,257	24	21.7	J-692
J-726	6,762	TRUE	Passed	500	6,762	24	21.7	J-692
J-727	10,000	TRUE	Passed	500	10,000	25.5	22	J-692
J-729	7,151	TRUE	Passed	500	7,151	24	21.8	J-692
J-731	6,051	TRUE	Passed	500	6,052	24	20.2	J-692
J-904	7,222	TRUE	Passed	500	7,223	24	15.4	J-692
J-1031	9,995	TRUE	Passed	500	9,996	24	10.6	J-692
J-1082	10,000	TRUE	Passed	500	10,001	59.3	10.9	J-692
J-1184	10,000	TRUE	Passed	500	10,001	30.7	21.1	J-692
J-1201	8,707	TRUE	Passed	500	8,708	24	19.8	J-692
J-1296	10,000	TRUE	Passed	500	10,001	43.4	20.3	J-692
J-1334	6,158	TRUE	Passed	500	6,159	24	22	J-692
J-1340	4,261	TRUE	Passed	500	4,262	24	23	J-692
J-1549	3,109	TRUE	Passed	500	3,110	24	23.2	J-692
J-1642	9,188	TRUE	Passed	500	9,189	24	14.1	J-692
J-1704	10,000	TRUE	Passed	500	10,001	41.8	12	J-692
J-1780	6,896	TRUE	Passed	500	6,896	24	21.2	J-692
J-1806	3,552	TRUE	Passed	500	3,552	24	14.8	J-692
Scenario	8: 16-Inch North	Expansion						
Note: Minii	mum residual pressure wa	as lowered to 24 psi	i so that fire flow	w scenarios could be	run.			
1-FLOW	9,414	TRUE	Passed	500	9,415	24	19.5	J-692

1-RES	3,310	TRUE	Passed	500	3,314	24	23.8	J-692
2-FLOW	8,789	TRUE	Passed	500	8,790	24	20.1	J-692
2-RES	4,508	TRUE	Passed	500	4,509	24	23.1	J-692
3-FLOW	3,036	TRUE	Passed	500	3,037	24	23.2	J-692
3-RES	2,588	TRUE	Passed	500	2,589	24	23.6	J-692
4-FLOW	3,670	TRUE	Passed	500	3,671	24	23.1	J-692
4-RES	2,649	TRUE	Passed	500	2,650	24	23.8	J-692
5-FLOW	4,505	TRUE	Passed	500	4,506	24	19.1	J-692
5-RES	2,148	TRUE	Passed	500	2,149	24	23	J-692
6-FLOW	2,157	TRUE	Passed	500	2,158	24	23.9	J-692
6-RES	1,398	TRUE	Passed	500	1,399	24	24.3	J-692
7-FLOW	2,385	TRUE	Passed	500	2,386	24	22.8	J-692
7-RES	2,139	TRUE	Passed	500	2,140	24	23.1	J-692
-1	5,914	TRUE	Passed	500	5,915	24	17.8	J-692
-2	8,151	TRUE	Passed	500	8,152	24	14.3	J-692
-3	8,735	TRUE	Passed	500	8,736	24	14.6	J-692
l-11	9,299	TRUE	Passed	500	9,300	24	14.7	J-692
l-12	9,003	TRUE	Passed	500	9,004	24	13.8	J-692
-13	5,301	TRUE	Passed	500	5,303	24	19.6	J-692
-14	4,224	TRUE	Passed	500	4,225	24	21.2	J-692
-15	8,365	TRUE	Passed	500	8,366	24	14.3	J-692
-17	6,637	TRUE	Passed	500	6,638	24	17.1	J-692
-18	10,000	TRUE	Passed	500	10,001	58.6	22.5	J-692
I-19	10,000	TRUE	Passed	500	10,001	26	17.2	J-692
-20	4,544	TRUE	Passed	500	4,545	24	22.4	J-692
I-21	4,648	TRUE	Passed	500	4,649	24	22.3	J-692
-22	2,217	TRUE	Passed	500	2,218	24	24	J-692
-23	4,096	TRUE	Passed	500	4,097	24	22.7	J-692
-24	2,082	TRUE	Passed	500	2,083	24	24	J-692
-25	3,645	TRUE	Passed	500	3,646	24	23	J-692
-26	2,010	TRUE	Passed	500	2,011	24	24.1	J-692
-27	3,751	TRUE	Passed	500	3,752	24	22.9	J-692
-28	2,314	TRUE	Passed	500	2,315	24	23.9	J-692
-29	4,083	TRUE	Passed	500	4,084	24	22.6	J-692
I-30	7,221	TRUE	Passed	500	7,222	24	18.9	J-692
-31	2,909	TRUE	Passed	500	2,910	24	22.5	J-692
-33	3,205	TRUE	Passed	500	3,206	24	22.2	J-692
-34	3,133	TRUE	Passed	500	3,134	24	22.3	J-692
1-35	3,911	TRUE	Passed	500	3,912	24	21.2	J-692
-36	5,454	TRUE	Passed	500	5,456	24	18.6	J-692
-37	6,056	TRUE	Passed	500	6,057	24	18.2	J-692
I-38	5,861	TRUE	Passed	500	5,862	24	17.4	J-692

J-39	4,932	TRUE	Passed	500	4,933	24	19.7	J-692
J-40	4,858	TRUE	Passed	500	4,859	24	19.7	J-692
J-41	5,918	TRUE	Passed	500	5,919	24	17.3	J-692
J-42	3,471	TRUE	Passed	500	3,472	24	21.2	J-692
J-43	5,182	TRUE	Passed	500	5,183	24	18	J-692
J-44	2,553	TRUE	Passed	500	2,554	24	22.6	J-692
J-45	2,732	TRUE	Passed	500	2,733	24	22.3	J-692
J-46	3,612	TRUE	Passed	500	3,613	24	20.9	J-692
J-47	2,290	TRUE	Passed	500	2,291	24	22.9	J-692
J-48	3,050	TRUE	Passed	500	3,051	24	21.2	J-47
J-49	3,603	TRUE	Passed	500	3,604	24	21	J-692
J-50	2,721	TRUE	Passed	500	2,722	24	22.4	J-692
J-51	1,160	TRUE	Passed	500	1,161	24	24.1	J-692
J-52	2,969	TRUE	Passed	500	2,970	24	20.7	J-51
J-53	2,474	TRUE	Passed	500	2,475	24	22.6	J-692
J-54	2,679	TRUE	Passed	500	2,680	24	22.3	J-692
J-55	2,149	TRUE	Passed	500	2,150	24	23	J-692
J-56	2,518	TRUE	Passed	500	2,519	24	22.5	J-692
J-57	2,422	TRUE	Passed	500	2,423	24	22.7	J-692
J-58	2,676	TRUE	Passed	500	2,677	24	22.3	J-692
J-59	3,061	TRUE	Passed	500	3,062	24	21.7	J-692
J-60	2,793	TRUE	Passed	500	2,794	24	22.1	J-692
J-61	4,713	TRUE	Passed	500	4,714	24	18.7	J-692
J-64	4,696	TRUE	Passed	500	4,697	24	18.5	J-692
J-65	4,712	TRUE	Passed	500	4,713	24	18.8	J-692
J-66	5,900	TRUE	Passed	500	5,901	24	16.6	J-692
J-67	5,283	TRUE	Passed	500	5,284	24	17.8	J-692
J-68	5,629	TRUE	Passed	500	5,630	24	17.2	J-692
J-69	2,870	TRUE	Passed	500	2,871	24	22.3	J-692
J-70	4,411	TRUE	Passed	500	4,412	24	19.8	J-692
J-71	3,601	TRUE	Passed	500	3,602	24	21.2	J-692
J-72	3,598	TRUE	Passed	500	3,599	24	21.2	J-692
J-73	1,327	TRUE	Passed	500	1,328	24	24	J-692
J-74	3,573	TRUE	Passed	500	3,574	24	21.3	J-692
J-75	5,742	TRUE	Passed	500	5,743	24	17.3	J-692
J-76	5,443	TRUE	Passed	500	5,444	24	17.7	J-692
J-77	5,419	TRUE	Passed	500	5,420	24	17.5	J-692
J-78	5,929	TRUE	Passed	500	5,930	24	17.1	J-692
J-79	4,819	TRUE	Passed	500	4,820	24	19.3	J-692
J-80	5,467	TRUE	Passed	500	5,468	24	18.1	J-692
J-81	5,827	TRUE	Passed	500	5,828	24	17.1	J-692
J-82	6,530	TRUE	Passed	500	6,531	24	16.3	J-692

J-83	6,712	TRUE	Passed	500	6,713	24	15.9	J-692
J-84	6,726	TRUE	Passed	500	6,727	24	15.8	J-692
J-85	6,219	TRUE	Passed	500	6,220	24	16.6	J-692
J-86	5,844	TRUE	Passed	500	5,845	24	17.4	J-692
J-87	4,988	TRUE	Passed	500	4,989	24	19.2	J-692
J-88	4,313	TRUE	Passed	500	4,314	24	20.3	J-692
J-89	5,697	TRUE	Passed	500	5,698	24	17.6	J-692
J-90	4,095	TRUE	Passed	500	4,096	24	20.6	J-692
J-91	1,887	TRUE	Passed	500	1,888	24	23.5	J-692
J-92	6,628	TRUE	Passed	500	6,629	24	16.2	J-692
J-93	5,840	TRUE	Passed	500	5,841	24	16.9	J-692
J-94	6,588	TRUE	Passed	500	6,589	24	16.3	J-692
J-95	7,691	TRUE	Passed	500	7,692	24	15	J-692
J-96	6,438	TRUE	Passed	500	6,440	24	16.9	J-692
J-97	6,698	TRUE	Passed	500	6,699	24	16	J-692
J-98	6,875	TRUE	Passed	500	6,876	24	15.4	J-692
J-99	3,924	TRUE	Passed	500	3,925	24	18.8	J-692
J-100	5,978	TRUE	Passed	500	5,979	24	12.7	J-692
J-101	3,600	TRUE	Passed	500	3,601	24	19.4	J-692
J-102	6,161	TRUE	Passed	500	6,162	24	11.7	J-692
J-103	5,736	TRUE	Passed	500	5,737	24	11.1	J-692
J-104	4,810	TRUE	Passed	500	4,811	24	14.4	J-692
J-105	6,173	TRUE	Passed	500	6,174	24	8.8	J-692
J-106	5,830	TRUE	Passed	500	5,831	24	10.3	J-692
J-107	5,175	TRUE	Passed	500	5,176	24	13.1	J-692
J-108	5,851	TRUE	Passed	500	5,852	24	10.2	J-692
J-109	5,742	TRUE	Passed	500	5,743	24	10.7	J-692
J-110	5,210	TRUE	Passed	500	5,211	24	13.1	J-692
J-111	4,654	TRUE	Passed	500	4,655	24	15.2	J-692
J-112	4,035	TRUE	Passed	500	4,036	24	17.3	J-692
J-113	3,409	TRUE	Passed	500	3,410	24	19.1	J-692
J-114	3,091	TRUE	Passed	500	3,092	24	19.8	J-692
J-115	3,858	TRUE	Passed	500	3,859	24	17.5	J-692
J-116	2,860	TRUE	Passed	500	2,861	24	20.3	J-692
J-117	3,448	TRUE	Passed	500	3,449	24	18.7	J-692
J-118	2,150	TRUE	Passed	500	2,151	24	23.4	J-692
J-118	3,016	TRUE	Passed	500	3,017	24	19.9	J-692
J-119	3,596	TRUE	Passed	500	3,597	24	18.2	J-692
J-121	2,667	TRUE	Passed	500	2,668	24	20.7	J-692
J-122	3,770	TRUE	Passed	500	3,771	24	17.5	J-692
J-123	6,770	TRUE	Passed	500	6,795	30.1	0	J-692
J-124	6,854	TRUE	Passed	500	6,855	24	3.3	J-692

J-125	3,878	TRUE	Passed	500	3,879	24	16.4	J-692
J-126	5,399	TRUE	Passed	500	5,400	24	10.2	J-692
J-127	3,986	TRUE	Passed	500	3,987	24	16.1	J-692
J-128	1,385	TRUE	Passed	500	1,386	24	23.2	J-692
J-129	3,516	TRUE	Passed	500	3,517	24	17.7	J-692
J-130	3,554	TRUE	Passed	500	3,555	24	17.7	J-692
J-133	3,511	TRUE	Passed	500	3,512	24	17.9	J-692
J-134	2,783	TRUE	Passed	500	2,784	24	20.2	J-692
J-135	3,121	TRUE	Passed	500	3,122	24	19.2	J-692
J-136	3,515	TRUE	Passed	500	3,516	24	18	J-692
J-137	3,765	TRUE	Passed	500	3,766	24	17.2	J-692
J-138	4,246	TRUE	Passed	500	4,247	24	15.5	J-692
J-139	5,887	TRUE	Passed	500	5,888	24	10.8	J-692
J-140	3,366	TRUE	Passed	500	3,367	24	19.3	J-692
J-141	3,730	TRUE	Passed	500	3,731	24	18.2	J-692
J-142	5,375	TRUE	Passed	500	5,376	24	12.3	J-692
J-143	6,656	TRUE	Passed	500	6,657	24	6.9	J-692
J-144	6,853	TRUE	Passed	500	6,854	24	4.9	J-692
J-145	4,035	TRUE	Passed	500	4,036	24	16.7	J-692
J-146	6,867	TRUE	Passed	500	6,868	24	5.3	J-692
J-147	6,588	TRUE	Passed	500	6,589	24	6.8	J-692
J-148	6,772	TRUE	Passed	500	6,773	24	6.7	J-692
J-149	6,715	TRUE	Passed	500	6,716	24	9.3	J-692
J-150	6,254	TRUE	Passed	500	6,255	24	12.2	J-692
J-151	6,425	TRUE	Passed	500	6,426	24	9.7	J-692
J-152	2,894	TRUE	Passed	500	2,895	24	21.5	J-692
J-153	6,559	TRUE	Passed	500	6,560	24	12	J-692
J-154	6,174	TRUE	Passed	500	6,175	24	13.3	J-692
J-155	3,544	TRUE	Passed	500	3,545	24	21.1	J-692
J-156	3,514	TRUE	Passed	500	3,515	24	21.3	J-692
J-157	3,764	TRUE	Passed	500	3,765	24	20.7	J-692
J-158	3,041	TRUE	Passed	500	3,042	24	21.3	J-692
J-159	4,267	TRUE	Passed	500	4,268	24	18.7	J-692
J-160	4,533	TRUE	Passed	500	4,534	24	17.8	J-692
J-161	4,540	TRUE	Passed	500	4,541	24	17.7	J-692
J-162	4,576	TRUE	Passed	500	4,577	24	17.7	J-692
J-163	3,996	TRUE	Passed	500	3,997	24	19	J-692
J-164	4,346	TRUE	Passed	500	4,347	24	18.2	J-692
J-165	4,763	TRUE	Passed	500	4,764	24	17.1	J-692
J-166	6,809	TRUE	Passed	500	6,810	24	8.4	J-692
J-167	2,610	TRUE	Passed	500	2,611	24	21.9	J-692
J-168	3,268	TRUE	Passed	500	3,269	24	20.6	J-692

J-169	4,179	TRUE	Passed	500	4,180	24	18.6	J-692
J-170	6,374	TRUE	Passed	500	6,375	24	9.7	J-692
J-171	2,670	TRUE	Passed	500	2,671	24	21.2	J-692
J-172	6,077	TRUE	Passed	500	6,078	24	8.1	J-692
J-173	4,269	TRUE	Passed	500	4,270	24	15.6	J-692
J-174	4,347	TRUE	Passed	500	4,348	24	15.4	J-692
J-175	5,515	TRUE	Passed	500	5,516	24	10.6	J-692
J-176	4,136	TRUE	Passed	500	4,137	24	16.1	J-692
J-177	2,642	TRUE	Passed	500	2,644	24	20.6	J-692
J-178	3,421	TRUE	Passed	500	3,422	24	18.5	J-692
J-179	1,254	TRUE	Passed	500	1,255	24	23.5	J-692
J-180	1,621	TRUE	Passed	500	1,622	24	22.8	J-692
J-181	3,679	TRUE	Passed	500	3,680	24	17.6	J-692
J-183	10,000	TRUE	Passed	500	10,001	36.5	8.6	J-692
J-184	780	TRUE	Passed	500	781	24	24.5	J-692
J-185	7,852	TRUE	Passed	500	7,853	24	14	J-692
J-186	5,393	TRUE	Passed	500	5,394	24	19	J-692
J-187	5,636	TRUE	Passed	500	5,637	24	17.7	J-188
J-188	4,244	TRUE	Passed	500	4,245	24	20.8	J-692
J-189	5,422	TRUE	Passed	500	5,423	24	18.6	J-692
J-190	5,458	TRUE	Passed	500	5,459	24	18.7	J-692
J-191	4,644	TRUE	Passed	500	4,645	24	20	J-692
J-192	4,043	TRUE	Passed	500	4,044	24	20.8	J-692
J-193	3,993	TRUE	Passed	500	3,994	24	20.6	J-692
J-194	3,374	TRUE	Passed	500	3,375	24	20.7	J-196
J-195	2,613	TRUE	Passed	500	2,614	24	22	J-196
J-196	2,159	TRUE	Passed	500	2,160	24	23.1	J-692
J-197	2,338	TRUE	Passed	500	2,339	24	22.9	J-692
J-200	5,367	TRUE	Passed	500	5,368	24	18.7	J-692
J-201	4,703	TRUE	Passed	500	4,704	24	19.9	J-692
J-202	5,192	TRUE	Passed	500	5,193	24	19.1	J-692
J-203	5,161	TRUE	Passed	500	5,162	24	19.2	J-692
J-204	3,931	TRUE	Passed	500	3,932	24	21.2	J-692
J-205	3,183	TRUE	Passed	500	3,184	24	22.2	J-692
J-206	4,312	TRUE	Passed	500	4,313	24	20.6	J-692
J-207	3,530	TRUE	Passed	500	3,531	24	21.7	J-692
J-208	5,826	TRUE	Passed	500	5,827	24	18	J-692
J-209	4,379	TRUE	Passed	500	4,380	24	20.6	J-692
J-210	7,624	TRUE	Passed	500	7,625	24	15.1	J-692
J-211	6,344	TRUE	Passed	500	6,345	24	18.3	J-692
J-212	5,042	TRUE	Passed	500	5,043	24	20.4	J-692
J-213	3,865	TRUE	Passed	500	3,866	24	21.9	J-692

J-214	3,031	TRUE	Passed	500	3,032	24	22.8	J-692
J-215	2,527	TRUE	Passed	500	2,528	24	23.3	J-692
J-216	882	TRUE	Passed	500	883	24	24.5	J-692
J-217	3,658	TRUE	Passed	500	3,659	24	22.2	J-692
J-218	2,023	TRUE	Passed	500	2,024	24	23.7	J-692
J-219	4,463	TRUE	Passed	500	4,464	24	21.2	J-692
J-220	2,110	TRUE	Passed	500	2,111	24	23.7	J-692
J-221	2,530	TRUE	Passed	500	2,531	24	23.3	J-692
J-222	4,953	TRUE	Passed	500	4,954	24	20.6	J-692
J-223	5,475	TRUE	Passed	500	5,476	24	19.9	J-692
J-224	6,379	TRUE	Passed	500	6,380	24	18.5	J-692
J-225	6,613	TRUE	Passed	500	6,615	24	18.1	J-692
J-226	8,514	TRUE	Passed	500	8,515	24	14.6	J-692
J-227	6,944	TRUE	Passed	500	6,945	24	16.3	J-692
J-228	5,560	TRUE	Passed	500	5,561	24	18.8	J-692
J-229	5,456	TRUE	Passed	500	5,457	24	19	J-692
J-230	3,202	TRUE	Passed	500	3,203	24	22.3	J-692
J-231	5,023	TRUE	Passed	500	5,024	24	19.8	J-692
J-232	5,595	TRUE	Passed	500	5,596	24	18.9	J-692
J-233	7,320	TRUE	Passed	500	7,321	24	15.9	J-692
J-234	10,000	TRUE	Passed	500	10,001	47.9	9.7	J-692
J-235	10,000	TRUE	Passed	500	10,001	55.1	10.5	J-692
J-236	2,615	TRUE	Passed	500	2,616	24	22.5	J-692
J-237	2,172	TRUE	Passed	500	2,173	24	23	J-692
J-238	1,184	TRUE	Passed	500	1,185	24	24.1	J-692
J-239	10,000	TRUE	Passed	500	10,001	32.9	12.3	J-692
J-240	10,000	TRUE	Passed	500	10,001	31.3	12.3	J-692
J-241	9,025	TRUE	Passed	500	9,026	24	15.4	J-692
J-242	8,755	TRUE	Passed	500	8,756	24	18	J-692
J-243	10,000	TRUE	Passed	500	10,001	27.2	15	J-692
J-244	5,739	TRUE	Passed	500	5,740	24	20.6	J-692
J-245	10,000	TRUE	Passed	500	10,001	28.8	16.1	J-692
J-246	9,818	TRUE	Passed	500	9,819	24	19.4	J-692
J-247	10,000	TRUE	Passed	500	10,001	41.2	17.2	J-692
J-248	7,818	TRUE	Passed	500	7,819	24	19	J-692
J-249	2,659	TRUE	Passed	500	2,660	24	23.1	J-250
J-250	1,456	TRUE	Passed	500	1,457	24	24.4	J-692
J-251	8,086	TRUE	Passed	500	8,087	24	18.8	J-692
J-252	8,000	TRUE	Passed	500	8,001	24	19.1	J-692
J-253	3,436	TRUE	Passed	500	3,437	24	23.4	J-692
J-254	8,669	TRUE	Passed	500	8,671	24	17.9	J-692
J-255	7,957	TRUE	Passed	500	7,958	24	18.9	J-692

J-256	4,561	TRUE	Passed	500	4,562	24	22.3	J-692
J-257	7,901	TRUE	Passed	500	7,902	24	18.8	J-692
J-258	7,868	TRUE	Passed	500	7,869	24	18.8	J-692
J-259	4,855	TRUE	Passed	500	4,856	24	22.1	J-692
J-260	6,936	TRUE	Passed	500	6,937	24	19.9	J-692
J-262	8,020	TRUE	Passed	500	8,021	24	19	J-692
J-263	4,664	TRUE	Passed	500	4,665	24	22.3	J-692
J-264	8,566	TRUE	Passed	500	8,567	24	18.5	J-692
J-265	4,369	TRUE	Passed	500	4,370	24	22.5	J-692
J-266	3,064	TRUE	Passed	500	3,065	24	23.5	J-692
J-267	6,753	TRUE	Passed	500	6,754	24	20.2	J-692
J-268	5,926	TRUE	Passed	500	5,927	24	21.1	J-692
J-269	6,907	TRUE	Passed	500	6,908	24	20	J-692
J-270	8,453	TRUE	Passed	500	8,454	24	17.9	J-692
J-271	7,170	TRUE	Passed	500	7,171	24	19.6	
J-272	7,220	TRUE	Passed	500	7,221	24	19.2	J-692
J-273	5,461	TRUE	Passed	500	5,462	24	21.2	J-692
J-274	5,033	TRUE	Passed	500	5,034	24	21.6	J-692
J-275	6,832	TRUE	Passed	500	6,833	24	19.6	J-692
J-276	6,598	TRUE	Passed	500	6,599	24	19.9	J-692
J-277	6,655	TRUE	Passed	500	6,656	24	19.6	J-692
J-278	4,878	TRUE	Passed	500	4,879	24	21.6	J-692
J-279	4,313	TRUE	Passed	500	4,314	24	22.1	J-692
J-280	1,580	TRUE	Passed	500	1,581	24	24.3	J-692
J-281	3,523	TRUE	Passed	500	3,524	24	22.9	J-692
J-282	3,350	TRUE	Passed	500	3,351	24	23	J-692
J-283	2,655	TRUE	Passed	500	2,656	24	23.6	J-692
J-284	1,518	TRUE	Passed	500	1,519	24	24.3	J-692
J-285	2,243	TRUE	Passed	500	2,244	24	23.9	J-692
J-286	4,772	TRUE	Passed	500	4,773	24	21.1	J-292
J-287	3,878	TRUE	Passed	500	3,879	24	21.4	J-292
J-288	2,249	TRUE	Passed	500	2,250	24	23.8	J-692
J-289	2,540	TRUE	Passed	500	2,541	24	23.1	J-290
J-290	2,343	TRUE	Passed	500	2,344	24	23.8	J-692
J-291	1,260	TRUE	Passed	500	1,261	24	24.4	J-692
J-292	2,785	TRUE	Passed	500	2,786	24	23.5	J-692
J-294	1,517	TRUE	Passed	500	1,518	24	24.3	J-692
J-296	6,792	TRUE	Passed	500	6,793	24	19.1	J-692
J-297	6,909	TRUE	Passed	500	6,910	24	18.8	J-692
J-298	9,236	TRUE	Passed	500	9,237	24	14.7	J-692
J-299	10,000	TRUE	Passed	500	10,001	26.8	13.4	J-692
J-300	4,501	TRUE	Passed	500	4,502	24	21.9	J-692

J-301	3,624	TRUE	Passed	500	3,625	24	22.8	J-692
J-302	4,097	TRUE	Passed	500	4,098	24	22.3	J-692
J-303	3,361	TRUE	Passed	500	3,362	24	23	J-692
J-304	6,072	TRUE	Passed	500	6,073	24	20.2	J-692
J-305	6,218	TRUE	Passed	500	6,219	24	19.1	J-306
J-306	2,628	TRUE	Passed	500	2,629	24	23.6	J-692
J-307	8,410	TRUE	Passed	500	8,411	24	17.1	J-692
J-308	7,430	TRUE	Passed	500	7,431	24	18.7	J-692
J-309	3,889	TRUE	Passed	500	3,890	24	22.5	J-692
J-310	3,694	TRUE	Passed	500	3,695	24	22.6	J-692
J-311	4,211	TRUE	Passed	500	4,212	24	22.2	J-692
J-312	4,139	TRUE	Passed	500	4,140	24	22.2	J-692
J-313	4,676	TRUE	Passed	500	4,677	24	21.6	J-692
J-314	3,480	TRUE	Passed	500	3,481	24	22.8	J-692
J-315	2,825	TRUE	Passed	500	2,826	24	23.3	J-692
J-316	4,839	TRUE	Passed	500	4,840	24	21.2	J-692
J-317	3,584	TRUE	Passed	500	3,585	24	22.7	J-692
J-318	7,126	TRUE	Passed	500	7,127	24	19.6	J-692
J-319	6,815	TRUE	Passed	500	6,816	24	19.9	J-692
J-320	6,848	TRUE	Passed	500	6,849	24	19.7	J-692
J-321	3,541	TRUE	Passed	500	3,542	24	23.1	J-692
J-322	3,770	TRUE	Passed	500	3,771	24	22.9	J-692
J-323	3,339	TRUE	Passed	500	3,340	24	23.3	J-692
J-324	4,610	TRUE	Passed	500	4,611	24	22.3	J-692
J-325	10,000	TRUE	Passed	500	10,001	41.7	12.2	J-692
J-326	10,000	TRUE	Passed	500	10,001	42.4	12.2	J-692
J-327	7,506	TRUE	Passed	500	7,507	24	17	J-692
J-328	10,000	TRUE	Passed	500	10,001	43.2	12.2	J-692
J-329	10,000	TRUE	Passed	500	10,001	32.8	12	J-692
J-330	1,849	TRUE	Passed	500	1,851	24	23.9	J-692
J-331	6,455	TRUE	Passed	500	6,456	24	18.7	J-692
J-332	6,763	TRUE	Passed	500	6,764	24	18.2	J-692
J-333	4,846	TRUE	Passed	500	4,847	24	20.9	J-692
J-334	8,583	TRUE	Passed	500	8,584	24	14.5	J-692
J-336	7,195	TRUE	Passed	500	7,196	24	17.2	J-692
J-338	7,990	TRUE	Passed	500	7,991	24	15.8	J-692
J-339	6,866	TRUE	Passed	500	6,867	24	17.7	J-692
J-340	10,000	TRUE	Passed	500	10,001	36.1	12.2	J-692
J-341	8,072	TRUE	Passed	500	8,073	24	17.5	J-692
J-342	4,298	TRUE	Passed	500	4,299	24	22	J-692
J-343	7,828	TRUE	Passed	500	7,829	24	17.5	J-692
J-345	5,210	TRUE	Passed	500	5,211	24		J-692

J-346	3,895	TRUE	Passed	500	3,896	24	22.4	J-692
J-347	10,000	TRUE	Passed	500	10,001	49.6	12.5	J-692
J-348	10,000	TRUE	Passed	500	10,001	51.2	12.5	J-692
J-349	10,000	TRUE	Passed	500	10,001	46.3	12.5	J-692
J-350	10,000	TRUE	Passed	500	10,001	44.4	12.5	J-692
J-351	9,249	TRUE	Passed	500	9,250	24	14	J-692
J-352	9,574	TRUE	Passed	500	9,575	24	13.3	J-692
J-353	10,000	TRUE	Passed	500	10,001	25.5	12.4	J-692
J-354	10,000	TRUE	Passed	500	10,001	34.2	13	J-692
J-355	9,491	TRUE	Passed	500	9,492	24	13.9	J-692
J-356	8,917	TRUE	Passed	500	8,918	24	14.6	J-692
J-357	10,000	TRUE	Passed	500	10,001	46.7	12.3	J-692
J-358	10,000	TRUE	Passed	500	10,001	32.1	13.1	J-692
J-359	10,000	TRUE	Passed	500	10,001	30.4	13.1	J-692
J-360	1,642	TRUE	Passed	500	1,643	24	24.1	J-692
J-361	9,045	TRUE	Passed	500	9,046	24	14.8	J-692
J-362	10,000	TRUE	Passed	500	10,001	47.6	12.6	J-692
J-363	8,565	TRUE	Passed	500	8,566	24	15.3	J-692
J-364	7,662	TRUE	Passed	500	7,663	24	16.9	J-692
J-365	8,098	TRUE	Passed	500	8,099	24	16.1	J-692
J-366	7,458	TRUE	Passed	500	7,459	24	17.2	J-692
J-367	9,209	TRUE	Passed	500	9,210	24	14	J-692
J-368	6,341	TRUE	Passed	500	6,342	24	19.4	J-692
J-369	9,316	TRUE	Passed	500	9,317	24	14.4	J-692
J-370	10,000	TRUE	Passed	500	10,001	34.6	13.1	J-692
J-371	3,960	TRUE	Passed	500	3,961	24	17	J-692
J-371	10,000	TRUE	Passed	500	10,001	33.1	13	J-692
J-372	7,437	TRUE	Passed	500	7,438	24	17.5	J-692
J-373	10,000	TRUE	Passed	500	10,001	50.1	12.5	J-692
J-374	10,000	TRUE	Passed	500	10,001	50.3	12.5	J-692
J-375	10,000	TRUE	Passed	500	10,001	47.8	12.5	J-692
J-376	8,525	TRUE	Passed	500	8,526	24	15.4	J-692
J-377	10,000	TRUE	Passed	500	10,001	54.5	12.5	J-692
J-378	10,000	TRUE	Passed	500	10,001	43.7	12.5	J-692
J-379	10,000	TRUE	Passed	500	10,001	46.9	12.5	J-692
J-380	7,126	TRUE	Passed	500	7,127	24	17.9	J-692
J-382	7,718	TRUE	Passed	500	7,719	24	17.1	J-692
J-383	7,077	TRUE	Passed	500	7,078	24	18.1	J-692
J-384	7,394	TRUE	Passed	500	7,395	24	17.6	J-692
J-385	9,948	TRUE	Passed	500	9,949	24	12.9	J-692
J-386	10,000	TRUE	Passed	500	10,001	28.9	12.9	J-692
J-387	9,071	TRUE	Passed	500	9,072	24	14.8	J-692

J-388	6,799	TRUE	Passed	500	6,800	24	18.6	J-692
J-389	5,312	TRUE	Passed	500	5,313	24	20.7	J-692
J-390	1,971	TRUE	Passed	500	1,972	24	23.9	J-692
J-391	7,193	TRUE	Passed	500	7,194	24	17.9	J-692
J-392	10,000	TRUE	Passed	500	10,001	42.4	12.5	J-692
J-393	8,004	TRUE	Passed	500	8,005	24	16.4	J-692
J-394	9,443	TRUE	Passed	500	9,444	24	13.8	J-692
J-395	9,614	TRUE	Passed	500	9,615	24	13.4	J-692
J-396	10,000	TRUE	Passed	500	10,001	43.1	12.5	J-692
J-397	6,535	TRUE	Passed	500	6,536	24	18.7	J-692
J-398	1,753	TRUE	Passed	500	1,754	24	24	J-692
J-399	10,000	TRUE	Passed	500	10,001	68.2	12.1	J-692
J-401	4,151	TRUE	Passed	500	4,152	24	15.5	J-692
J-401	10,000	TRUE	Passed	500	10,001	64.8	12.4	J-692
J-402	10,000	TRUE	Passed	500	10,001	65.5	12.4	J-692
J-403	10,000	TRUE	Passed	500	10,001	44.2	12.5	J-692
J-404	10,000	TRUE	Passed	500	10,001	29	13.2	J-692
J-405	4,749	TRUE	Passed	500	4,750	24	21.2	J-692
J-406	10,000	TRUE	Passed	500	10,001	61.1	12.3	J-692
J-407	10,000	TRUE	Passed	500	10,001	67.6	12.3	J-692
J-408	10,000	TRUE	Passed	500	10,001	47.9	12.4	J-692
J-409	3,535	TRUE	Passed	500	3,536	24	22.5	J-692
J-410	10,000	TRUE	Passed	500	10,001	54.3	12.5	J-692
J-411	3,601	TRUE	Passed	500	3,602	24	22.5	J-692
J-412	10,000	TRUE	Passed	500	10,001	59	12.5	J-692
J-413	10,000	TRUE	Passed	500	10,001	65.4	12.3	J-692
J-414	10,000	TRUE	Passed	500	10,001	61.9	11.5	J-692
J-415	2,023	TRUE	Passed	500	2,024	24	23.8	J-692
J-416	10,000	TRUE	Passed	500	10,001	61.9	12.4	J-692
J-417	10,000	TRUE	Passed	500	10,001	58.1	12.5	J-692
J-418	5,592	TRUE	Passed	500	5,594	24	20.2	J-692
J-419	3,540	TRUE	Passed	500	3,541	24	22.6	J-692
J-420	10,000	TRUE	Passed	500	10,001	37	13.3	J-692
J-421	9,820	TRUE	Passed	500	9,821	24	13.3	J-692
J-422	7,164	TRUE	Passed	500	7,165	24	18	J-692
J-423	9,728	TRUE	Passed	500	9,729	24	13.5	J-692
J-424	4,980	TRUE	Passed	500	4,981	24	21	J-692
J-425	4,257	TRUE	Passed	500	4,258	24	21.8	J-692
J-426	9,672	TRUE	Passed	500	9,673	24	13.3	J-692
J-427	8,233	TRUE	Passed	500	8,234	24	16.1	J-692
J-428	9,869	TRUE	Passed	500	9,870	24	13.1	J-692
J-429	9,836	TRUE	Passed	500	9,837	24	13.2	J-692

1.420	4.004	TDUE	D1	F00	4.002	2.4	22	1.602
J-430	4,091	TRUE TRUE	Passed	500 500	4,092	24	22	J-692
J-431	7,616		Passed		7,617	24	17.2	J-692
J-432	2,378 4,072	TRUE TRUE	Passed	500 500	2,379	24	23.6	J-692
J-433			Passed		4,073			J-692
J-434	10,000	TRUE	Passed	500	10,001	61.8	24.2	J-692
J-435	10,000	TRUE	Passed	500	10,001	63.1	24.2	J-692
J-436	10,000	TRUE	Passed	500	10,001	59.9	23.4	J-692
J-437	9,691	TRUE	Passed	500	9,692	24	21	J-692
J-439	10,000	TRUE	Passed	500	10,001	30.1	19.6	J-692
J-440	10,000	TRUE	Passed	500	10,001	25.9	19.2	J-692
J-442	8,911	TRUE	Passed	500	8,912	24	20	J-692
J-443	2,237	TRUE	Passed	500	2,238	24	24.3	J-692
J-445	10,000	TRUE	Passed	500	10,001	24.1	19	J-692
J-447	6,542	TRUE	Passed	500	6,543	24	21.7	J-692
J-448	5,185	TRUE	Passed	500	5,186	24	22.7	J-692
J-449	6,202	TRUE	Passed	500	6,204	24	17.5	J-450
J-450	4,260	TRUE	Passed	500	4,261	24	23.2	J-692
J-451	6,049	TRUE	Passed	500	6,050	24	22	J-692
J-452	5,521	TRUE	Passed	500	5,522	24	22.4	J-692
J-453	5,084	TRUE	Passed	500	5,085	24	22.7	J-692
J-454	4,904	TRUE	Passed	500	4,905	24	22.8	J-692
J-455	6,671	TRUE	Passed	500	6,672	24	21.6	J-692
J-456	6,586	TRUE	Passed	500	6,587	24	21.6	J-692
J-457	5,265	TRUE	Passed	500	5,266	24	22.5	J-692
J-458	3,040	TRUE	Passed	500	3,041	24	23.8	J-692
J-459	2,963	TRUE	Passed	500	2,964	24	23.8	J-692
J-460	4,026	TRUE	Passed	500	4,027	24	23.2	J-692
J-461	1,663	TRUE	Passed	500	1,664	24	23.4	J-463
J-462	1,457	TRUE	Passed	500	1,458	24	24.5	J-692
J-463	1,339	TRUE	Passed	500	1,340	24	24.5	J-692
J-464	5,288	TRUE	Passed	500	5,289	24	22.5	J-692
J-465	5,433	TRUE	Passed	500	5,434	24	22.4	J-692
J-466	5,735	TRUE	Passed	500	5,736	24	22.1	J-692
J-467	6,441	TRUE	Passed	500	6,442	24	21.5	J-692
J-468	6,350	TRUE	Passed	500	6,351	24	21.5	J-692
J-469	6,932	TRUE	Passed	500	6,933	24	20.9	J-692
J-409 J-470	8,351	TRUE	Passed	500	8,352	24	19	J-692
J-470 J-471	10,000	TRUE	Passed	500	10,001	39.2	16.7	J-692
J-471 J-472		TRUE		500		24		J-692
	7,137		Passed		7,138		20.5	
J-473	6,586	TRUE	Passed	500	6,587	24	21.2	J-692
J-474	6,015	TRUE	Passed	500	6,016	24	21.7	J-692
J-475	5,666	TRUE	Passed	500	5,667	24	22.1	J-692

J-476	2,364	TRUE	Passed	500	2,365	24	24.1	J-692
J-477	2,391	TRUE	Passed	500	2,392	24	24.1	J-692
J-478	5,586	TRUE	Passed	500	5,587	24	22.2	J-692
J-479	5,729	TRUE	Passed	500	5,730	24	22.2	J-692
J-480	6,089	TRUE	Passed	500	6,091	24	22	J-692
J-481	6,479	TRUE	Passed	500	6,480	24	21.7	J-692
J-482	3,329	TRUE	Passed	500	3,330	24	19.8	J-485
J-483	2,058	TRUE	Passed	500	2,059	24	22.8	J-485
J-484	1,892	TRUE	Passed	500	1,893	24	24.4	J-692
J-485	1,540	TRUE	Passed	500	1,541	24	24.5	J-692
J-486	9,698	TRUE	Passed	500	9,699	24	19.5	J-692
J-487	10,000	TRUE	Passed	500	10,001	39.8	19.8	J-692
J-489	10,000	TRUE	Passed	500	10,001	52.5	21.9	J-692
J-490	10,000	TRUE	Passed	500	10,001	41.6	21	J-692
J-491	10,000	TRUE	Passed	500	10,001	63	24.4	J-692
J-492	10,000	TRUE	Passed	500	10,001	48.6	21.3	J-692
J-493	10,000	TRUE	Passed	500	10,001	26.4	20.6	J-692
J-494	10,000	TRUE	Passed	500	10,001	27.3	20.7	J-692
J-497	10,000	TRUE	Passed	500	10,001	45.8	18.4	J-692
J-498	10,000	TRUE	Passed	500	10,001	48	20	J-692
J-499	10,000	TRUE	Passed	500	10,001	41.6	20	J-692
J-500	7,012	TRUE	Passed	500	7,013	24	22.1	J-692
J-501	10,000	TRUE	Passed	500	10,001	44.4	20.7	J-692
J-502	8,501	TRUE	Passed	500	8,503	24	20.5	J-692
J-504	7,048	TRUE	Passed	500	7,049	24	21.3	J-692
J-505	4,985	TRUE	Passed	500	4,986	24	22.8	J-692
J-507	4,696	TRUE	Passed	500	4,698	24	22.8	J-692
J-508	4,720	TRUE	Passed	500	4,721	24	22.8	J-692
J-509	5,463	TRUE	Passed	500	5,464	24	22.3	J-692
J-510	6,185	TRUE	Passed	500	6,186	24	22.5	J-692
J-511	2,404	TRUE	Passed	500	2,405	24	24.3	J-692
J-513	2,456	TRUE	Passed	500	2,457	24	24.3	J-692
J-514	2,773	TRUE	Passed	500	2,774	24	23.3	J-513
J-516	5,403	TRUE	Passed	500	5,404	24	22.5	J-692
J-517	5,784	TRUE	Passed	500	5,785	24	22	J-692
J-518	5,256	TRUE	Passed	500	5,257	24	20.2	J-549
J-518	5,781	TRUE	Passed	500	5,782	24	22	J-692
J-520	4,787	TRUE	Passed	500	4,788	24	22.3	J-692
J-521	3,966	TRUE	Passed	500	3,967	24	22.9	J-692
3 321	4,096	TRUE	Passed	500	4,097	24	21.5	J-692
L522		IDUI	rasseu	300	4,037	24	21.5	1-003
J-522 J-523	4,465	TRUE	Passed	500	4,466	24	21.9	J-603

J-525	4,798	TRUE	Passed	500	4,799	24	22.2	J-692
J-526	4,676	TRUE	Passed	500	4,677	24	22.3	J-692
J-527	4,720	TRUE	Passed	500	4,721	24	22.2	J-692
J-528	4,391	TRUE	Passed	500	4,392	24	22.5	J-692
J-529	4,609	TRUE	Passed	500	4,610	24	22.2	J-692
J-530	4,649	TRUE	Passed	500	4,650	24	22.2	J-692
J-531	2,979	TRUE	Passed	500	2,980	24	23.5	J-692
J-532	3,222	TRUE	Passed	500	3,223	24	23.3	J-692
J-533	8,443	TRUE	Passed	500	8,444	24	17.6	J-692
J-534	9,367	TRUE	Passed	500	9,368	24	16.3	J-692
J-535	8,707	TRUE	Passed	500	8,708	24	17.3	J-692
J-536	7,806	TRUE	Passed	500	7,807	24	18.5	J-692
J-537	8,972	TRUE	Passed	500	8,973	24	16.9	J-692
J-538	9,615	TRUE	Passed	500	9,616	24	15.5	J-692
J-539	10,000	TRUE	Passed	500	10,001	30.4	14.7	J-692
J-540	3,168	TRUE	Passed	500	3,169	24	23.3	J-692
J-541	3,412	TRUE	Passed	500	3,413	24	23.2	J-692
J-542	6,864	TRUE	Passed	500	6,865	24	20.2	J-692
J-543	9,308	TRUE	Passed	500	9,309	24	17.4	J-692
J-544	10,000	TRUE	Passed	500	10,001	27.5	17.1	J-692
J-545	5,712	TRUE	Passed	500	5,713	24	21.8	J-692
J-546	2,195	TRUE	Passed	500	2,196	24	24.1	J-692
J-547	5,336	TRUE	Passed	500	5,337	24	22.3	J-692
J-548	1,892	TRUE	Passed	500	1,893	24	24.3	J-692
J-549	1,757	TRUE	Passed	500	1,758	24	24.4	J-692
J-550	4,749	TRUE	Passed	500	4,750	24	22.8	J-692
J-551	3,131	TRUE	Passed	500	3,132	24	23.8	
J-552	2,519	TRUE	Passed	500	2,520	24	24.1	J-692
J-553	5,329	TRUE	Passed	500	5,330	24	22.7	J-692
J-554	2,974	TRUE	Passed	500	2,975	24	23.9	J-692
J-555	10,000	TRUE	Passed	500	10,001	32.8	17	J-692
J-556	4,247	TRUE	Passed	500	4,248	24	22.8	J-692
J-557	3,745	TRUE	Passed	500	3,746	24	23.2	J-692
J-558	1,901	TRUE	Passed	500	1,902	24	24.2	J-692
J-559	10,000	TRUE	Passed	500	10,001	36.9	17.5	J-692
J-560	10,000	TRUE	Passed	500	10,001	45.2	18.1	J-692
J-561	3,858	TRUE	Passed	500	3,859	24	23	J-692
J-562	10,000	TRUE	Passed	500	10,001	32.5	17.2	J-692
J-563	2,995	TRUE	Passed	500	2,996	24	23.4	J-692
J-564	10,000	TRUE		500	10,001	35.3	15.3	J-692
J-565	10,000	TRUE	Passed Passed	500	10,001	36.8	16.2	J-692
J-566	8,688	TRUE	Passed	500	8,689	24	17	J-692

J-567	10,000	TRUE	Passed	500	10,001	32.5	14.6	J-692
J-568	10,000	TRUE	Passed	500	10,001	31	13.1	J-692
J-569	8,504	TRUE	Passed	500	8,505	24	16	J-692
J-570	7,376	TRUE	Passed	500	7,377	24	18.2	J-692
J-571	8,856	TRUE	Passed	500	8,857	24	14.6	J-692
J-572	10,000	TRUE	Passed	500	10,001	44.5	11.2	J-692
J-573	10,000	TRUE	Passed	500	10,001	34.3	4	J-692
J-574	10,000	TRUE	Passed	500	10,001	25.7	12	J-692
J-576	10,000	TRUE	Passed	500	10,001	38	13.7	J-692
J-577	10,000	TRUE	Passed	500	10,001	36.1	14.2	J-692
-578	3,369	TRUE	Passed	500	3,370	24	23.1	J-692
-579	4,450	TRUE	Passed	500	4,451	24	22.2	J-692
-580	4,499	TRUE	Passed	500	4,500	24	22.2	J-692
-581	4,241	TRUE	Passed	500	4,242	24	22.3	J-692
-582	6,716	TRUE	Passed	500	6,717	24	19.6	J-692
-583	7,271	TRUE	Passed	500	7,272	24	18.8	J-692
-584	8,274	TRUE	Passed	500	8,275	24	17.4	J-692
-585	6,339	TRUE	Passed	500	6,340	24	19.9	J-692
-587	5,878	TRUE	Passed	500	5,879	24	20.5	J-692
-588	5,508	TRUE	Passed	500	5,509	24	20.9	J-692
-589	5,650	TRUE	Passed	500	5,651	24	20.7	J-692
-590	7,120	TRUE	Passed	500	7,121	24	18.9	J-692
-591	6,534	TRUE	Passed	500	6,535	24	19.7	J-692
-592	6,307	TRUE	Passed	500	6,308	24	20.4	J-692
-593	4,647	TRUE	Passed	500	4,648	24	22.2	J-692
-594	4,497	TRUE	Passed	500	4,498	24	20.3	J-596
-595	3,659	TRUE	Passed	500	3,660	24	21.3	J-596
-596	3,107	TRUE	Passed	500	3,108	24	23.4	J-692
-597	3,214	TRUE	Passed	500	3,215	24	23.4	J-692
-598	3,299	TRUE	Passed	500	3,300	24	23.3	J-692
-599	3,494	TRUE	Passed	500	3,495	24	23.2	J-692
-601	3,070	TRUE	Passed	500	3,071	24	23.5	J-692
-602	4,410	TRUE	Passed	500	4,411	24	22.5	J-692
-603	2,353	TRUE	Passed	500	2,354	24	23.9	J-692
-604	4,422	TRUE	Passed	500	4,423	24	22.5	J-692
-605	3,266	TRUE	Passed	500	3,267	24	23.3	J-692
-606	3,385	TRUE	Passed	500	3,386	24	23.2	J-692
-607	4,258	TRUE	Passed	500	4,259	24	22.6	J-692
-608	4,388	TRUE	Passed	500	4,389	24	22.5	J-692
-609	4,478	TRUE	Passed	500	4,479	24	22.4	J-692
-610	4,405	TRUE	Passed	500	4,406	24	22.4	J-692
-611	4,707	TRUE	Passed	500	4,708	24	22.2	J-692

J-612	4,173	TRUE	Passed	500	4,174	24	22.6	J-692
J-613	4,303	TRUE	Passed	500	4,304	24	22.5	J-692
J-614	6,540	TRUE	Passed	500	6,541	24	20.1	J-692
J-615	6,833	TRUE	Passed	500	6,834	24	19.8	J-692
J-616	6,990	TRUE	Passed	500	6,991	24	19.6	J-692
J-617	6,879	TRUE	Passed	500	6,880	24	19.1	J-692
J-620	7,866	TRUE	Passed	500	7,867	24	17.7	J-692
J-621	9,659	TRUE	Passed	500	9,660	24	14.7	J-692
J-622	9,254	TRUE	Passed	500	9,255	24	15.5	J-692
J-623	9,302	TRUE	Passed	500	9,303	24	15.1	J-692
J-625	10,000	TRUE	Passed	500	10,001	26.8	13.9	J-692
J-626	9,082	TRUE	Passed	500	9,084	24	15.9	J-692
J-627	9,034	TRUE	Passed	500	9,035	24	16	J-692
J-628	9,273	TRUE	Passed	500	9,274	24	15.7	J-692
J-629	9,738	TRUE	Passed	500	9,739	24	14.9	J-692
J-630	9,951	TRUE	Passed	500	9,952	24	14.6	J-692
J-631	10,000	TRUE	Passed	500	10,001	24.4	14.5	J-692
J-632	5,351	TRUE	Passed	500	5,352	24	20.9	J-692
J-633	3,191	TRUE	Passed	500	3,192	24	23.1	J-692
J-634	8,265	TRUE	Passed	500	8,266	24	16.9	J-692
J-636	10,000	TRUE	Passed	500	10,001	29.2	14.5	J-692
J-637	3,874	TRUE	Passed	500	3,875	24	22.6	J-692
J-638	10,000	TRUE	Passed	500	10,001	32.1	14.6	J-692
J-639	10,000	TRUE	Passed	500	10,001	37.8	14.1	J-692
J-640	10,000	TRUE	Passed	500	10,001	34.4	14.2	J-692
J-641	5,753	TRUE	Passed	500	5,754	24	20.7	J-692
J-642	4,161	TRUE	Passed	500	4,162	24	22.4	J-692
J-643	3,192	TRUE	Passed	500	3,193	24	23.3	J-692
J-644	5,478	TRUE	Passed	500	5,479	24	21.4	J-692
J-645	2,783	TRUE	Passed	500	2,784	24	23.6	J-692
J-646	7,593	TRUE	Passed	500	7,594	24	19.1	J-692
J-647	4,953	TRUE	Passed	500	4,954	24	21.8	J-692
J-648	3,044	TRUE	Passed	500	3,045	24	23.4	J-692
J-649	3,767	TRUE	Passed	500	3,768	24	22.9	J-692
J-650	1,899	TRUE		500	,	24	24.1	J-692
J-651	8,073	TRUE	Passed	500	1,900 8,074	24	18.7	J-692
	3,108	TRUE	Passed	500	3,109	24		J-692
J-652 J-655	7,542	TRUE	Passed	500		24	23.4	J-692
	-		Passed		7,543			
J-656	3,629	TRUE	Passed	500	3,630	24	22.9	J-692
J-657	10,000	TRUE	Passed	500	10,001	35.8	13.4	J-692
J-659	10,000	TRUE	Passed	500	10,001	39.1	13.5	J-692
J-659	10,000	TRUE	Passed	500	10,001	40.8	13.2	J-692

J-660	10,000	TRUE	Passed	500	10,001	42	13.2	J-692
J-661	833	TRUE	Passed	500	838	24	24.6	J-692
J-662	10,000	TRUE	Passed	500	10,001	54.9	12.9	J-692
J-663	10,000	TRUE	Passed	500	10,001	46.1	13.2	J-692
J-664	10,000	TRUE	Passed	500	10,001	34.4	13.8	J-692
J-665	10,000	TRUE	Passed	500	10,001	36.6	14	J-692
J-666	10,000	TRUE	Passed	500	10,001	41.5	19.6	J-692
J-667	10,000	TRUE	Passed	500	10,001	26.2	19.4	J-692
J-668	10,000	TRUE	Passed	500	10,001	47.9	21.1	J-692
J-669	4,485	TRUE	Passed	500	4,486	24	22.5	J-692
J-670	5,090	TRUE	Passed	500	5,091	24	22	J-692
J-673	10,000	TRUE	Passed	500	10,001	42.4	13.3	J-692
J-674	4,297	TRUE	Passed	500	4,298	24	21.9	J-692
J-675	4,014	TRUE	Passed	500	4,015	24	22.1	J-692
J-676	5,666	TRUE	Passed	500	5,667	24	20.1	J-692
J-677	2,529	TRUE	Passed	500	2,530	24	23.3	J-678
J-678	1,890	TRUE	Passed	500	1,891	24	24	J-692
J-680	6,399	TRUE	Passed	500	6,399	24	9.3	J-692
J-682	5,212	TRUE	Passed	500	5,212	24	12.9	J-692
J-685	2,335	TRUE	Passed	500	2,360	24	20.1	J-692
J-686	6,419	TRUE	Passed	500	6,469	24	2.5	J-692
J-687	7,697	TRUE	Passed	500	7,722	30	0	J-692
J-689	9,136	TRUE	Passed	500	9,161	24	2.7	J-692
J-690	8,133	TRUE	Passed	500	8,158	36.7	0	J-692
J-691	7,165	TRUE	Passed	500	7,190	31.4	0	J-692
J-692	708	TRUE	Passed	500	708	24	25.9	J-695
J-693	6,202	TRUE	Passed	500	6,227	24	10.4	J-692
J-694	6,225	TRUE	Passed	500	6,250	24	4.6	J-692
J-695	1,361	TRUE	Passed	500	1,386	24	23	J-692
J-696	5,499	TRUE	Passed	500	5,504	24	15.9	J-692
J-697	6,908	TRUE	Passed	500	6,908	24	4.1	J-692
J-698	9,546	TRUE	Passed	500	9,571	24	2.6	J-692
J-699	10,000	TRUE	Passed	500	10,025	44.2	0.2	J-692
J-700	8,631	TRUE	Passed	500	8,656	24	2.4	J-692
J-702	5,760	TRUE	Passed	500	5,760	24	7.9	J-692
J-714	7,727	TRUE	Passed	500	7,727	24	20.7	J-692
J-715	4,847	TRUE	Passed	500	4,847	24	21.7	J-692
J-716	6,694	TRUE	Passed	500	6,694	24	18.1	J-692
J-717	6,895	TRUE	Passed	500	6,895	24	17.5	J-692
J-718	6,814	TRUE	Passed	500	6,814	24	17.3	J-692
J-719	10,000	TRUE	Passed	500	10,000	30.1	19	J-692
J-720	7,350	TRUE	Passed	500	7,350	24	19.6	J-692

J-721	9,066	TRUE	Passed	500	9,066	24	10.7	J-692
J-722	7,049	TRUE	Passed	500	7,049	24	18.5	J-692
J-723	9,570	TRUE	Passed	500	9,570	24	15.2	J-692
J-724	9,354	TRUE	Passed	500	9,354	24	18	J-692
J-725	9,798	TRUE	Passed	500	9,798	24	18.6	J-692
J-726	8,788	TRUE	Passed	500	8,788	24	19.9	J-692
J-727	10,000	TRUE	Passed	500	10,000	35.4	21.1	J-692
J-729	10,000	TRUE	Passed	500	10,000	35	19.3	J-692
J-731	6,086	TRUE	Passed	500	6,087	24	20.9	J-692
J-904	7,312	TRUE	Passed	500	7,313	24	17	J-692
J-1031	10,000	TRUE	Passed	500	10,001	25.2	12.8	J-692
J-1082	10,000	TRUE	Passed	500	10,001	60.9	12.8	J-692
J-1184	10,000	TRUE	Passed	500	10,001	32.6	20.7	J-692
J-1201	8,763	TRUE	Passed	500	8,764	24	19.9	J-692
J-1296	10,000	TRUE	Passed	500	10,001	43.7	20.3	J-692
J-1334	7,779	TRUE	Passed	500	7,780	24	20.7	J-692
J-1340	4,298	TRUE	Passed	500	4,299	24	23.1	J-692
J-1549	3,115	TRUE	Passed	500	3,116	24	23.4	J-692
J-1642	9,330	TRUE	Passed	500	9,331	24	15.2	J-692
J-1704	10,000	TRUE	Passed	500	10,001	43.9	13.4	J-692
J-1780	8,058	TRUE	Passed	500	8,058	24	19.8	J-692
J-1806	3,807	TRUE	Passed	500	3,807	24	18	J-692

APPENDIX L 2003 Water Study

EVALUATION OFWATER SUPPLY SYSTEM

Prepared For The

June 2003 McM. No. K0004-920857 AJV:smdt

EVALUATION OFWATER SUPPLY SYSTEM

Prepared For The

Prepared By

McMahon Associates, Inc.

Neenah, Wisconsin June 2003 McM. No. K0004-920857

Table Of Contents

 DESCRIPTION OF EXISTING WATER SUPPLY & STORAGE SY 	YSTEMS
---	--------

- A. General
- B. Water Supply & Treatment Systems
 - 1. Well #4
 - 2. Well #5
 - 3. Well #10
 - 4. Main Treatment Plant
 - 5. Well #8
 - 6. Well #9
- C. Main Plant Ground Storage Water Reservoirs
 - 1. Rectangular 295,000-Gallon Reservoir
 - 2. Round 284,000-Gallon Reservoir

II. WATER SUPPLY CAPACITY ANALYSIS

- A. Water Demand History
- B. Projected Future Demand
- C. Water System Capacity Analysis
 - 1. Description
 - 2. Determination Of Reliable Capacity Of Existing System
 - Determine Needs For Additional Supply
 - 4. Options To Provide Additional Supply
 - a. Option #1 Expand Existing Supply System
 - b. Option #2 Construction Of Additional Wells
 - c. Conclusion

III. DRINKING WATER QUALITY STANDARDS COMPLIANCE

- A. Drinking Water Quality Standards
- B. Kaukauna Drinking Water Quality
 - Primary Drinking Water Standards
 - a. Radionuclides
 - b. Review Of Alternatives To Address The Radium Issue
 - c. Detailed Evaluation Of Treatment Alternatives To Address The Radium Issue
 - Secondary Drinking Water Standards
 - Air Entrainment

IV. SUMMARY

- A. Water Supply
- B. Water Quality Compliance
- C. Entrained Air Issue
- D. Implementation Schedule

From:

Don Voogt

To:

kobiala@wppisys.org

Date:

12/18/2006 4:36:44 PM

Subject:

air binding

Kevin:

I looked up the inspection report we wrote on your round reservoir back in 2003. We had a lot of pictures from inside the tank, and one of the suction line to the high lift pumps, but we did not take a picture of the line to/from the iron filter. The suction line to the high I ift pumps did have a downturned elbowin the reservoir. If the line to/from the iron filter was built the same way, it would also have a downturned elbow. If that is the case, or even if the line from the reservoir was flat, then I think your theory of an air pocket at the top of that line is very feasible.

So, if there was an air pocket that had formed in the crown of the buried pi pe, it would not reach your backwash pump until a quantity of water had alread y been pu mped. That would expa in why you see the vac uum pump get the air out of the pump inlet, then some flow happens, then the large air pocket from the pipereach es the pump and it loses its prime.

I know you are frustrated with the system as it currently operates. The theory of what was installed was good. How ever, everything happens too fast. The vacuum pumpshuts off before the second pocket of air gets to it. So if there was some way to make the vacuum system work in such a way that it would evacuate or bleed off any air that gets up to the pump, then you might have something. As it is right now the probes that control the vacuum pump probably get wet, and there is always erough water in that area that it does not come back on even though another air pocket comes along. Can you verify in the PLC program that WOULD, IN FACT come on at that time if another pocket of air came along? Or is the PLC set to only have one run cycle when the pump is called for, and not come on again? In other words, is the vacuum pump set up to run whenever the backwash pump is called for provided the probers are dry?

Let me know what you find out, and we'll keep thinking about this problem.

Don Voogt

McMahon Associates, Inc. dvoogt@mcmgrp.com ph 920-751-4200

Table Of Contents (continued)

List Of Tables

Table #1	Water System Storage Facilities
Table #2	Water Supply Systems Components
Table #3	Water Treatment Facilities
Table #4	Air Entrainment Observations
Table #5	Summary of Radionuclides Analysis Of Water Supply
Table #6	Historical Water System Demand
Table #7	Kaukauna Water Supply System Capacity Analysis
Table #8	Kaukauna Water Supply System Capacity Analysis Under Option #1
	- Upgrade Existing System
Table #9	Drinking Water Quality Standards
Table #10	Inorganic Chemical Analysis
Table #11	Water Quality Ion Exchange Treatment
Table #12	Summary Of Capital Cost for Ion Exchange Softening Of 50% Of Supply
Table #13	Projected Operation & Maintenance Costs For Water Treatment Alternatives
Table #14	Summary Of Capital Costs For Reverse Osmosis Treatment Of 50% Supply
Table #15	Summary Of Capital Costs For Use Of HMO's
Table #16	Summary Of Capital Costs For Radium Selective Media (WRT)
Table #17	Summary Of Capital Costs For Connection To Appleton
Table #18	Summary & Comparison Of Water Treatment Alternatives - Water Revenue Impact Analysis
Table #19	Implementation Schedule - Capital Improvement Plan - Water Supply System

<u>List Of Figures</u>

Figure #1	vvater System Layout
Figure #2	Water System Schematic
Figure #3	Schematic Of Water Supply, Storage, Pumpage
	& Treatment Systems At Main Plant
Figure #4	Projected Water Demands
Figure #5	Process Flow Schematic For Ion Exchange Treatment
Figure #6	Process Flow Schematic For Nanofiltration Treatment
Figure #7	Process Flow Schematic For Well #8

<u>List Of Appendices</u>

Appendix A	Water Distribution System Master Plan
Appendix B	2002 Wisconsin Department Of Natural Resources Sanitary Survey
Appendix C	Well Logs
Appendix D	Main Plant Ground Storage Water Reservoir Observations - April 16, 2003
Appendix E	Projected Flow Information
Appendix F	Groundwater Flow Model Simulations By USGS
Appendix G	Wisconsin DNR Application Of DHFS Radionuclide Wastewater Disposal Criteria
Appendix H	WRT Proposal For Radium Selective Removal Process
Appendix I	Report On Dissolved Gas Investigation In The Municipal Wells
	Of Kaukauna, Wisconsin; May 1, 2003
Appendix J	Letter From USGS; May 14, 2003
Appendix K	Proposal From Membrane Liqui-Cel Membrane Contractors
	•

EVALUATION OF WATER SUPPLY SYSTEM

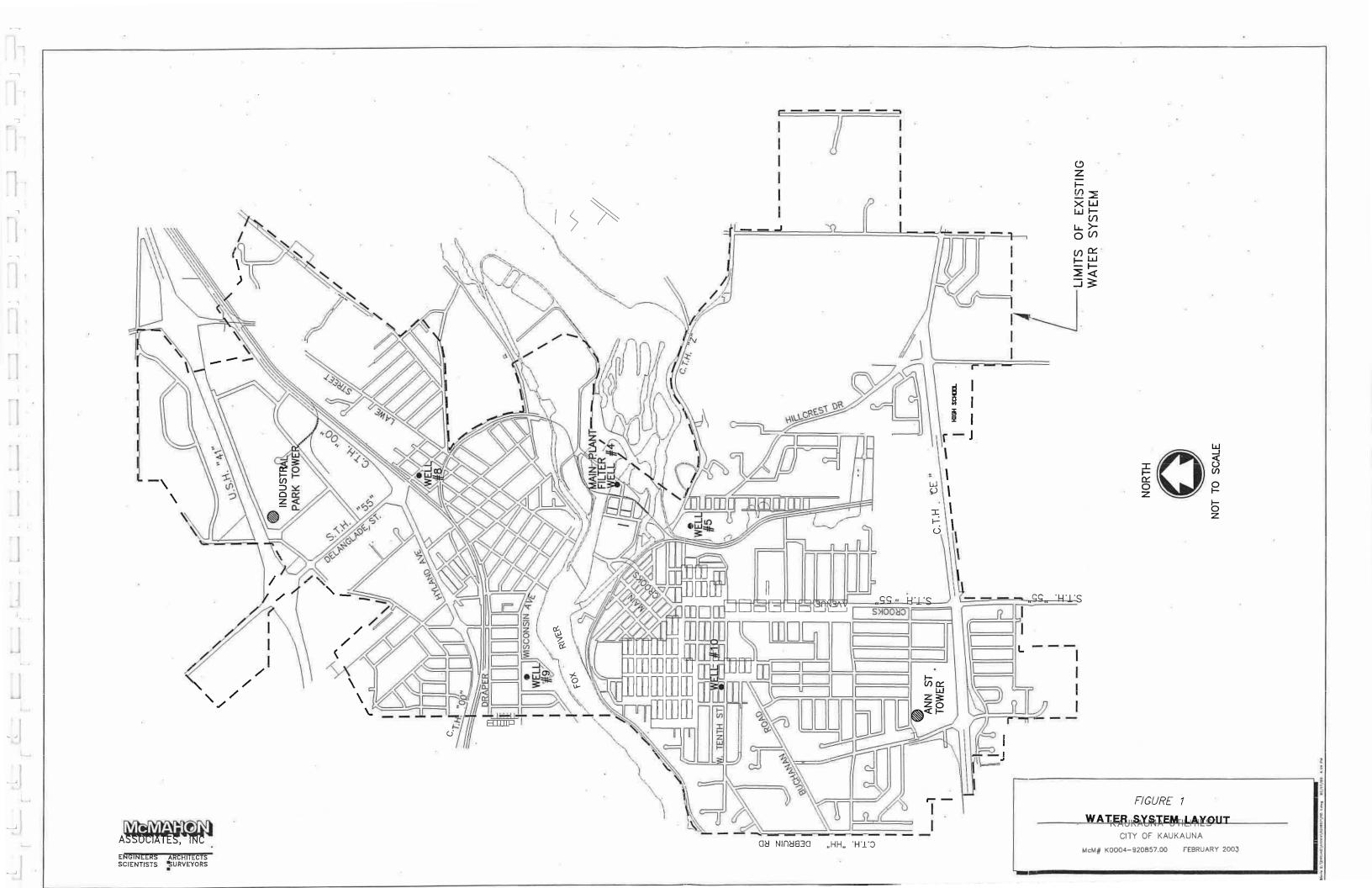
Prepared For The

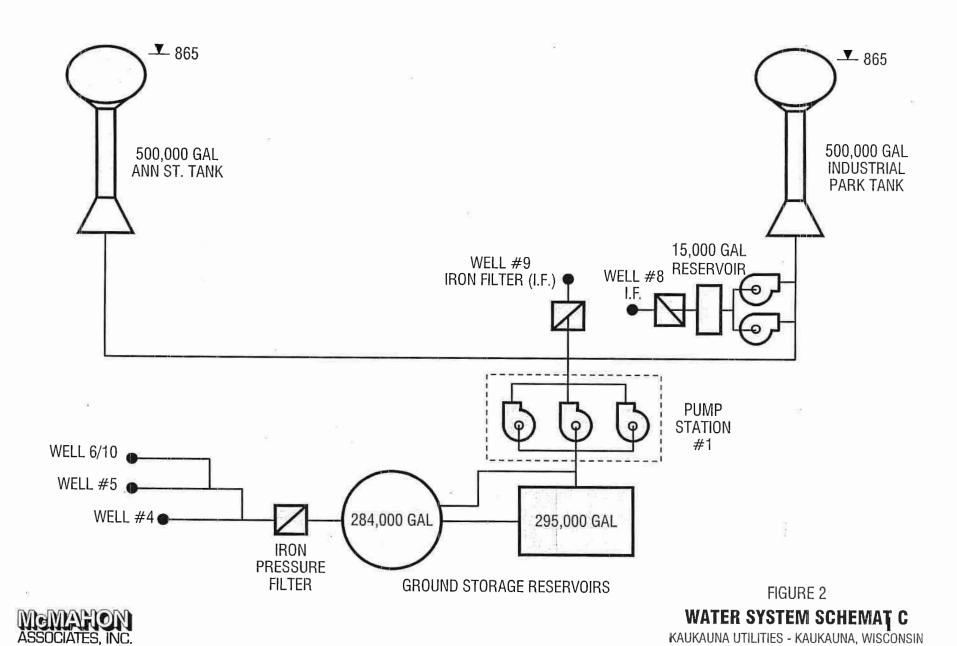
Prepared By

McMahon Associates, Inc.

Neenah, Wisconsin

June 2003 McM. No. K0004-920857


I. DESCRIPTION OF EXISTING WATER SUPPLY & TREATMENT FACILITIES


A. General

The Kaukauna Utilities currently have five water supply wells. The raw water supply from Well #4, Well #5 and Well #10 is pumped to the Main Treatment Plant for removal of iron. Well #9 is also treated for iron through an iron filter at the Well #9 pumphouse. Well #8 is currently not in operation. This facility, which consists of an iron filter and small reservoir, is currently being used for pilot testing of different radium reduction treatment options. The general location of the system facilities is highlighted on Figure #1. A schematic of the Kaukauna water system is provided on Figure #2.

There are two ground storage reservoirs at the Main Treatment Plant, having a total capacity of 579,000-gallons. The system also includes two 500,000-gallon elevated storage tanks, for a total elevated storage capacity of 1,000,000-gallons. The Kaukauna water system is currently operated as a single pressure zone. A summary of the system storage facilities is provided on Table #1.

The distribution system consists of approximately 80-miles of water main, ranging from 4-inches to 16-inches in diameter. An analysis of the distribution system was conducted in April 1997. A Master Water Distribution System Plan was developed at that time. This Plan illustrates how water service can be extended to future development areas. Therefore, further evaluation of the distribution system is not needed at this time. A copy of the Master Plan is provided in Appendix A.

McM #K0004-920857.00 2/3/03
ID: PPT\2003\MCM WIS\KAUKAUNA WATER SYS.PPT AJV:jmk

ENGINEERS M ARCHITECTS PROJ. MGRS. M SURVEYORS

رج نہ ہے ہے۔ جہ جہ جہ جہ جہ جہ جارہے کے جارہے کے بار کے سارے کے بار

Table #1

WATER SYSTEM STORAGE FACILITIES
KAUKAUNA UTILITIES
Evaluation Of Water Supply System

Name Or Number	#1	#2	Ann Street	- Jointon Jour
Location	At Main 7	At Main Treatment Plant		
Туре	Reservoir	Reservoir	Elevated Tank - Sheroid	Elevated Tank - Fluted Pedestal
Year Constructed	1901	1940	1999	1974
Construction Material	Concrete	Concrete	Steel	Steel
Capacity	284,000-gallons	295,000-gallons	500,000-gallons	500,000-gallons
Last Painted			•	1996
Height Of Water Level			141.5-feet	146-feet
Overflow Elevation			865-feet	865-feet

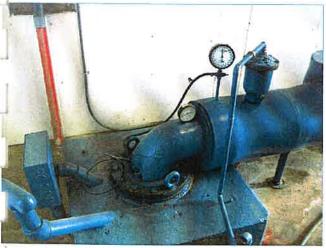
B. Water Supply & Treatment Systems

The water supply for the City of Kaukauna is obtained from deep wells, which penetrate and are open to the Sinnippee dolomite, the St. Peter sandstones, the Prairie du Chien group and the Cambrian sandstones. Engineers from McMahon Associates, Inc. conducted a site visit of each well and pumphouse on December 12, 2002. The visits were conducted to determine the physical condition and to provide an engineering assessment of the mechanical, treatment, and electrical and building systems of the facilities. A description of each well and pumphouse, and the physical condition of each, is provided in the following paragraphs. Summary tables of the system facilities are provided on Tables #2 and #3. A copy of the 2002 Wisconsin Department of Natural Resources (DNR) Sanitary Survey is provided in Appendix B.

Well logs are provided in Appendix C. In an attempt to improve the quality of the water supply, some of the wells have been filled to shallower depths to block off the portions of the aquifer that produce water with a high iron content.

1. Well #4

Well #4 is located at the Main Treatment Plant site on Schultheis Street, between Elm and Oak Streets. The well was originally constructed in 1921. The well consists of a 15½-inch casing to a depth of 34-feet and a 12-inch casing


extended to a depth of 120-eet. A 12-inch open hole was drilled from a depth of 120-

Kaukauna Well #4 Piping

to a depth of 726-feet. A 10-inch liner was placed from the surface to a depth of 120-feet. The annular space between the 10-inch liner and the larger diameter casings was sealed with grout to a depth of 120-feet.

Well #4 is located in a building connected to Pump Station #1. Pump Station #1 is constructed of concrete block and wood. The building also houses the Water Department operations shop. The existing well pump was installed in 1994 and consists of a Simmons submersible pump. The design capacity of the well pump is 700 gpm. Well #4 is currently operated at 560 gpm. Auxiliary power is not provided for Well #4. Raw

Well #4 Wellhead

Table #2

WATER SUPPLY SYSTEM COMPONENTS KAUKAUNA UTILITIES Evaluation Of Water Supply System

Component		We	Well & Pumphouse Facilities	ties	
Well	Well #4	Well #5	Well #10	Well #8	Well #9
Location	Elm Street	Dodge @ Island Street	Kenneth Avenue @ 10 th Street.	DeLanglade Street	Riverside Park
Year Drilled	1921	1935	1945	1959	1974
Well Depth	726	524	099	200	620
Casing Diameter	151/2 -inches	16-inch	10-inch	16-inch	18-inch
Casing Depth	0-34-feet	121-feet	159-feet	151-feet	230
Casing Diameter	10-inch				
Casing Depth	0-120-feet				
Open Hole Diameter	12-inch	15-inch, 121-350-feet	10-inch	15-inch, 151-600-feet	17¼-inch
Open Hole Diameter		12-inch, 350-524-feet		14-inch, 600-700-feet	
A 44 15 45 T. 100 A					
Adulter Lype	Sandstone/Limestone	St. Peter Sandstone	Sandstone/Dolomite	Sandstone/Dolomite	Sandstone/Limestone
Original Static Water Level	19-feet (1957)	36-feet (1957)	84-feet (1957)	75-feet (1957)	72-feet (19.77)
Current Static Water Level	116-feet	106-feet	184-feet	163-feet	146-feet
Pumping Level	220-feet @ 594 gpm	146-feet @ 210 gpm	244-feet @ 538 gpm	236-feet @ 440 gpm	225-feet @ 1070 gpm
Specific Capacity	5.7 gpm/foot	5.3 gpm/foot	9.0 gpm/foot	6.0 gpm/foot	13.54 gpm/foot
	Well discharges to	Well discharges to	Well originally	Well discharges to	1974 - Drilled to 806
	iron filter at the Main	iron filter at the Main	constructed as	iron filter at Well #8	1989 - Filled to 620
	Treatment Plant	Treatment Plant	Well #6 in 1945. Well	1959 - Drilled to 602	
		1935-Drilled to 570	discharges to iron	~1995 - Drilled to 800	
		1942-Drilled to 733.5	Tilter at the Main	2000 - Filled to 700	
		1947-Filled to 524	rearment Plant.		
			1945 - Drilled to 568		
			1995 - Drilled to 841		
			2000 - Filled to 660		

Table #2 (continued) WATER SUPPLY SYSTEM COMPONENTS

Well Pumping Equipment	Well #4	Well #5	Well #10	Well #8	Well #9
Year Installed	1994	1953	1995	1996	
Operating Rate	560 gpm	200 gpm	540 gpm	500 gpm	960 gpm
Design Capacity	700 gpm	216 gpm	650 gpm	mdg 009	1,160 gpm
Manufacturer	Simmons	Layne Northwest	Jacuzzi	Simmons	Layne Northwest
Туре	Submersible	Vertical Turbine	Submersible	Submersible	Vertical Turbine
Discharge Pressure	12 psi	56 psi	Not Operational	80 psi	78 psi
Pump Setting Depth	302-feet	190-feet	411-feet	290-feet	380-feet
(top of bowls)					
Latest Pump Inspection Date	1994	1995	1996	1997	2002

Well Pump Power Equipment	Well #4	Well #5	Well #8	Well #8	Well #10
Year Installed	1994	1979	1997	1996	1989
Manufacturer	Franklin	U.S.	Hitachi	U.S.	Hitachi
Type	Electric	Electric	Electric	Electric	Electric
Rated Horsepower	09	30	100	100	100
Stand-By Equipment	No	No	No	Yes	No

Booster Pumping Equipment	#1 Booster	#2 Booster	#3 Booster	#6 Booster	#7 Booster
Location	Pump Station #1 Main Filter Plant	Pump Station #1 Main Filter Plant	Pump Station #1 Main Filter Plant	Pump Station #2 Well #8 Reservoir	Pump Station #2 Well #8 Reservoir
Pump Manufacturer	Layne	Layne	Layne Northwest	Goulds	Peerless
Year Installed	1998	1998	1967	1991	1999
Type	Vertical Turbine	Vertical Turbine	Vertical Turbine	Centrifugal	Centrifugal
Actual Capacity, gpm	1,200 gpm	1,200 gpm	2,000	200	550
Pump Motor Manufacturer	U.S. Electrical	U.S. Electrical	Continental	Marathon	U.S. Electrical
Year Installed	1998	1998	1967	1985	1985
Type	Electric		Engine - Stand-By	Electric	Electric
Horsepower	100	100	150	20	20

Table #3

WATER TREATMENT FACILITIES
KAUKAUNA UTILITIES
Evaluation Of Water Supply System

Location	Elm Street	Well #8	Well #9
Filter Type	Pressure, Iron Removal (Main Plant)	Pressure, Iron Removal	Pressure, Iron Removal
Manufacturer	General Filter Company	General Filter Company	Tonka Horizontal
Number Of Tanks/Cells	1 Tank / 4 Cells	1 Tank / 4 Cells	2 Tanks / 2 Cells Each
Dimensions	10-feet Dia. x 50-feet long (Filter Area = 473 sq.ft.)	10-feet Dia. x 24-feet long (Filter Area = 438 sq.ft.)	8-feet Dia. x 30-feet long (Filter Area = 452 sq.ft.)
Filtration Rate	2.78 gpm/sq.ft.	2.28 gpm/sq.ft.	2.54 gpm/sq.ft.
Capacity	1,313 gpm	500 gpm	1,220 gpm
Backwash Rate		15 gpm/sq.ft.	12 gpm/sq.ft,
Backwash Duration	10-minutes	10-minutes	10-minutes/cell
Backwash Frequency	Weekly	2-Times/Week	2-Times/Week
Raw Water Iron Content	0.4 mg/l	0.5 mg/l	0.56 mg/l
Finished Water Iron Content	0.1 mg/l	0.1 mg/l	0.1 mg/l
Finished Water Discharge	2 Ground Level Reservoirs	Distribution System	Distribution System

Chemical Addition At All Wells: Permanganate, Sodium Silicate, Sodium Hypochlorite.

water is pumped through the iron pressure filter at the Main Filter Plant and discharged to the ground storage reservoirs. Well #4, Well #5 and Well #10 are always operated to run at the same time.

In January 2003, observations were conducted at each well to identify air entrainment conditions. A summary of the results are provided on Table #4. The results of the two observations are as follows:

Pumping Rate: 630 gpm / Well Started Operation - 9:00 a.m.

Observation #1 - 10:00 a.m.

- a. Water sample clear at time zero, then air bubbles start to form.
- b. Sample cleared of air in less than a minute.

Observation #2 - 1:10 p.m.

- Water sample clear at time zero, then air bubbles start to form.
- b. Sample cleared of air in less than 2-minutes.

The wellhead, discharge piping, valves, electrical system and building facility all appear to be in good functional condition. With routine maintenance and service. Well #4 should continue to provide reliable water production for the City.

2. Well #5

Well #5 is located on Dodge Street, south of the intersection of Dodge and Island streets. The well was originally constructed in 1935 to a depth of 570feet. In 1942, the depth of the well was extended to 733.5-feet and was then

backfilled to a depth of 524-feet in 1947 to Kaukauna Well #5 improve water quality. The well consists of a 16-inch grouted casing extended to a depth of 121-feet. A 15-inch open hole extends from the bottom of the casing to a depth of 350-feet and a 12-inch open hole extends from 350-feet to a total depth of 524 feet.

The Well #5 pumphouse was constructed in 1975. The existing block building is in good condition. The well pumping equipment consists of a Layne vertical turbine pump with a design capacity of 216 gpm. The pumping equipment

Table #4

AIR ENTRAINMENT OBSERVATIONS

KAUKAUNA UTILITIES Evaluation Of Water Supply System

	Pumping	Well Started	Ħ.	Sample	Time To	Air In	Sample	
Well	Rate	Operation		Time	Clear	Sample	Time	
#4	630 gpm	9:00 a.m.	#1	10:00 a.m.	∢	#1	1:10 p.m.	В
#5	210 gpm	9:00 a.m.		10:15 a.m.	В	#3	1:25 p.m.	
#10	540 gpm	9:00 a.m.		10:30 a.m.	O	#3	1:30 p.m.	
MFP - Influent	1,380 gpm	9:00 a.m.		10:05 a.m.	Α	#4	1:20 p.m.	
MFP - Effluent	1,380 gpm	9:00 a.m.		10:10 a.m.	A	#4	1:25 p.m.	
6#	1,100 gpm	10:45 a.m.		11:00 a.m.	М	#1	1:45 p.m.	
#9 F.P. Effluent	1,100 gpm	10:45 a.m.		N/A		#1	1:50 p.m.	
Distribution System			#2	10:00 a.m.	ပ	#1	1:30 p.m.	
8#	300 gpm	9:00 a.m.	#1	9:30 a.m.	В		A/N	
#8 Reservoir Discharge	300 gpm	9:00 a.m.	#4	9:45 a.m.	В		N/A	

Air In Sample Code Time To Clear

A < 1-Minute B < 2-Minutes C < 3-Minutes

#1 Clear at time zero, and then air bubbles start to form.
#2 Cloudy with small bubbles, turns milky white within 15-seconds.
#3 Very cloudy, milky white with air and gets cloudier.
#4 Clear, very little formation of air bubbles.

MFP = Main Filter Plant

FP = Filter Plant

was last inspected in 1995. The pump is currently operated at a rate of 200 gpm. Auxiliary power is not provided for Well #5. Sodium hypochlorite is added to the raw water for disinfection, prior to filtration at the Main Treatment

Plant. Raw water is conveyed from Well #5 to the Main Treatment Plant through 2,100-feet of 8-inch transmission main.

The results of observations conducted in January 2003 to document air entrainment are summarized on Table #4. The observations made at Well #5 were as follows:

Well 5 Pumphouse

<u>Pumping Rate:</u>

210 gpm / Well Started Operation - 9:00 a.m.

Observation #1 - 10:15 a.m.

- a. Water sample very cloudy, milky white with air, and gets cloudier.
- b. Sample cleared of air in less than 2-minutes.

Observation #2 - 1:25 p.m.

- a. Water sample very cloudy, milky white with air, and gets cloudier.
- b. Sample cleared of air in less than 2-minutes.

The entire Well #5 facility appears to be in excellent condition. The building is well maintained, and the well motor, piping, valves, meters and electrical system are in good working order.

3. Well #10

Well #10 was originally constructed as Well #6 in 1945. The well was originally constructed with a 10-inch casing grouted to a depth of 159-feet with a 10-inch open hole drilled to a depth of 568-feet. In 1995, the 10-inch open hole was extended to 841-feet and the well was renamed as Well #10. In 2000, the well was filled to a depth of 660-feet in an attempt to reduce the radium and gross alpha levels. This was somewhat effective as the radium levels were reduced. A summary of radium analysis results is provided on Table #5. This well is located on Tenth Street near Kenneth Street. There is a gas station with

Well #10 Discharge Piping

Table #5

SUMMARY OF RADIONUCLIDES ANALYSIS OF WATER SUPPLY

KAUKAUNA UTILITIES
Evaluation Of Water Suppy System

	Primary			Well #4		11			Well 5				Well	#10		1	Main Filt	ter Plant	
	Standard	12/83	8/7/2000	2/5/2002	3/21/2002	2/27/2003	12/83	5/5/1987	5/5/1987 After	5/5/1987 After Filters	2/27/2003	5/5/1987	1/22/1999	4/10/2000	2/27/2003	1/22/1999 AfterFilters	A		2/27/2003 After Filters
Item	pCi/l	Raw	Raw	Raw	Raw	Raw	Raw	Raw	Filters	300 gpm	Raw	Raw	Raw	Raw	Raw	Prior Resv			Prior Resv
Gross Alpha, pCi/l	15	16.7	26.0		23	16	14.1	12.2	17.1	15.2	15	12.6	38	27.4	17	39	16	18	10
Remainder of Alpha, pCi/l			23.8		20.9	14.2					12.8			20.5	15.6	31.5		16.1	8.4
Uranium, Total, pCi/l			2.2		2.1	1.8					2.2			6.9	1.4	7.5		1.9	V
Gross Beta, pCi/I			16.3		11.5	11					9.4			13.4	9.2		9:3	1	
Radium-226, pCi/l			3.0	3.2	3.1	3.3					3.1		3.2	3-1	3.4	3.1	3	3.2	2.2
Radiu-228, pĈi/l			5.6	4.1	5.6	4.2					3.9		5.6	3.8	24	4.4	2.4	3.6	
Radium-226/228	5	11.3	8.6	7.3	8.7	7.5	8.6	4.9	4.9	5	7.0	5.6	8.8			7.5	5.4	6.8	
Well Depth		Deep 726		Deep 726			Shallow 524	Shallow 524	Shallow 524	Shallow 524						7.0	0.1		7.0

	Primary						Wel	l #8					
	Standard	12/83	5/5/1987	5/5/1987	5/5/1987	4/15/1999	4/10/2000	2/5/2002	3/21/2002	9/30/2002	10/8/2002	3/3/2003	3/3/2003
			能力性不安	After Filters	After Filters	AMERICA.			SELECTION	After Filters	After Filters	M. S. S. S. S.	After Filters
Item	pCi/l	Raw	Raw		400 gpm	Raw	Raw	Raw	Raw			Raw	
Gross Alpha, pCi/l	15	28.4	22.3	17.2	19.6	30	36		26.1	12	12	26	6
Remainder of Alpha, pCi/l									21.2			24.6	4.6
Uranium, Total, pCi/l									4.9			1.4	1.4
Gross Beta, pO/I						14.5	15		14.8	5.5	9.3	13	4.9
Radium-226, pCi/l	di G					2.9	4.1	3.6	3.7	2.4	1.8	4.1	0.15
Radiu-228, pCi/l						4.6	3	2.1	2.9	1.7	1.3	2.5	-0.1
Radium-226/228	5	13.7	8.5	6.5	7.7	7.5	7.1	5.7	6.6	4.1	3.1	6.6	
Well Depth	ŭ f	Shallow 590	Shallow 590	Shallow 590	Shallow 590								

	Primary					Well #9					
	Standard	12/83	5/5/1987	4/20/1988	4/28/1988	1/22/1999	2/5/2002	3/21/2002	10/8/2002	2/27/2003	2/27/2003
Item	pCi/l	Raw	Raw	Raw	Raw	Finished	Raw	Raw	Finished	Raw	Finished
Gross Alpha, pCi/l	15	15.6	20	14.4	14	14		17.4	13	15	14
Remainder of Alpha, pCi/l								15.2		13.7	12.3
Uranium, Total, pCi/l								2.2		1.3	1.7
Gross Beta, pCi/I								8	6.6	7.7	6.2
Radium-226, pCi/I						1.5	2.8	2.46	1.8	2.5	1.6
Radium-228 , pCi/l						1.5	1.6	2.2	1.8	2.3	0.7
Radium-226/228	5	7.7	6.2	5.1	3	3	4.4	4.66	3.6	4.8	2.3
Well Depth		Deep 795	Deep 795	Shallow 620	Shallow 620						

	Primary				Distrib	ution System at	Utility Offic	e		
	Standarcı	6/28/1999	8/17/1999	11 /16/1999	5/11/2000	8/7/2000	10/1 0/2000	3/5/2001	6/45/01	12/1 0/2001
Item	pCi/l									
Gross Alpha, pCi/l	15	29	29	27	21	20	64	17	16.9	19
Remainder of Alpha, pCi/l			26.3	24.5		17.7				17.0
U ranium, Total, po/l			2.7	2.5		2.3				2
Gross Beta, pCi/l		14	16	14.9	13.2	13	29.1	11	11.8	12
Rad ium-226, pCi/l		2.4	3.1	3.1	1.72	1.96	8.2	1.88	2	2.46
Radium-228, pCi/l		3.3	3.3	3.8	2.6	2.7	12	2.8	2.9	2.8
Radium-226/228	5	5.7	6.4	6.9	4.32	4.66	20.2	4.68	4.9	5.26

underground fuel tanks immediately adjacent to this well. Observations were also conducted at Well #10 in January 2003 to record the conditions of entrainment air. The observations made are as follows:

Pumping Rate: 540 gpm / Well Started Operation - 9:00 a.m.

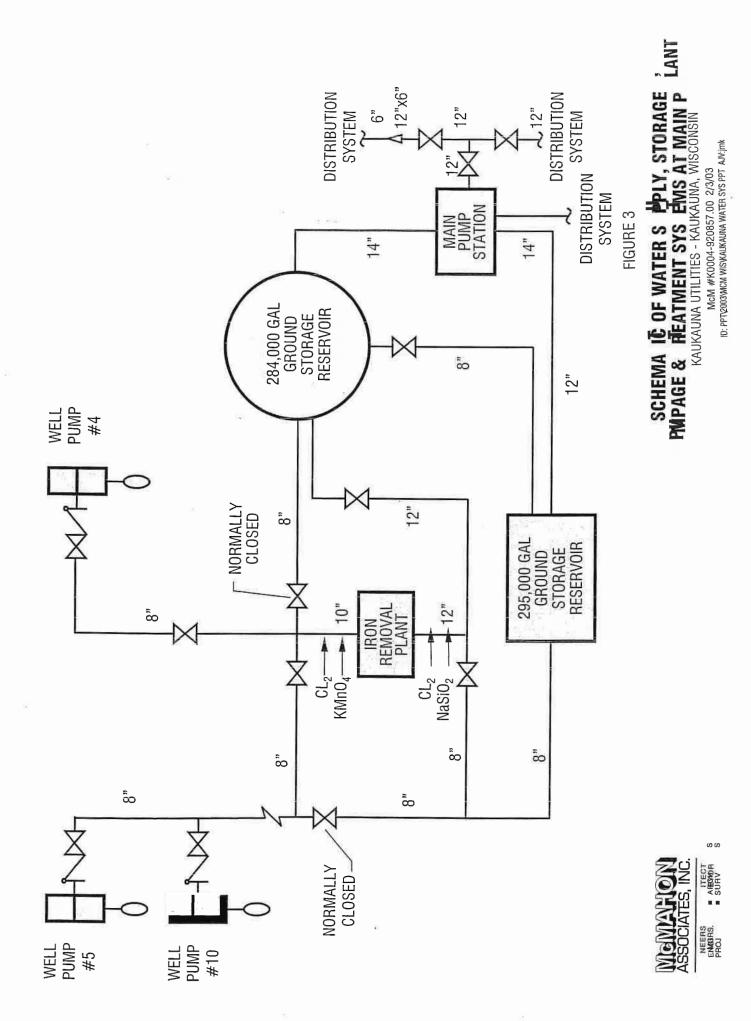
Observation #1 - 10:30 a.m.

- a. Water sample initially cloudy with small bubbles, turns milky white within 15-seconds.
- b. Sample cleared of air in less than 3-minutes.

Observation #2 - 1:30 p.m.

- a. Water sample very cloudy, milky white with air, and gets cloudier.
- b. Sample cleared of air in less than 2-minutes.

The Well #10 pumphouse was constructed in 1945. It is a brick and concrete structure. The discharge piping has rusted completely through and must be replaced. There is a humidity problem within the well house that needs to be addressed. Chlorine is not added to the raw water at this location. The existing well pump


Well #10 Pumphouse

equipment, consisting of a Jacuzzi

submersible pump was installed in 1995. The pump has a design capacity of 650 gpm. Currently, the pump operates at a rate of approximately 540 gpm. There is no standby power at this facility. Raw water is conveyed from Well #10 to the iron pressure filter at the Main Treatment Plant via a 6,100-foot 8-inch main. Well #5 is also connected to this transmission main.

4. Main Treatment Plant

A 1,300-gallon per minute iron pressure filter is located at the Main Plant, located on Schutheis Street. This filter treats water from Well #4, Well #5 and Well #10. A schematic of the Main Plant is provided on Figure #3. The Main Treatment Plant building is in good condition, inside and out. Potassium permanganate is added to the raw water supply prior to filtration to facilitate iron filtration. Although it was originally added to enhance radium removal

with the adsorption of radium onto hydrous manganese, oxides precipitated on the filter media. Liquid sodium hypochlorite is also added prior to filtration for disinfection. Treated water discharges to the 284,000-gallon and 295,000-gallon ground storage reservoirs, which are located on the plant site. After iron filtration, the water is treated with sodium silicate for corrosion

Pump Station 1 With Well 4 (White Building) & Reservoir

control and sodium hypochlorite as a disinfectant prior to being discharged to the ground reservoirs. A condition assessment of the reservoirs is provided in Appendix D. A summary of the assessment is provided in a later section of this report.. Filter backwash water is discharged to the sanitary sewer.

Samples were taken of the influent and effluent at the Main Filter Plant to observe entrained air. The observation results are summarized on Table #4 and are described as follows:

Main Filter Plant - Influent

Pumping Rate: 1,300 gpm / Well Started Operation - 9:00 a.m.

Observation #1 - 10:05 a.m.

- Water sample clear at time zero, then air bubbles start to form.
- b. Sample cleared of air in less than 1-minute.

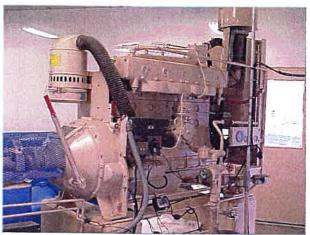
Observation #2 - 1:20 p.m.

- a. Water sample clear, very little formation of air bubbles.
- b. Sample cleared of air in less than 1-minute.

<u>Main Filter Plant - Effluent</u>

Pumping Rate: 1,300 gpm / Well Started Operation - 9:00 a.m.

Observation #1 - 10:10 a.m.


- a. Water sample clear at time zero, then air bubbles start to form.
- b. Sample cleared of air in less than 1-minute.

Observation #2 - 1:25 p.m.

- a. Water sample clear, very little formation of air bubbles.
- b. Sample cleared of air in less than 1-minute.

Pump Station #1 is located on Schultheis Street, between Elm and Oak Streets, at the same site as the Main Treatment Plant and the two ground

Main Plant - Iron Filter

Pump Station #1 Engine

level reservoirs. The station was constructed in 1961. The station is in excellent condition. Two high lift pumps, Booster Pump #1 and Booster Pump #2, are equipped with soft starters. Each of these pumps can operate at 1,200 gpm. These two pumps are always operated individually. Generally, one is used for 6-months, and then the second pump is used for 6-months. The third high lift pump, Booster Pump #3, is an engine driven pump that is normally used for emergency purposes only. Booster pump data is summarized on Table #2.

The Autocon telemetry system at the Main Plant that is used for monitoring and control of remote sites is in working order.

However, it is understood that this

Pump Station #1 Booster Pumps

system is scheduled for complete replacement in the near future.

5. Well #8

Well #8 is located at the intersection of Blackwell Street and Delanglade

Street. The well was originally constructed in 1959.

Currently, the well is not being used to supply water to the system customers. The well is being used to pilot test radium reduction treatment options. This well has an extensive history of high levels of dissolved gases in this water supply, resulting in cloudy

Well #8 Well House

water. The well consists of a 16-inch grouted casing placed to a depth of 151-feet. The 15-inch original open hole was constructed to a depth of 600-feet. In 1995, a 14-inch open hole was extended to a depth of 800-feet in an attempt to increase the capacity of the well. In 2000, the well was filled to 700-feet in an attempt to reduce the radium levels in the water supply (refer to Table #5).

Well #8 Ground Reservoir

Observations were conducted in January 2003 to observe air entrainment in the Well #8 water. One observation was made at the wellhead and at the reservoir discharge, each. The observations are summarized, with the observations from the other wells, on Table #4. Based upon the results of the observations, the 15-minutes of detention time in the storage reservoir is not sufficient for the air to dissipate. The results are as follows:

Well #8 - Raw Water

Pumping Rate: 300 gpm / Well Started Operation - 9:00 a.m.

Observation #1 - 9:30 a.m.

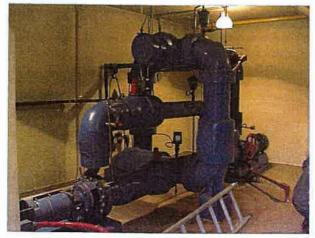
- a. Water sample clear at time zero, then air bubbles start to form.
- b. Sample cleared of air in less than 2-minutes.

Well #8 - Reservoir Discharge

Pumping Rate: 300 gpm / Well Started Operation - 9:00 a.m.

Observation #2 -

a. Sample cleared of air in less than 2-minutes.


The Well #8 pumping equipment was installed in 1997 and consists of a Simmons submersible pump. The design capacity of the pump is 600 gpm.

Well #8

There is no provision for standby power at this facility. The Well #8 well house is constructed of brick and concrete block. The building appears to be in good condition.

If Well #8 were used to provide water to the community, raw water would discharge directly to the iron pressure filter housed in the Well #8 pumphouse. The filter is in very poor condition. There is a significant amount of deep corrosion on the tank, and the piping is severely corroded. Treated water discharges to a 15,000-gallon

Well #8 Booster Piping

baffled reservoir. This reservoir was constructed in 1999 to allow pressure to be released from the water to remove the dissolved gases from the water. It was hoped that this would reduce or eliminate the cloudy water problem encountered with this supply; however, this has not been as effective as hoped. This relatively small reservoir was not intended to provide system storage capacity. This reservoir appears to be in excellent condition as viewed from the exterior. Water is pumped from the reservoir into the distribution system via high lift pumps.

6. Well #9

Well #8 Pumphouse

Well #9 is located in Riverside Park, north of the Fox River on the west side of Kaukauna. The well was originally constructed in 1974. The well consists of an 18-inch casing grouted to a depth of 239-feet. A 17¼-inch diameter open hole was originally extended to a depth of 806-feet. In 1989, the well was filled to a depth of 620-feet in an attempt to improve the quality of the water supply to reduce the radium levels.

The Well #9 pumping equipment consists of a Layne vertical turbine pump. The design capacity of the pump is 1160 gpm. The pumping equipment is operated at a rate of 960 gpm. A natural gas engine provides a backup power supply at this location.

To control the iron and sulfur bacteria in the raw water in this well, 75-gallons of sodium hypochlorite is introduced into

Well #9 Piping

Well #9 Pumphouse

sanitary sewer to remove the chlorine from the well. The backwash pit does not have sufficient capacity to hold the volume of water when the well is pumped to waste. The sanitary sewer serving this plant also does not have sufficient capacity to handle the high rate of discharge.

Therefore, an orifice plate is used on the backwash pit to control the discharge rate, so the sewer does not become surcharged. Therefore, the discharge process to remove the chlorinated water from the well takes a considerable

amount of time...

The results of observations conducted in January 2003 to document entrained air in the water at Well #9 are summarized in Table #4. Observations were made of the raw water and the filter plant effluent. The results are as follows:

Well #9 - Raw Water

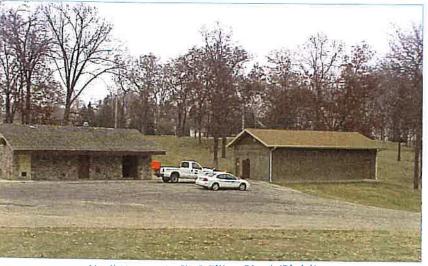
Pumping Rate: 1,100 gpm / Well

Started Operation - 10:45 a.m.

Well #9 Iron Pressure Filter

Observation #1 - 11:00 a.m.

- a. Water sample clear at time zero, then air bubbles start to form.
- b. Sample cleared of air in less than 2-minutes.


Observation #2 - 1:45 p.m.

- a. Water sample clear at time zero, then air bubbles start to form.
- b. Sample cleared of air in less than 2-minutes.

Well #9 - Filter Plant Effluent

Observation - 1:50 p.m.

- a. Water sample clear at time zero, then air bubbles start to form
- Sample cleared of air in less than 2-minutes.

Well House (Left) & Filter Plant (Right)

The Well #9 pumphouse is constructed of stone and concrete block. The building is in very good condition. The iron filtration system was added to this facility in 1990. Raw water from Well #9 is treated with liquid sodium hypochlorite for disinfection, and potassium permanganate as an oxidant prior to iron filtration treatment. At start up, the well is pumped to waste for 10-minutes to reduce the sulfur content of the raw water. The start-up waste-

water is discharged to a storm sewer. Sodium silicate is added to the water after filtration for corrosion control. The treatment plant at this location, located in a separate concrete block building, is in good condition. The filter backwash water discharges to the sanitary sewer.

C. Main Plant Ground Storage Water Reservoirs

A Condition Assessment of both ground water reservoirs located at the main treatment plant was conducted on April 16, 2003. A copy of the Assessment is provided in Appendix D. A summary of the Condition Assessment is provided in the following paragraphs.

1. Rectangular 295,000-Gallon Reservoir

The 295,000-gallon concrete reservoir was constructed in 1940. The reservoir is approximately 13-feet deep. The tank appears to be in good structural condition. The previous repairs made to cracks in the walls and ceilings are intact. There are no new cracks and no leaks were observed.

There is a brick masonry baffle wall that runs across the tank. The wall has an opening at the west end. The baffle is in poor condition. It is recommended that the wall be repaired.

2. Round 284,000-Gallon Reservoir

The 284,000-gallon concrete reservoir was constructed in 1901. The reservoir is approximately 18-feet deep. In general, the reservoir is in good condition. Previous repairs made to cracks in the walls and ceilings are intact. There are no new cracks and no leaks were observed.

There is a brick masonry baffle wall extending from the east side of the tank to approximately two-thirds across the center of the tank. The wall is approximately 6-feet high. The top of the wall is very weak, and the top several courses of brick are loose. The walls are in very poor condition. Funds should be budgeted to repair the baffle wall.

On the interior of the tank, there are nine interior columns and six columns built into the wall of the tank. Three beams run across the tank columns. There are cracks and areas of spalled concrete just below the beam in all of the wall columns. These cracks should be repaired, preferably by epoxy injection. There are also areas on the north beam and the center beam where reinforcing steel is exposed. These areas should be cleaned and coated to prevent further oxidation and corrosion of the steel.

II. WATER SUPPLY SYSTEM CAPACITY ANALYSIS

A. <u>Water Demand History</u>

Historical water system demand is presented on Table #6. The average day demand and maximum day demands have decreased slightly over the last 6-years, even though the number of customers has increased. The ratio of maximum day demand to average day demand has averaged 1.61 to 1 over the previous 6-years. This ratio, commonly referred to as the Maximum Day ratio, is relatively low compared to other communities. Generally, this ratio ranges from 1.5 to 4.

Historical metered usage is also summarized on Table #6. Water pumped from the system wells should be accounted for through customer metering or documentation of un-metered use. Un-metered use may include water used for main flushing, street sweeping, construction and fighting fires. The difference between water delivered to the system and unaccounted for water (including metered and documented unmetered use) should be monitored on an annual basis. If the difference is greater than 15% the system operation should be reviewed. The historical unaccounted for amount is provided on Table #6. The percentage has ranged from 9% to 21%.

B. Projected Future Demand

Future water system demands were developed from information that was originally provided by Robert Jakel, Director of Planning & Community Development, for the Heart Of The Valley Metropolitan Sewerage District (HOVMSD)'s Wastewater Interceptor Study, which was conducted by Earth Tech in 2002. A copy of the information provided by the City is included in Appendix E. Earth Tech projected that wastewater flows would increase approximately 13% each decade. The projected water system demands are as follows (refer to Figure #4):

	Current	2010	2020
	Average	Projected	Projected
Average Day Demand, mgd	1.38 mgd	1.58 mgd	1.76 mgd
Maximum Day Demand, mgd	2.24 mgd	2.54 mgd	2.83 mgd
Maximum Day Ratio	1.61 to 1		

C. Water System Capacity Analysis

1. Description

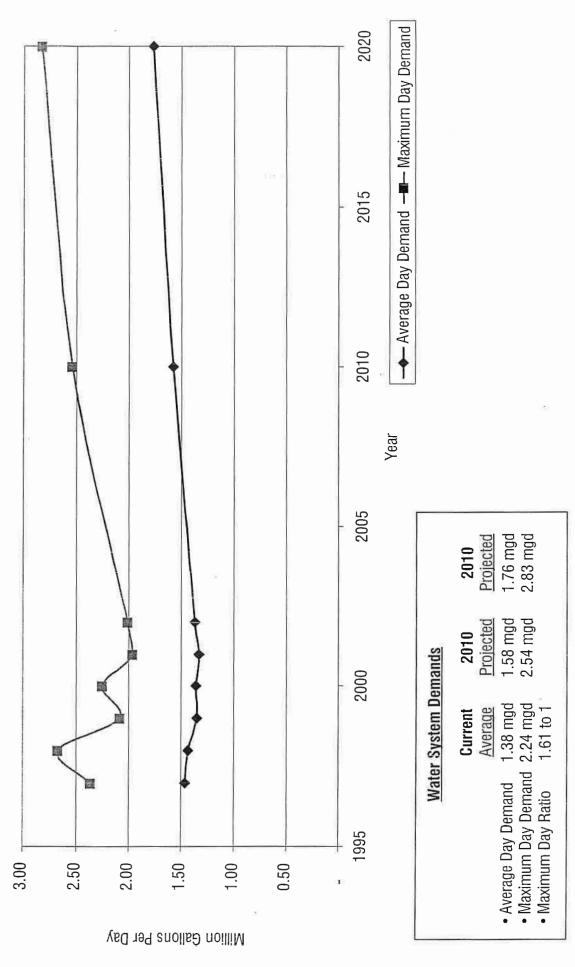

The current total capacity of the Kaukauna Utilities' treated water supply system is 3.83 mgd. This is with all five wells operational. The adequacy of a water supply is evaluated on the basis of the maximum day demand

Table #6

HISTORICAL WATER SYSTEM DEMAND

KAUKAUNA UTILITIES
Evaluation Of Water Supply System

	1997			1998			1999			2000			2001		2002	Average	
Customer	10.01	Metered	% of	No. of	Metered	% of	No. of	Metered	% of	No. of	Metered	% of	No. of	Metered	% of Metered	Metered	% of
Classification	Custmrs	Water Use (Gal)	Total Flow	Custmrs	Water Use (Gal)	Total Flow (Custmrs	Water Use (Gal)	Total Flow	Custmrs	Water Use (Gal)	Total Flow		Water Use (Gal) Tot	/0 UI =	Water Use (Gal)	
Residential	4,178	241,435,000	66%	4.243	247,210,000	66%	4,317	244 ,264,000	68%	4,397	236,403,000	64%	4,528	236,399,000	Data Not Available	241,142,200	0.0
Commercial	296	52,544,000	14%	304	54,280,000	14%	310	50 ,1 29,000	14%	322	57 ,455,000	16%	338	57,011,000	65% At This Time	54,283,800	16%
Industrial	13	59,108,000	16%	13 16	59,677,000	16%	16	52,51 4,000	15%	19	61, ∠ ₩ŋ₩₩	17%	19	56,606,000		57,831,600	16%
Public	16	9,482,000	3%	16	8,896,000	2%	18	9.631,000	3%	17	9,732,000	3%	20		16%	9,457,000	3%
Interdepartmental Sales	3	3,390,000	1%	3	4,887,000	1%_	3	4,069,000	1%	3	4,423,000	1%	3-	9,544,000 3,884,000	3%	4,130,600	
Total	4,506	365,959,000		1,579	374,950,000		4,664	360,607,000		4,758	369,266,000		4,908	363,444,000	176	366,845,200	19
Total Gallons Pu mped		534,240,000			521 ,995,000			490 ,893,000			494,305,000			484,189 ,000	501 ,160,000	504,464,000	
Average DayDemand goo	d	1,463,671			1,430,123			1,344,912			1,354,260			1,326,545	1,373,041	1,382,000	
Average DayDemand ,gpo Total pumpedinto Dist. Sy	vst	462,776,000			439 ,443,000			421,738,000			419 ,540,000			407 749 000	10.01	1,002,	
Unaccounted For Water		21%			15%			14%			12%			9%	10%	14%	
Maximum Dav Dema nd.c	od	2,366,000			2,667,000			2 ,087,000			2,252,000			1,961,000	2011 000	2,224,000	
Date of Max DayDemand		Oct 29,1997			April 27 , 1998			April 16 , 1999			May2 9,2000			July17 2001	October 9 , 2002	E jane T j	
Reason for Max Day				I.	lyd. Flushing/Main Break			lyd.Flushi ng/Main Break			New Main Flushin g		N	lew Main Flushing	Hydant Flushi ng		
Max _{Day} Ratio		1.62			1.86			1.55			1.66			1.48	1.46	1.61	
Population		1 2,325			12 517			12 735			12,983			358			
Averre Person Per Hseho	old	2.95			2.95			2.95			2.95			13,358 2.95			
Residential gpcd		54			54			53			50			48		52	-
Total and		119			114			106			104			99		108	

FIGURE 4

PROJECTED WATER DEMANDS

KAUKAUNA UTILITIES - KAUKAUNA, WISCONSIN McM #K0004-920857.00 2/3/03

requirements. As a minimum, the supply required to maintain the maximum day or peak day demand would need to be supplied from the entire water supply over a 24-hour period. The reliability of the supply system can be analyzed under a variety of conditions. The following conditions have been analyzed. The conditions are summarized on Table #7.

- a. <u>Condition A</u> This condition assumes that all systems are operational. This condition would provide a supply of 2,560 gpm or 3,686,000 gpd.
- b. <u>Condition B</u> This condition assumes that the largest source of raw water supply, Well No. 9, is out of operation. A supply of 1,600 gpm or 2,304,000 would be provided.
- c. <u>Condition C</u> This condition assumes that the largest treatment facility, the Main Filter Plant, is out of operation. A supply of 1,460 gpm or 2,102,000 gpd would be provided.
- d. <u>Condition D</u> This condition assumes that the largest pumping equipment, the booster pumps at Pump Station #1, are out of operation. This condition would provide 1,460 gpm or 2,102,000 gpd; the same rate as Condition C.
- e. Condition E This condition assumes that the booster pumps at Pump Station #1 are out of service and the engine driven booster pump (BS #3) is used to pump treated water from the ground level reservoirs into the distribution system. Booster Pump #3 has a rated capacity of 2,000 gpm. However, for this condition, it was assumed that the plant discharge rate would be restricted to the capacity of the treatment plant.

2. Determination Of Reliable Capacity Of Existing System

The results of the supply capacity analysis are summarized on Table #7. This analysis illustrates that if one of the largest water supply components was out of service during a period of maximum demand, the supply system cannot meet the design criteria to supply maximum day demand. The safe, reliable, water supply capacity of the existing system with provision for pumping units out of service is 2.1 mgd. The current maximum day demand is approximately 2.22 mgd, and the projected year 2020 demand is 2.8 mgd.

Table #7

KAUKAUNA WATER SUPPLY SYSTEM CAPACITY ANALYSIS KAUKAUNA UTILITIES Evaluation Of Water Supply System

Well#	Well Pumping Capacity	Treatment System Capacity	Booster Pump or Plant Discharge Capacity	Condition A All Systems Operational	Condition B Largest Well Out Of Service	Condition C Largest Treatment System Out Of Service	Condition D Largest Pumping Equipment Out Of Service	Condition E Use Engine Driven Pump At Pump Station #1
Well #4	560 gpm							
Well #5	200 gpm	1,300 gpm	1,100 gpm	1,100 gpm	1,100 gpm		•	1,300 gpm
Well #10	540 gpm			The state of the s				
(all three wells	(all three wells are operated at the same time)	same time)	-					
Well #8	500 gpm	600 gpm	500 gpm	500 gpm	500 gpm	500 gpm	500 gpm	500 gpm
Well #9	960 gpm	1,300 gpm	960 gpm	960 gpm	•	960 gpm	960 gpm	960 gpm
Totals	2,760 gpm	3,200 gpm	2,560 gpm	2,560 gpm	1,600 gpm	1,460 gpm	1,460 gpm	2,760 gpm
	3,974,000 gpd	4,608,000 gpd	3,686,400 gpd	3,686,400 gpd	2,304,000 gpd	2,102,000 apd	2,102,000 gpd	3,974,000 apd

Meet Design Criteria	N/A	N/A	Yes	Yes	No, System Deficient	No, System Deficient	No, System Deficient	Yes
						ı	200	

Design Criteria:

Available supply should meet maximum day demand, with largest source of supply out of service. Projected Year 2020 Maximum Day Demand = 2,830,000 gpd Current Maximum Day Demand = 2,224,000 gpd

3. Determine Needs For Additional Supply

The supply capacity analysis indicates that the safe, reliable, water supply capacity of the existing system is 2.1 mgd. With a projected maximum day demand of 2.8 mgd in the year 2020, there is a supply system short fall of approximately 700,000 gpd or 500 gpm. The supply shortfall should not have to be provided from storage. The storage system can be relied upon to meet short-term high water demands that occur throughout the day. However, when high system demands continue for an extended period of days or if there is a fire demand in combination with high system demands, the supply system would not have sufficient capacity to replace the quantity of water removed from storage. Therefore, it is critical that a system not be required to rely on storage capacity for an extended period of time.

The capacity of the supply system should be increased by a minimum of 500 gpm (700,000 gpd) to provide a safe, reliable water supply of 2.8 mgd. Therefore, there is a need for Kaukauna Utilities to develop an additional water supply.

4. Options To Provide Additional Supply

Two options to provide additional water supply will be evaluated. One will be to expand and maximize the capacity of the systems in the existing infrastructure and the second will be to add additional groundwater supply wells to supplement the existing system.

a. Option #1 - Expand Existing Supply System

The capacity of the existing water supply could be expanded with the following modifications:

1) Well #9

Add an additional pump stage to return the pumping system to the original capacity of 1,300 gpm. This will require installation of a larger motor (200-horsepower) and new switchgear. The estimated cost for these modifications is as follows:

Existing Pump Modifications	\$15,000
New 200-Horsepower & Motor Starter	40,000
Engineering & Contingencies	10,000
Total	

2) Well #8

To operate the well at 500 gpm, it would be advisable to remove the dissolved air from the supply. This issue is described in detail in another section of this report. The use of membrane technology, as described elsewhere in this report, would be used to remove the dissolve air.

The City has also requested that a backwash holding tank be provided to restrict the discharged flow rate into the sanitary sewer system. This system would then be similar to the concept used at Well #9.

The estimated cost for these improvements is summarized as follows:

Air Removal Membranes	\$30,000
Vacuum Pump / Mechanical	20,000
Building Modifications	10,000
Electrical	5,000
Engineering & Contingencies	15,000
Total	\$80,000

3) Well #5

The original depth of this well was 733-feet. The well was filled in 1947 to 524-feet to provide a better water quality. The majority of the Cambrian Sandstone, however, was filled significantly; impacting the capacity of the well. As there is no reason to suspect the water quality in this well would be much different than Well #4 or Well #10, it is recommended to remove the fill to a depth of 630-feet to expose the upper 120-feet of the Cambrian Sandstone. A well capacity of 600 gpm would be expected.

The estimated cost for these improvements is summarized as follows:

Deepen Well (From 524-feet to 630-feet)	\$40,000
New 600 gpm Well Pump & Motor	30,000
New Switchgear	15,000
Engineering & Contingencies	20,000
Total	\$105,000

4) Main Filter Plant

With the additional 400 gpm expected from Well #5, the capacity of the iron filtration system at the Main Filter Plant would need to be expanded. The total supply capacity at this location from Wells #4, #5 and #10 would be 1,700 gpm with the proposed modifications to Well #5. The size of the existing 4-cell filter is 473 square feet, with a rated capacity of 1,300 gpm. The expansion of the existing system should be provided in size increments equal to the existing filter cell size of 118 square feet/cell to simplify backwash operation.

The additional filtration capacity would be provided with the addition of two 12-foot diameter tanks, or a single, 2-cell, 10-foot diameter x 26-foot long, horizontal tank.

The booster pump capacity would also need to be expanded to 1,700 gpm, requiring larger horsepower motors for each of the two booster pumps.

The estimated cost for these improvements is summarized as follows:

Iron Filtration System (236 square feet)	\$80,000
Installation	30,000
Building Additions	100,000
Piping / Mechanical	45,000
Booster Pump Modifications	70,000
Engineering & Contingencies	75,000
Total	\$400,000

It should be additionally noted that the existing masonry baffle walls in the two ground storage reservoirs are severely deteriorated and should be either removed or removed and replaced. An estimated cost for replacement of these baffle wells is \$40,000. The following discussion relates to the need for replacement of the baffle walls.

a) From an operational standpoint, the baffle walls are not required. No chemicals are added to the water entering the reservoir, so detention time should not be an issue.

- b) From a settlement standpoint, there is very little sand or particulates in the water. Detention time for settling should not be an issue.
- c) The inlet and outlets of the tanks are across the tanks from each other. Short-circuiting should not be a concern. Some areas of the tanks, particularly the corners of the rectangular reservoir, will not have, however, much water movement.
- d) The short height of the baffle wall in the round reservoir would have minimal effect on the water flow as it is.

5) Cost Summary

The above noted system improvements would increase the system supply to sufficiently meet the year 2020 maximum day demand under all five conditions referenced on Page 13 and Table #7. A summary of the system supply capacity relative to meeting these five operating conditions is presented in Table #8.

A summary of the capacity costs to implement this option is as follows:

Well #9	\$65,000
Well #8	
Well #5	105,000
Main Filter Plant	400,000
Total	\$650,000

6) Analysis Of Increased Pumpage On Aquifer

If the existing groundwater supply system were to be continued and increased in the future to meet future demands, the impact on the groundwater system should be evaluated. The ominous trend of declining groundwater levels at a rate of nearly 1-foot per year could result in serious problems, if the pumping levels were to drop sufficiently to fall below the top of the Cambrian Sandstone. To determine this impact, the hydrologists at the United States Geological Society (USGS) conducted groundwater flow model simulations using the Fox Cities groundwater model developed as part of the 1997 groundwater

Table #8

KAUKAUNA WATER SUPPLY SYSTEM CAPACITY ANALYSIS UNDER OPTION #1

UPGRADE EXISTING SUPPLY SYSTEM KAUKAUNA UTILITIES
Evaluation Of Water Supply System

	Well Pumping Capacity	Treatment System Capacity	Booster Pump or Plant Discharge Capacity	Condition A All Systems Operational	Condition B Largest Well Out Of Service	Condition C Largest Treatment System Out Of	Condition D Largest Pumping Equipment Out	Condition E Use Engine Driven Pump At Pump
Well #						Service	Of Service	Station #1
Well #4	560 gpm							
Well #5	600 gpm	1,700 gpm	1,700 gpm	1,700 gpm	1,700 gpm	700 gpm	1,700 gpm	1,300 gpm
Well #10	540 gpm							
(all three wells	(all three wells are operated at the same time)	same time)						
Well #8	500 gpm	600 gpm	500 gpm	500 gpm	500 gpm	500 gpm	500 gpm	500 gpm
Well #9	1,300 gpm	1,300 gpm	1,300 gpm	1,300 gpm	-	1,300 gpm	1,300 gpm	1,300 gpm
Totals	3,500 gpm	3,600 gpm	3,500 gpm	3,500 gpm	2,200 gpm	2,500 gpm	2,500 gpm	3,100 gpm
	5,040,000 gpd	5,184,000 gpd	5,040,000 gpd	5,040,000 gpd	3,168,000 gpd	3,600,000 gpd	3,600,000 gpd	4,464,000 gpd

Meet Design	N/A	N/A	Yes	Yes	Yes	Yes	Yes	Yes
Criteria	a control							

Design Criteria:

Available supply should meet maximum day demand, with largest source of supply out of service. Projected Year 2020 Maximum Day Demand = 2,830,000 gpd Current Maximum Day Demand = 2,224,000 gpd

study. This study, entitled "Hydrogeology & Simulation Of The Groundwater Flow In The Sandstone Aquifer, Northeastern Wisconsin", included the development of a groundwater flow model, which would be utilized to simulate water levels in the principle aquifer utilized for the groundwater supply in the Fox Valley region.

Several model simulations were developed, and they are documented and provided for referenced in Appendix F. The modeled scenario most likely to occur compared the water pumping levels under the current water pumpage volumes in both the Fox Cities and the 11 communities using groundwater in the Green Bay area to the water pumping levels under future water pumpage volumes for the Fox Cities communities and with the 11 communities in the Green Bay area no longer using groundwater. While the groundwater levels will continue to drop, the modeled future pumping levels will be positively impacted by the aquifer rebound effect resulting from the reduced pumpage in the Green Bay area. As such, the future pumping levels are projected to decline another 66-feet, which would be above the top of the Cambrian Sandstone. This modeling summary is provided in the May 21, 2003 communication, located in Appendix F. This modeling concludes that the decline in groundwater levels will continue for another 66-feet before it stabilizes to equilibrium. There is, however, no projection for the impact to groundwater quality.

b. Option #2 - Construction Of Additional Wells

Based upon the analysis of supply capacity under the five operating conditions, summarized in Table #7, the existing supply is deficient to meet the year 2020 maximum day demand by approximately 700,000 gpd. The construction of a new well of, at least, 500 gpm would be required to provide the required additional supply.

The most likely location for siting a new well would be approximately 3-miles to the northwest of Kaukauna, where a groundwater source of better quality could, most likely, be developed. This area would also provide better well siting options under the State's current wellhead protection requirements. The greater spacing from the existing wells afforded under this location would also reduce the impact on the pumping levels resulting from well interference in all the wells.

While there are high capital costs associated with a new well siting up to 3-miles from the existing distribution system, due to the long connecting transmission main, the long-term benefits of this concept would be to provide the opportunity to construct additional wells in the same area in the future to either replace existing wells or to provide additional capacity in the future. Additionally, the concept of replacing the entire existing supply from the five existing wells is a feasible alternative, especially if a water supply of better water quality is desired. Water hardness, for example, would, most likely, be 20 to 25-grain, as compared to the hardness of 50-grain in the existing supply.

A groundwater study is proposed to identify potential well sites, should this alternative be considered. It is assumed, however, that the iron levels will be sufficiently high to require treatment using conventional iron filtration systems.

The capital cost of adding an additional well with iron filtration located in this area to the existing system is summarized, as follows:

Well	\$200,000
Pumphouse	200,000
Iron Treatment System	300,000
Connecting Water Main	750,000
Pumping Equipment	75,000
Electrical	100,000
Engineering & Contingencies	375,000
Total	\$2,000,000

c. Conclusion

The most cost-effective solution, at this time, to meet the water demands for the next 20-years would be to expand the existing system to provide maximum production capacity. Should a water supply of a better water quality be required or when additional supply beyond 2.8 mgd be required, the construction of additional wells will be required.

III. DRINKING WATER QUALITY STANDARDS COMPLIANCE

A. Drinking Water Quality Standards

Wisconsin Administrative Code NR 809 and the United States Environmental Protection Agency (EPA) Safe Drinking Water Act establish drinking water quality standards. The standards are established to protect the public health, safety and welfare. Maximum contaminant levels, or MCL's are the maximum permissible level of a contaminant in water, which is delivered to any user of a public water system. The MCL's established for various inorganic contaminants, which may be applicable to the Kaukauna Utilities water supply, are listed on Table #9. Secondary standards are also listed. Secondary standards have been established for parameters that are not hazardous to health, but may be objectionable when present in quantities above the secondary standards. The MCL's for radionuclides are also presented on Table #9.

B. <u>Kaukauna Drinking Water Quality</u>

The results of various water sample analyses are summarized on Table #5 and Table #10.

1. Primary Drinking Water Standards

a. Radionuclides

The levels of Gross Alpha and Radium 226/228 in the Kaukauna Utilities raw water supply exceed the primary drinking water standards. A summary of Gross Alpha/Radium analysis is provided on Table #5.

The DNR has advised the Utility that a violation of the radioactivity standard for alpha radiation (15 pCi/l) exists for the water system. The alpha radiation level in the water supply has ranged between 15 and 30 pCi/l over the years, depending upon sample location. The Utility is required to provide quarterly notices to the served public regarding this violation. In 2000, a composite radioactivity sample was taken from the distribution system that showed a gross alpha level at 64 pCi/l and a combined radium level of 20.2 pCi/l. The combined radium standard is 5 pCi/l. These results were waived as they were such a marked increase from previous results that it was thought that results were in error, however, the Utility was asked to conduct quarterly composite samples during 2001. These results came back at a level of gross alpha of 15 pCi/l, right at the standard, and combined radium at 3.51 pCi/l, which is below the standard. To calculate the alpha radiation content, the uranium concentration is deducted from the gross alpha level. During 2002, the Department has asked the Utility to conduct radioactivity sampling at each of the entry points to the distribution system.

Table #9

DRINKING WATER QUALITY STANDARDS

KAUKAUNA UTILITIES
Evaluation Of Water Supply System

Contaminants	Primary Drinking Water Standards Max. Contaminant Level (MCL) (mg/l, Unless Noted)	Secondary Standards (mg/l)
Alkalinity, Total as CaCO ₃	(mg//, emisse fretes)	
Aluminum, Total		0.05 - 0.2
Arsenic	.05	
Calcium, Total		
Chloride		250
Conductivity		
Fluoride	4.0	2.0
Hardness, Total as CaCO ₃		
Iron, Total		0.3
Lead, Total	0.015 *	
Magnesium, Total		
Manganese, Total		0.05
Nitrate/Nitrite Nitrogen	10/1	
pH - Lab		- MI
pH - Field		
Potassium, Total		
Silicon, Total		
Sodium, Total		
Sulfate		250
Total Dissolved Solids		
Temperature (Degree F)		
Carbon Dioxide	W (
Gross Alpha	15 pCi/l	
Radium 226/228	5 pCi/l	

^{*} Treatment Technique Action Level at 0.015 mg/l for Lead.

Primary Drinking Water Standards: Maximum permissible level of a contaminant in water, which is

delivered by any user of a public water system.

Secondary Standards: Waters containing parameters in quantities above the limits

indicated are not hazardous to health, but may be objectionable

to an appreciable number of persons.

Primary and Secondary Standards have only been established

for contaminants as listed.

Blank lines indicate there are no standards.

<u>Table #10</u>

INORGANIC CHEMICAL ANALYSIS

KAUKAUNA UTILITIES Evaluation Of Water Supply System

	Item
1.	Alkalinity, Total As CACO ₃
2.	Aluminum, Total
3.	Arsenic
4	Calcium, Total
5.	Chloride
6.	Conductivity
7.	Fluoride
8.	Hardness, Total As CACO₃
9.	Iron, Total
10.	Lead, Total
11.	Magnesium, Total
12.	Manganese, Total
13.	Nitrate/Nitriate Nitrogen
14.	pH - Lab
15.	pH - Field
16.	Potassium, Total
17.	Silicon, Total
18.	Sodium, Total
19.	Sulfate
20.	Total Dissolved Solids
21.	Temperature (Degree F)
22.	Carbon Dioxide

					Well #9								W	ell #10 / #6	
1 975	1985	1988	1990	1990	1991	1996	1997	1997	1999	2000	1970	1985	1991	1996	1997
184	200	Filled	196	210	196	198	180	199 / 200	220		178	204	199	184	189
222					< 0.3	<0.20	-		144		724		<0.3	<0.20	
***	1	2250	1	9710	"gr, 7 <u>20</u> 22	1945				0	7-12 -44		CAPE.		
224	226		210	200	220	204	232	12112	210		234	170	188	253	
6	5		5	14	18	4.60			4.30		8	7	19	12	
****	1,020	***	1,030	-	1,100	1,010	1,023		0.755		H oon	820	950	1 110	244
2	160		-7-	****	1.80	1.80		()	1.80	3	2	1.50	3.60	1.80	(1000)
656	633	516	604	596	635	640	632		620		662	505	440	680	***
0.56	0.45	0.56	0.43	0.29	0.27	0.20	1.30		0.50		4.09	0.47	0.48	0.35	
	:ere:		-	0.23	<0.06	< 0.70	B40					***	< 0.06	< 0.07	
24	22 -	_		<.01	24	26	52		24		18	23	. 24	22	***
<.04	0.020	0.03	<.02	76.0	< 0.02	<0.02			0.016		<.04	0.028	<0.02	< 0.02	222
<.50			-	7.20	< 0.16	<0.10	221	2000	-			227	<0.13	0.19	***
7.50	7.90	7	7.10	744	7.20	6.90	7.80	7.1 / 7.1	7.20		7.40	7.60	7.20	6.90	7.20
		See		3 4 6 4	344 5	242	100	- No.			7.10				2
	4.40			-	4.20	4.40		Here (4.70	4.30	4.70	
	7.00	-	13	320	3.10	3.20	8				(-111)	7.20	3.50	3.30	144
9 80	11		417		9.80	9.70		100 m	11		12	13	12	13	***
425	417	288	830	470	435	322	467	****	450		465	265	376	484	
928	946	696	***		846	880	1,280	uan,	880		942	689	746	980	
3444	53		22.	40	7000	J. T. T.	83100	***	SHE		-	54	12.3		-
5.000					222		-	1122						***	

Well constructed in 1974 to a depth of 806 1989 - Filled to 620.

1995 - Drilled from original depth of 568 to 841, 2000 - Filled to 660.

2000

200

200

1.80 590 0.60

22 0.020 <.10 7.30

Table #10

INORGANIC CHEMICAL ANALYSIS

KAUKAUNA UTILITIES Evaluation Of Water Supply System

1				Well #4			
Item	970	1985	1991	1996	1997	1999	2000
1. Alkalinity, Total As CACO ₃	186	190	180	189	174	180	
2. Aluminum Total	***		<0.3	<0.20	-	0.0007	
3. Arsenic '	202						0
4. Calcium, Total	257	269	298	309	-	260	
5. Chloride	7	7	6	8.10	(****	7.80	
6. Chloride 6. Conductivity	52000	1,140	1,370	1,280			
7. Fluoride	2	1.50	2	1.80		1.90	
8. Hardness, Total As CACO ₃	722	768	780	840	19600	710	
9. Iron Total	1	0.52	0.39	0.82		0.51	
10. Lead, Total	New Control	<.04	<0.06	<0.07			
	19	19	21	22		18	
11. Magnesium, Total 12. Manganese, Total	<.04	0.031	<0.02	<0.02		0.022	
13. Nitrate/Nitriate Nitrogen	<.10	<.1	< 0.01	<0.10	-44-	<.1	
13. Nitrate/Nitriate Nitrogen 14. pH - Lab	7.4	7.50	7	6.90	7.30	7.60	
15. pH - Field	7	-		2 444	1	W.L.	
16 Potassium Total		5.70	5	4.90			
17 Silicon, Total	222	6.70	4	3.20	200	***	
Total	12	9	12	13	:HHH0	13	
13. Guilate	500	538	718	676		680	
20. Total Dissolved Solids	998	1052	1208	1196	***	1,100	
21. Temperature (Degree F)	222	54	***	(2777)	1905		
22. Carbon Dioxide	***	***	***			222	

			Wel	1 #5			
1970	1972	1985	1991	1996	1997	1999	2000
180	178	188	172	173	177	180	
5555.V	200	-	< 0.3	< 0.02	***	0.0012	
100	1346	- 1 	7576			14/11/2	
308	219	321	337	301	1555	270	
10	5	9	7	12	344	11	
		1,300	1,450	1,310	HHM:		
2	1.90	1.5	3.40	1.80		1.90	
837	617	867	900	880	240	770	
0.64	0.73	0.54	0.43	0.50	2013	0.06	
\ main	***	<40	< 0.06	<0.07	5550		
16	17	20	22	24	22.50	20	
<.04	<.04	0.033	<0.02	<0.20		0.025	
<.10	***	<.10	< 0.11	<0.10	5750	<.1	
7,30	7.40	7.60	7.10	7		7.20	-5
7.10	7.20				750		
		5.50	4.60	5	25/8		
(-11-		7.40	3.50	3.20	5 	14	
12	10	10	14	14	6,017	750	
620	420	650	825	689		1,200	
1,206	876	1,307	1,208	1,224		#553	
		52	5445	***		GHG	
(: - 11	(100)	1202		8585	***	

			We	II #8			
1985	1991	1991	1996	1997	1997	1999	2000
178	167	176	171	171 / 169	148	180	
1		<0.3	< 0.20	1000	0.0		
	***	1		1575	***		
223	226	228	212	-	272	210	
4	2	4	4.60	-		3.30	
1,030	668	675	990		1 135	0.00	
2	1.60	1.70	1.80	a)	1 100	1.90	
613	680	590	640	(000)	708	610	
0.66	<.03	0.50	0.35	HHH:	0.70	0.90	
707	<.70	< 0.07	<0.07	402		-	
20	21	23	23	-	28	20	
0.039	0.030	< 0.30	0.03		555	0.021	
<.10	<.10	<0.01	<0.10	HAR	400	<.10	
7.50	7	7.40	7	7.1 / 6.9	7.50	7.30	
	876	-	/	No.	-		
4.70	4.30	4.30	4.50		y 	444	
7.40	3.40	2.60	3.20		8	177	
10	10	10	9.80		7931	8.80	
450	427	460	438	-	582	500	
956	846	842	852	N ate	1,430	890	
53	HHH	-	-	-) ***		
	275	man/)	***				

Depth = 726.

Depth = 524.

	Primary Drinking Water Standards Max. Contaminant Level (MCL) (mg/l, Unless Noted)	Secondary Standards (mg/l)
1. Alumin ^{um} , Total		0.05- 0.2
2. Arsenic	0.05	
3. Chloride		250.00
4. Fluoride	4	2.00
5. Iron. Total		0.30
6. Lead Total	0.015 *	
7. Manganese Total		0.05
8 Sulfate		250. 00

^{*} Treatment Technique Action Level at 0.015 mg/l for Lead.

Primary Drinking Water Standards:

Maximum permissible level of a contaminant in water, which is delivered by any user of a public water system.

Secondary Standards:

Waters containing parameters in quantities above the limits indicated are not hazardous to health, but may be objectionable to an appreciable number of persons.

Primary and Secondary Standards have only been established for contaminants as listed.

1995 - Drilled from original depth of 602 to 800.

2000 - Filled to 700.

The Utility still has a violation of the gross alpha standard and will be required to bring this level into compliance by December 2003; or to enter into a Consent Order, a legally binding agreement, with the DNR. The Consent Order will include a schedule that must be met to bring the system into compliance.

Previous sample results from the individual wells indicate that the water supply may not consistently meet the compliance standards for alpha radiation and combined radium level at the distribution system entry points. Compliance with the radium standard after December 2003 will be enforced at each entry point.

Additional samples were taken February 27, 2003. The information obtained from those samples is listed in Table #5. This data reinforces the need to have treatment at each system entry point.

The following sections will identify alternatives to address the radionuclide issue and bring the water supply system into compliance with the Standard.

b. Review Of Alternatives To Address The Radium Issue

The following alternatives were reviewed as options to address the radium issue for the City of Kaukauna. The alternatives have been identified by the United States Environmental Protection Agency (EPA) as best available technologies in the Radium Compliance Guidance Manual. Only those feasible alternatives will be evaluated in further detail.

1) Synthetic Zeolite Ion Exchange

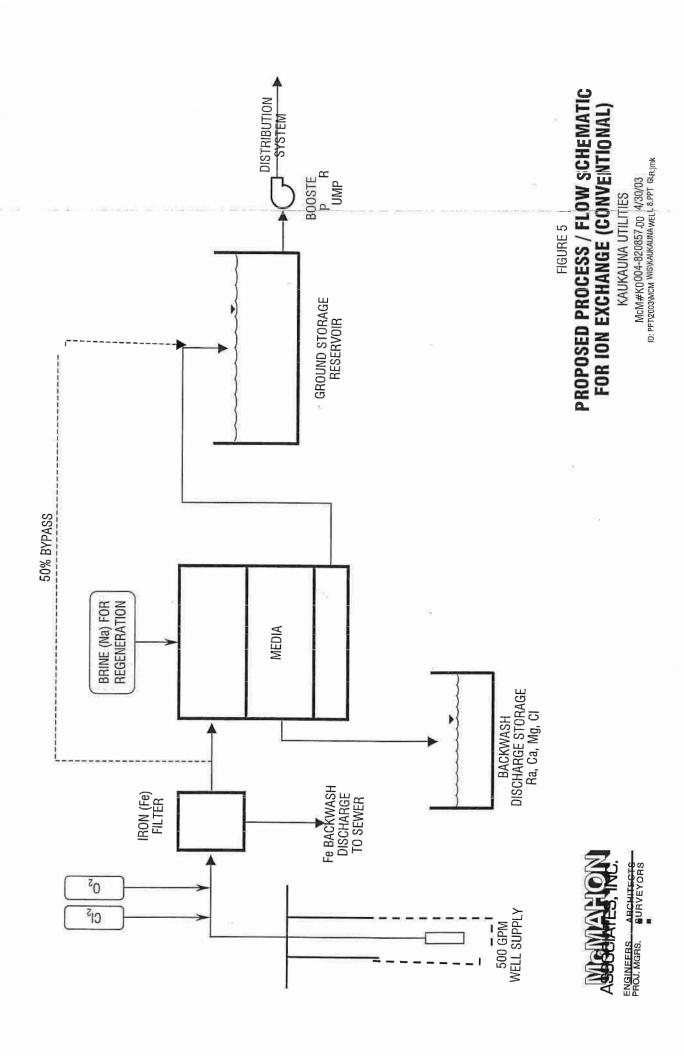
a) System Description

In ion exchange, sodium ions are exchanged primarily for calcium and magnesium ions. As radium is chemically similar to calcium and magnesium, it is also exchanged for sodium. The media upon which this exchange takes place loses its capacity over time and has to be regenerated by backwashing with sodium chloride. Radium is removed during regeneration as a waste product, along with calcium and chloride ions. The backwash water is then discharged to the sanitary sewer. The Department Of Health & Family Services

(DHFS), Radiation Protection Section, is responsible for the establishment and enforcement of the disposal requirement for wastewater discharges containing naturally occurring radionuclides. A copy of the current Disposal Guidelines & Criteria is provided in Appendix G. A schematic of this treatment process is provided on Figure #5.

Raw water filtering is performed until a predetermined hardness breakthrough occurs. The softened water is blended with some un-softened water to reduce aggressiveness, which raises the hardness and radium level of the blended water.

b) Efficiency & Costs


The process is effective in removing between 70% and 98% of the radium in the source water. Ion exchange does produce finished water with an elevated sodium content, however, usually the taste of water is not affected if sodium concentrations are below 200 ppm. In general, the process is cost effective for communities with average daily demands of less than 10 mgd.

c) Waste Disposal

Waste disposal from ion exchange requires the discharge to a sanitary sewer with compliance to HFS 157. Discharge to surface waters is not acceptable, due to the high chloride levels in the discharge.

d) Application

The resultant water quality, while having removed 90% of the radium, would not be advantageous for Kaukauna. Ion exchange softening would provide a finished water with low hardness and a high total dissolved solids, which would be a very aggressive water in the distribution system. Consequently, some blend of raw water with softened water would appear to be the solution. Due to the high hardness levels in the raw water, it would not be possible to achieve a 5 to 6-grain hardness for the finished treated water, which is normally the objective of this treatment process.

Although the radium levels would be approximately 1 pCi/l, the sodium in the finished water could be approximately 325 mg/l, which would be at a level to impact an objective taste to the water.

As an alternative, this treatment process could be utilized to reduce the radium levels to slightly below the 5 pCi/l standard. For example, a 37% blending ratio would result in a water having 4 pCi/l radium and 18grain hardness, along with a slightly elevated sodium concentration of 269 mg/l. A summary of the amount of blending required at each well to achieve a radium level of 4 pCi/l is presented in Table #11, which also indicates the resultant sodium levels. Since each well has varying calcium and magnesium levels, the resultant water hardness to achieve a radium level of 4 pCi/l varies significantly from well to well. This would be difficult to control at a central treatment plant and would result in varying water qualities delivered to the water distribution system, if individual treatment plants were developed. The resultant water would also have a hardness of 15 to 18-grains, a level which would require the continued use of point of use softening treatment for domestic use.

2) Lime & Lime Soda Ash Softening

a) Process Description

In this process, calcium and magnesium are complexed by lime or in waters with a high level of non-carbonate hardness, it is necessary to also use soda ash. The complexed materials floc and are filtered out. Radium is also precipitated out with the precipitated sludge. The efficiency of radium removal is dependent upon the quality of chemicals used, process, pH, amount of magnesium removal, non-carbonate hardness removal and filter efficiency.

b) Efficiency & Costs

Radium removal efficiencies can be as high as 90%, provided the calcium and magnesium removal rates are also high enough to reduce the total hardness to less

Table #11

WATER QUALITY ION EXCHANGE TREATMENT KAUKAUNA UTILITIES Evaluation Of Water Supply System

Lan	angelier Indiex	* X6				Treated Wa	ter Quality		
Well #	Raw	Treated	% Blending	Ra (pCi/l)	Fe (mg/l)	Na (mg/l)	Na TDS (mg/l) (mg/l)	50 4 (mg/l)	Hardness (grains)
4	+.5	15	25	4		286	1052		11.3
5	9.+	05	37	4	0	269	1307		18.3
10	+.45	2	51	4	0	241	689		15
8	+.45	9'-	20	4	0	298	956		7
6	+ .85	+.25	42	4	0	262	946		15.5

^{*} Using raw water pH.

than 100 ppm. Capital and operation and maintenance costs are dependent upon the amount of soda ash required to treat the water, since it has a much higher cost than lime. The finished product is usually stabilized with carbon dioxide to the saturation pH, so that no further treatment is needed. Since it is a steady flow process, the chances of breakthrough (as in ion exchange) are non-existent. The sodium levels in finished water are dependent upon the amount of soda ash required in the treatment process. Due to the high capital costs, this type of system is usually considered cost effective for communities having average water quality characteristics with average daily demands of greater than 10 mgd.

c) Waste Disposal

Disposal issues with lime softening are:

- (1) All clarifier and settled backwash sludge has to be landfilled or land applied.
- (2) Supernatant of backwash can be re-routed to head of treatment plant or discharged subject to the WPDES permit limitations.

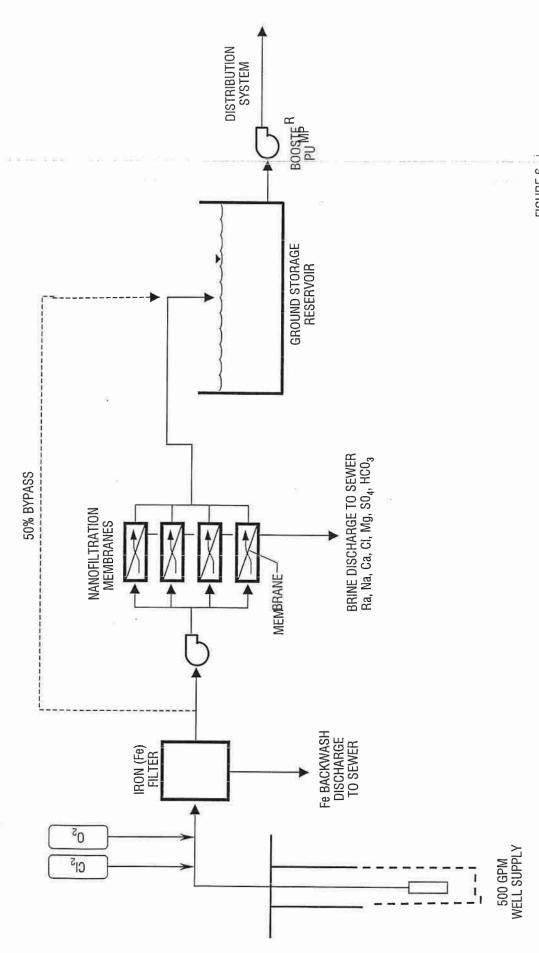
d) Application

Since there are high levels of non-carbonate hardness in the water supply (mostly in the form of calcium sulfate and magnesium sulfate), it would be necessary to utilize a combination of lime and soda ash in the treatment process. Adding lime alone would result in only a 30% reduction in hardness and would, most likely, not reduce the radium to below 5 pCi/l. Treatment to a hardness of 100 ppm, or approximately 6-grains, should result in radium removal efficiencies of up to 90%; although the use of soda ash in the process would raise the sodium level in the finished water to approximately 175 mg/l. The finished water would also have a reduced level of total dissolved solids, although there would not be a significant decrease in the sulfate level. The finished water would need to have a pH of approximately 9.0 to be stabilized. This treatment process would be applicable for the removal of radium

and provides the only process for complete treatment of the water supply for the City.

Due to the high capital and operating costs associated with this process, this option will not be considered in further detail.

3) Reverse Osmosis / Nanofiltration


a) System Description

Nanofiltration, which is a lower pressure Reverse Osmosis (RO) system, is a process by which water containing soluble minerals is pumped through a semi-permeable membrane using a high driving pressure. A schematic of this process is provided on Figure #6. Divalent ions, like radium, calcium and magnesium, do not pass through the membrane with as high efficiency as the single valent ions. The amount of product water in relation to reject water resulting from this process depends upon the amount of dissolved solids present in the source water, the type of membrane and the operating pressure utilized.

Raw water entering the plant is filtered for removal of any suspended solids, which could foul the membrane. Raw water pH is lowered to convert bicarbonate to carbon dioxide, thus, reducing the potential for precipitation of calcium carbonate on the membrane. The water is then pumped through the membranes producing treated water. Post-treatment consists of decarbonation by aeration, upward pH adjustment and addition of chlorine for disinfection.

b) Efficiency & Costs

The efficiency of radium removal ranges from 87% to 98%. In general, a well maintained plant could operate at a greater than 90% removal efficiency. The system can remove divalent ions, produces better quality finished water and is adaptable to small scale facilities. The capital and operating costs for this system are generally high.

PROPOSE DPROCESS / FLOW SCHEM ATIC FOR N AOFILTRATION MEMBRAN E KAUKAUNA UTILITIES

10: PP1633MCM WISKAUKAUN A EL 8.PP7 GLEJINK

ASSOCIATES, INC. ENGINEERS ARCHITECTS PROJ. MGRS. SURVEYORS

c) Waste Disposal

Disposal of waste from RO is similar to that of ion exchange. Discharge to a sanitary sewer would require Department Of Health & Family Services Code compliance. Membrane disposal, due to fouling or end of useful life, could be regulated by the DNR. Permanent rules for membrane disposal have not been developed beyond a set of interim guidelines (refer to Appendix G).

d) Application

The use of an nanofiltration membrane operating at pressures of approximately 100 psi would remove approximately 88% of the total dissolved solids, as compared to a 95% to 98% removal rate for a RO membrane operating at pressures in excess of 250 psi. The characteristics of the treated water would, however, require adjustment of the pH and blending to stabilize and minimize corrosiveness. As in the case of the ion exchange treatment process, a blending of approximately 50% of the raw water and treated water to provide a finished water having a radium level just slightly below the standard would be the most likely design objective. This approach would minimize the capital cost to install the necessary treatment equipment and help to reduce the overall operating costs, but would provide a finished water having a hardness of approximately 18 to 20-grains of hardness, a level at which further treatment at the point of use would be required.

4) Pre-Formed Hydrous Manganese Oxide

a) System Description

It is recognized that a limited amount of radium may be removed as a consequence of iron and manganese treatment processes, presumably a result of adsorption. Radium removal resulting from permanganate-greensand treatment has been observed to vary greatly from 0% to nearly 50%. Removals have been generally observed to increase when the manganous ion is

increased and have been attributed primarily to the adsorption of radium to hydrous manganese oxides (HMO's), not to iron oxides, which apparently have a much lower radium adsorption potential under typical water treatment conditions.

Hydrous manganese oxides, also referred to as amorphous manganese dioxide, may be formed by the rapid oxidation of manganous ion, such as accomplished by reduction of permanganate ion or from the reduction of permanganate by other substances, such as ferrous iron. The exact composition of the product is not fixed, but depends upon the reaction conditions. However, the product (MnO $_2$ (s), sometimes referred to as manganese dioxide, has usually been found to be the closest to what is observed and is usually assumed to represent what is produced.

Adsorption of cations to hydrous manganese oxides has been extensively studied. The adsorption capacity of HMO's is generally much greater than other oxides, such as those of iron, owing to their relatively large surface area per unit mass.

The adsorption capacity per unit mass is, however, expected to depend upon the conditions under which the HMO is formed, the chemicals used to form it, and the constituents in the water. For example, available surface area of metal oxides generally increases with the rate of formation and may be affected by the presence of other constituents, such as silica. HMO's produced by strong oxidants that rapidly oxidize manganous ions, such as permanganate, are expected to have greater surface areas and adsorption capacities than HMO's produced by slow oxidation by oxygen.

b) Efficiency & Costs

Recent pilot-scale studies and full-scale operations have shown that addition of pre-formed HMO's could be used to significantly lower radium levels in drinking water using reasonably low HMO dosages in the range of 0.2 to 1.0 mg/l as Mn applied ahead of a sand filter.

Radium removal rates of 75% to 85% were demonstrated in the treatment of water containing about 3.0 pCi/l of Ra-226 and well-oxidized and well flocculated iron using an HMO dosage of 1.0 mg/l applied ahead of a pilot-scale sand filter in lowa.

Other studies demonstrated that HMO's formed by chlorine oxidation of manganous sulfate or permanganate oxidation of ferrous sulfate were nearly equally effective for radium removal. Although the presence of well-oxidized and well-flocculated iron did not appear to interfere with radium removal in the pilot studies, batch studies suggested that the presence of soluble iron might reduce radium adsorption to the HMO's if oxidized in the presence of the HMO's.

c) Waste Disposal

Disposal of the backwash water and any radium adsorbed on to the manganese dioxide, which would be removed from the media during backwash would be discharged to the sanitary sewer. The limitation of discharge would be those limits as currently established under the Draft Guidelines for radionuclide disposal, prepared by HFS and provided in Appendix G.

d) Application

The application of HMO's in the Kaukauna system would only require the addition of a manganese sulfate chemical system as there are iron filters and permanganate chemical systems at each of the well stations. It would also be proposed to replace the anthracite media in the existing iron filters with either small effective size silica sand or greensand for the physical removal of any precipitated manganese.

The current full-scale pilot application of this process at Well Station #8 appears to be effective in both radium removal and control of manganese levels in the filtered water. This process appears to be easily adaptable to the Kaukauna system.

5) Radium Selective Media

a) System Description

The selective media process for radium removal utilizes multiple vessels filled with Water Remediation Technology, LLC (WRT)'s Z-88™ chemically modified natural treatment media. Water is passed through the media in each successive stage. When media for radium removal in the first stage becomes loaded with radium, water is routed to the next stage and the media is replaced with new Z-88™.

b) Efficiency & Costs

The levels of radium removal percent efficiency are a function of the number of contactors the water passes through in series flow. The radium can be reduced to nearly zero or to a level just below the standard. The level of treatment can, therefore, be selective.

All costs associated with the initial installation of the treatment equipment and media, as well as spent media removal and disposal, are included in a unit charge per thousand gallons of water treated, similar to a lease.

c) Waste Disposal

The license fee paid to WRT for this process includes the removal and ultimate disposal of the exhausted media, which is loaded with the radium, by WRT personnel. There are no additional costs to the Owner / Operator for system backwashing or media replacement.

d) Application

The application of this technology and approach is a viable solution in Kaukauna because the process selectively removes the radium and specifically addresses this single water quality issue to a preselected level to ensure compliance with the water quality standard. There is a reduced capital cost associated with this option, as the treatment equipment

and media are not purchased, but leased from the equipment owner, WRT.

6) Blending

a) System Description

Blending would consist of mixing water with a high radium content with water of a low radium content. The purpose would be to achieve a final product below the 5 pCi/l radium standard. This could be achieved by discharging two or more wells into a common reservoir. Baffles may be needed to ensure proper mixing. High lift pumps are then used to pump blended water into the distribution system.

b) Efficiency & Costs

The quality of water produced is not constant and can vary considerably over time. While an initial cost may be relatively low, long-term monitoring would increase.

c) Application

As a solution to the situation in Kaukauna, blending is not feasible because there are no wells producing water low enough in radium to dilute the concentration significantly enough to provide a blended water below the required standards.

7) Well Reconstruction

Well reconstruction consists of "casing or sealing off" the high radium producing sections of a well. This alternative does not often appear to be feasible because:

- a) The formations providing the water with high radium content are likely to be those producing the most water.
 Casing, sealing or the backfilling of these areas will usually reduce production capacity significantly.
- b) Unreliability of using packer tests in existing wells.

c) Results of packer tests may be likely "well specific".

Wells #8, #9 and #10 have been filled to obtain water from the upper 120-feet of the Cambrian Sandstone in an effort to determine if sealing off water from the lower sections of the Cambrian Sandstone would provide a resultant water, which would meet the radionuclide standard. The results from the sealing of Well #9 in 1989 were effective in reducing the radium levels, however, the gross alpha levels remained over the standard. A similar effort in 1998 at Wells #8 and #10 produced mixed results. Well #4 is the only well open to the entire depth of the Cambrian Sandstone.

The relationship of well depth and water quality is summarized in Table #5. From the data in this table, it does not appear that there is a definite relationship between well depth and water quality. Therefore, further efforts to obtain water from the existing wells meeting the radionuclides standard are not warranted.

8) Point Of Use / Point Of Entry

a) System Description

Point of use treatment is another way to remove impurities from drinking water by providing the required treatment at a decentralized level. It can be accomplished by either treating the entire supply for a home or facility (point of entry) or at individual taps within a home or facility (point of use).

The process of treatment varies according to type of unit. The most common processes are Reverse Osmosis (RO) and cation ion exchange.

b) Efficiency & Costs

The level of efficiency is dependent upon the type of unit, its configuration and the source of water. Costs of individual units vary too, but other costs need to be considered. Costs of administration, maintenance, monitoring and others would have to be weighed carefully.

c) Institutional Framework

An institutional framework in the form of a Water Quality District would need to be instituted to mange point of use/point of entry systems.

Institutional issues that should be considered when establishing a Water Quality District to ensure that adequate treatment is being provided also include:

- (1) Determining whether the purpose of the District is for compliance with drinking water regulations or for reduction of non-regulated and/or secondary contaminants.
- (2) Establishing a legal entity to obtain funding, incur costs and assume responsibility for point of use treatment systems.
- (3) Granting the right of access to all sites serviced by the water supply.
- (4) Including clearly defined provisions for equipment ownership, installation, monitoring and maintenance.

d) Application

Point of use treatment has the following associated advantages, when compared to central treatment:

- (1) Only water intended for consumption may need to be treated.
- (2) Costs per customer may be significantly lower for small communities.
- (3) Provides a means for private well owners to treat their water to assure continual supply.
- (4) Some forms of treatment may provide greater contaminant reduction than with central treatment.

The disadvantages of point of use treatment include:

 Greater complexity associated with control of treatment, monitoring, routine maintenance and regulatory oversight.

- (2) Life and efficiency of treatment units are dependent upon source water quality.
- (3) Monitoring costs will be higher than with central treatment.
- (4) Media beds may be susceptible to microbial growth.

The implementation of a point of use treatment concept in the City of Kaukauna would depend upon the acceptability of the public for creation of an institutional framework within which such treatment concepts could reasonably function. Additionally, the acceptability of this concept by the Wisconsin DNR as a means of compliance with the Water Quality Standards remains an issue. These and several other institutional factors suggest that this concept be removed from further detailed consideration.

9) Development Of Alternate Supply

a) General

Development of an alternate water supply having either a better water quality (less radium) or a supply not having a radium contamination problem is an alternative warranting evaluation. The obvious alternatives include development of an alternate groundwater supply either having less radium or a better water quality and the use of Lake Winnebago as a surface water source, which does not have a radium contamination problem.

The use of the Fox River as a surface water source has been determined by the DNR to not be an acceptable source of municipal drinking water supply. Purchase of water from another municipality supply should be explored.

b) Alternate Groundwater Supply

It would be necessary to locate an alternate groundwater supply approximately 3-miles to the northwest of Kaukauna in order to obtain water having significantly better quality, as measured by the

parameters of total dissolved solids, hardness and sulfates.

In general, the water quality would be similar to the quality of the water supply in the Little Chute area. It is expected, however, that there would be no appreciable change in the amount of gross alpha or combined radium in the supply than is experienced in the Kaukauna wells. With an alternate raw water supply having a hardness of approximately 25-grains, the most logical treatment process to remove the radium would be ion exchange softening.

While this alternate source of water would result in a water quality more desirous than the existing supply, it still would require treatment for removal of radium. As such, unless there were a stated objective of the Utility to increase the water quality of the supply or a need to significantly increase the capacity of the water supply system, there would appear to be no advantage to obtaining water from an alternate groundwater source. This option will be removed from further consideration for the analysis of options to address the radium issue. This option should be considered, however, if additional wells are needed to either provide additional supply or if a water source of better water quality is desired.

c) Surface Water Supply

The only surface water supply source reasonably available to Kaukauna would be Lake Winnebago, since the Fox River is not considered as an acceptable source and a Lake Michigan supply would not be economically feasible to develop for a single municipality in the Fox Valley region. The treatment process would be similar to that which is currently being utilized by the City of Appleton.

A preliminary cost estimate for such a facility, including the connecting pipe line, would be approximately \$15 million; making this option economically unfeasible. As such, this option will not be evaluated further.

d) Connection To The City Of Appleton

The City of Appleton currently has sufficient capacity to accommodate an additional average daily demand of 1.6 mgd and a maximum day demand of 2.1 mgd. There is also sufficient capacity within the Appleton distribution systems to deliver the flow rate required of the maximum day demand.

A connection to the Appleton system on the south side of the City of Kaukauna would require a 24,300-foot, 20-inch diameter, transmission main. This interconnection could require a pressure reducing valve to provide the required supply at the desired pressure in Kaukauna.

c. <u>Detailed Evaluation Of Treatment Alternatives</u> <u>To Address The Radium Issue</u>

1) Design Conditions

a) Water Quality

Due to the observed decline in water quality of the existing water supply, it will be necessary to estimate the future water quality parameters of the existing groundwater supply for the purposes of developing and evaluating alternate water treatment processes for removal of radium.

Due to the nature of some treatment processes, it may be necessary to evaluate each alternative in a very preliminary screening process to determine if resultant water quality would meet desired water quality objectives. Although some treatment processes could be implemented to only reduce the radium levels, the overall objective for total treatment of the water supply would be to remove the radium to minimum levels, reduce the hardness and the sulfates of the water, remove iron in the water and to reduce the total dissolved solids in the finished water. Elevated sodium levels above 250 mg/l resulting from any treatment process would be considered objectionable.

Generally speaking, for the purpose of evaluating water treatment processes, it will be assumed that the water quality parameters of hardness, total dissolved solids and sulfate of the raw water will increase by an additional 10%, over and above the existing levels measured in milligrams per liter or parts per million, over a 20-year design period.

b) Water Quantity

The static water levels in the Sandstone Aquifer in the Kaukauna area have been observed to have declined approximately 80-feet since the mid 1930's. The United State Geological Society conducted a groundwater flow model simulation of the region in an effort to estimate the future impact to water pumping levels in the region under the scenario of increased groundwater pumping in the Fox Valley region and with the existing groundwater users in the metropolitan Green Bay area no longer using groundwater for their water supply. The graphic results of those model simulations are provided in Appendix F, which illustrates that there would be a projected decline in water pumping levels in the Kaukauna area of an additional 66-feet over the current pumping levels, even with the Brown County communities connected to a surface water supply. Continued use of groundwater in that region of Brown County would have a more significant impact on the pumping water levels in the Fox Valley area.

For the purpose of evaluating and estimating capital and operating costs for various treatment processes utilizing the existing groundwater supply, the static water levels will be assumed to have stabilized with an additional decline of 40-feet in static water levels over the next 20-years. The yield of the well will not, however, be projected to decrease with the lower static and pumping levels.

For the purpose of developing preliminary treatment system sizes and costs, a plant having an average day demand capacity of 1.4 mgd and a maximum day demand capacity of 2.2 mgd will be utilized. For the purposes of developing annual operating costs, an annual average daily demand of 1.4 mgd will be utilized.

For the purpose of developing a treatment system at the individual well, the following wells will be provided with treatment systems to provide the required treated water volume.

- (1) Wells #4, #5 and #10 pumping to the Main Filter Plant for single treatment system (1.87 mgd).
- (2) Well #9 provided with a treatment system for pumping into the distribution system (1.75 mgd).
- (3) Well #8 provided with a treatment system for pumping into the distribution system (.57 mgd).
- (4) Total available supply capacity = 4.2mgd.
- (5) Total available treated capacity = 4.0 mgd.

2) Treatment Alternatives & Costs

a) General

Of the water treatment concepts presented in the previous section, the following have been considered for a detailed evaluation for the treatment of the existing groundwater supply, at the individual well sites. A cursory review of utilizing a central treatment system concluded that there would be a higher capital cost due to the significant piping costs associated with the interconnecting all the wells to a central site.

- (1) Synthetic Zeolite Ion Exchange
- (2) Nanofiltration (Reverse Osmosis)
- (3) Pre-Formed Hydrous Manganese Oxides
- (4) Radium Selective Media
- (5) Connection To Appleton Water System
- b) Alternative #1 Synthetic Zeolite Ion Exchange

The development of zeolite ion exchange system for effective radium removal while providing a non-aggressive water and maintaining a sodium level below 250 mg/l would require blending raw water at Well #9, Well #8 and at the Main Filter Plant to a 50% level of

total water supply, which would yield a hardness of approximately 24-grains and a radium level of less than 4 pCi/l.

A schematic of this treatment process is provided in Figure #5. A detailed capital cost summary for this alternative is provided in Table #12 and a detailed annual operating summary is provided in Table #13.

c) Alternative #2 - Nanofiltration(Low Pressure Reverse Osmosis)

The use of low pressure RO membranes have been documented to effectively remove radium, as well as the majority of all cations and anions in water. The recovery of feed water is approximately 75%, so that 25% of all feed water is discharged to the sanitary sewer as a waste. This waste normally contains approximately four times the level of radium in the feed water to the membrane. Since there is such a high percentage removal of all cations and anions in the water, the resultant water discharged from the membrane is low in calcium, alkalinity and pH. The treated water is unstabilized, aggressive and would be corrosive in the distribution system. In an effort to stabilize the water delivery to the system and to reduce the capital costs and operating costs of the treatment system, a bypass flow rate of approximately 50% around the membrane would combine with the treated water to produce a finished water having a radium level of below 4 pCi/l or 20% below the standard. In general, the water quality characteristics would be as follows:

			Blended
P	ermeate	Raw Water	Finish Water
	(mg/l)	(mg/l)	(mg/l)
Total Dissolved Solids	118	946	530
Calcium	6.5	226	115
Magnesium	1.0	22	12
Alkalinity	25.4	200	110
Sulfates	10.4	417	215

A schematic of this treatment process is provided on Figure #6.

Table #12

ALTERNATIVE #1 ION EXCHANGE SOFTENING OF 50% OF SUPPLY Summary Of Capital Costs

KAUKAUNA UTILITIES Evaluation Of Water Supply System

Treatment Equipment	\$325,000	
Building	270,000	## ## ## ## ## ## ## ## ## ## ## ## ##
Piping / Mechanical	125,000	
Site Piping	70,000	
Electrical / Controls	70,000	
Backwash & Brine Tank	80,000	
Pump Modifications	30,000	
Engineering & Contingency	230,000	
TOTAL		\$1,200,000

VELL #9		
Treatment Equipment	\$200,000	
Building	210,000	
Piping / Mechanical	115,000	
Site Piping	45,000	
Electrical / Controls	50,000	
Backwash & Brine Tank	80,000	
Pump Modifications	25,000	
Engineering & Contingency	175,000	
TOTAL		\$900,000

Treatment Equipment	\$170,000	
Building	155,000	
Piping / Mechanical	80,000	
Site Piping	45,000	
Electrical / Controls	25,000	
Backwash & Brine Tank	65,000	
Pump Modifications	10,000	
Engineering & Contingency	150,000	
TOTAL	\$70	00,00
TOTAL	\$2,80	00,00

Table #13

PROJECTED OPERATION & MAINTENANCE (O&M) COSTS For Water Treatment Alternatives

For Water Treatment Alternatives
KAUKAUNA UTILITIES
Evaluation Of Water Supply System

	Existing Facility	Alternative #1 lon Exchange	Alternative #2 Reverse Osmosis	Alternative #3 HMO's	Alternative #4 Radium Selective Media (WRT)	Alternative #5 Purchase Water From Appleton
SOURCE OF SUPPLY						
Operations	\$25,573	\$25,600	\$25,600	\$25,600	\$25,600	\$25,600
Expenses	6,269	6,300	6,300	6,300	6,300	008'9
Maintenance	4,942	5,000	5,000	5,000	2,000	2,000
SUBTOTAL	\$36,784	\$36,900	\$36,900	\$36,900	\$36,900	\$36,900
PUMPING EXPENSES						
Operations	\$29,540	\$30,000	\$30,000	\$30,000	\$30,000	\$0
Electric	69,303	75,000	000'06	70,000	000'02	0
Expenses	4,270	4,300	4,300	4,300	4,300	0
Maintenance	24,186	24,200	24,200	24,200	24,200	0
SUBTOTAL	\$127,299	\$133,500	\$148,500	\$128,500	\$128,500	
WATER TREATMENT						
Operations	\$20,760	\$60,000	\$80,000	\$25,000	\$25,000	\$0
Chemicals	39,708	83,600	65,000	47,000	40,000	0
Maintenance	27,401	20,000	45,000	30,000	30,000	0
Membranes			30,000		300	0
Purchase	•				225,000	\$1,375,000
SUBTOTAL	\$87,869	\$193,600	\$220,000	\$102,000	\$320,000	\$1,375,000
TOTAL	\$251,952	\$364,000	\$405,400	\$267,400	\$485,400	\$1,411,900
Net Increase from Existing		\$112,048	\$153,448	\$15,448	\$233,448	\$1,159,948

A detailed capital cost summary for this alternative is provided in Table #14, and a detailed annual operating cost summary is provided in Table #13.

d) Alternative #3 - Hydrous Manganese Oxide

The existing iron filters and current practice of permanganate addition prior to the filters for iron oxidiation provides a unique opportunity to modify the current operational practices to add a source of manganese to pre-form manganese dioxide on which the radium would be absorbed for eventual removal by the filter media. Replacement of the existing .8 mm to 1.0 mm anthracite with .35 mm greensand provides a more effective media for removal of the small particle size of the manganese dioxide and to prevent the passing of unoxidized permanganate through the filter. The backwashing frequency of the filter media, based upon the operating results from Well #8, may need to be increased from the current one backwash per week per site to every 32 to 40-hours of operation. There is potential for manganese breakthrough of the filter media should the filter operate beyond this schedule. It is, therefore, recommended that the burden and time required for the operation of the filter backwashing process at Well #8 and the Main Filter Plant be automated to accommodate the additional backwashing operations, which is now viewed as a critical operating condition to ensure both compliance with the radium standard but also to keep the manganese levels in the filtered water to below .030 ppm.

The City has requested that a holding tank be provided at Well #8 to relieve the high flow rate discharged to the sanitary sewer during the filter backwash operation.

A schematic of this proposed operation as applicable at Well #8 is provided on Figure #7. This same process would be applied at Well #9 and the Main Filter Plant.

A detailed capital cost summary for this alternative is provided on Table #15, and a detailed operating cost analysis of this alternative is provided on Table #13.

Table #14

ALTERNATIVE #2 REVERSE OSMOSIS TREATMENT OF 50% OF SUPPLY Summary Of Capital Costs

KAUKAUNA UTILITIES
Evaluation Of Water Supply System

AIN FILTER PLANT		
Treatment Equipment	\$360,000	
Equipment Installation	145,000	
Piping / Mechanical	150,000	
Building	100,000	
Site Work	60,000	
Electrical / Controls	75,000	
Engineering & Contingency	220,000	
TOTAL		\$1,110,00
ELL #9		
Treatment Equipment	\$330,000	
Equipment Installation	140,000	
Piping / Mechanical	150,000	
Building	120,000	
Site Work	60,000	
Electrical / Controls	90,000	
Below Grade Reservoir	100,000	
Booster Pumps	60,000	
Engineering & Contingency	260,000	
TOTAL		\$1,310,00
ELL #8		1850
Treatment Equipment	\$250,000	
Equipment Installation	100,000	
Piping / Mechanical	90,000	
Building	80,000	
Site Work	50,000	
Electrical / Controls	65,000	
Engineering & Contingency	165,000	
TOTAL	•	\$800,00

\$3,220,000

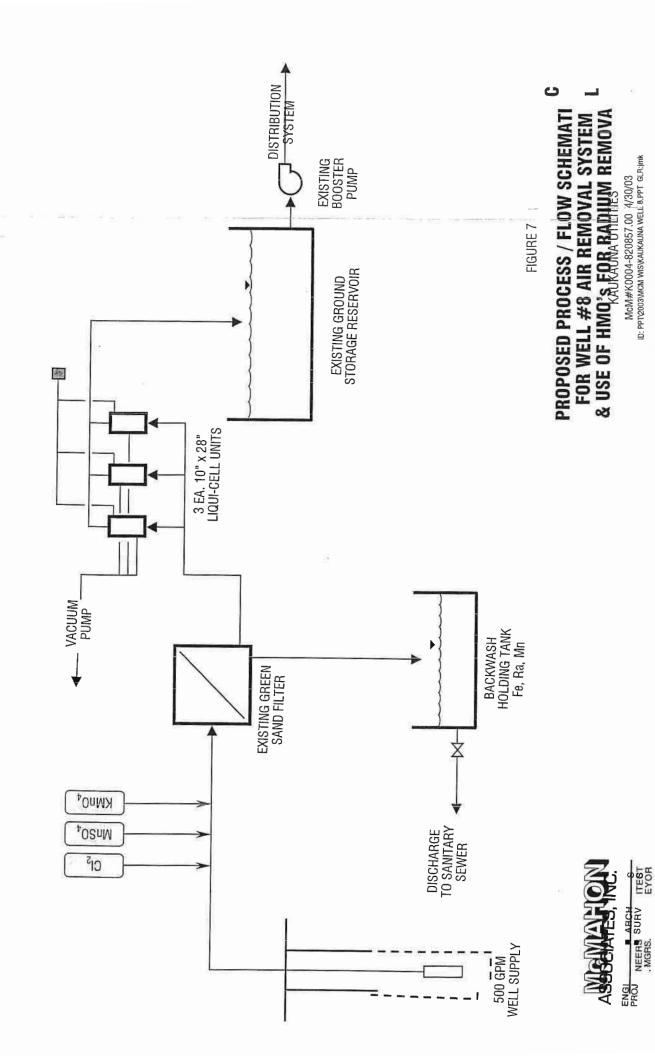

TOTAL

Table #15

ALTERNATIVE #3 HYDROUS MANGANESE OXIDE IN EXISTING FILTERS Summary Of Capital Costs

KAUKAUNA UTILITIES
Evaluation Of Water Supply System

	\$120,00
75,000	
5,000	
10,000	
\$30,000	
30 V 51 = 11 g 1 × 11 S.	May 1719-5
	\$47,00
15,000	
\$32,000	
	\$93,00
15,000	
33,000	
\$45,000	
֡֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	\$32,000 15,000 \$30,000 10,000 5,000

ITEGT EYOR

e) Alternative #4 - Radium Selective Media

The use of a media specifically designed to remove only radium does not impact other water quality issues, which would impact the water quality of the existing water supply. The absorption of radium onto this selective media does result in a low level radioactive waste, which must be properly disposed of. As such, the implementation of this alternative is viable only under a loan/lease arrangement where all treatment equipment and media and media disposal are leased from Water Remediation Technology, LLC (WRT) for a unit cost per thousand gallons of water treated. This concept removes liability from the Utility and provides a guarantee to meet the water quality standard for radium.

Facilities to house the equipment and piping to and from the treatment equipment would be provide by the Utility. Additional detail on this proposal is provided in a proposal from WRT in Appendix H.

A detailed capital cost summary for this alternative is provided in Table #16, and a detailed operating cost analysis is provided in Table #13.

f) Alternative #5 - Connection To Appleton

A direct connection to the Appleton system would eliminate the need for pre-pumping of the water as the hydraulic grade line in the Appleton system is greater than the grade line in the Kaukauna system. Since the water supply from Appleton is softened, a benefit of this option is the delivery of a 100% softened water supply to the residents.

A detailed capital cost analysis for this alternative is provide in Table #17, and a detailed operating cost analysis is provided in Table #13.

g) Summary & Analysis Of Results

The operating costs associated with each of the five evaluated alternatives are presented and compared on

Table #16

ALTERNATIVE #4 RADIUM SELECTIVE MEDIAL (WRT) Summary Of Capital Costs

KAUKAUNA UTILITIES
Evaluation Of Water Supply System

Building	\$125,000	
Piping / Mechanical	75,000	
Site Piping	40,000	***************************************
Electrical / Controls	40,000	
Engineering & Contingency	70,000	
TOTAL	\$3	50,000

Building	\$100,000
Piping / Mechanical	75,000
Site Piping	30,000
Electrical / Controls	30,000
Engineering & Contingency	60,000
TOTAL	\$295,0

Building	\$80,000	
Piping / Mechanical	65,000	
Site Piping	30,000	
Electrical / Controls	30,000	
Engineering & Contingency	50,000	
TOTAL	\$255	5,000
TOTAL	\$900	,00

Table #17

ALTERNATIVE #5 CONNECTION TO CITY OF APPLETON Summary Of Capital Costs

KAUKAUNA UTILITIES Evaluation Of Water Supply System

20-Inch Water Main (22,000 feet)	\$1,760,000
Pressure Reducing Valve & Metering	80,000
Engineering & Contingency	460,000
TOTAL	\$2,300,00

Table #18 to the year 2001 operating costs required to support the existing water supply and treatment system. The net increase in annual operating costs for each alternative over current costs is also provided on Table #18.

The initial capital cost to implement each of the five alternatives are also summarized in Table #18, together with the annual debt service cost required to support that capital cost over 20-years at 4½% interest rate and with an additional 30% added for bond service coverage. The additional increase in annual operating costs for each alternative is added to determine the total increase in annual revenue required to support each alternative, together with the percentage increase of total annual revenue over the year 2001 annual water sales of \$1,895,636.

The use of pre-formed hydrous manganese oxides in the existing iron filtration system has a significantly lower capital and operating cost impact to current operations. The promising operating results demonstrated at Well #8 in removing the radium and controlling the manganese in the filtered water suggests that this process can effectively be utilized at all of the other wells. It is recommended that this treatment process be implemented at each of the well sites, together with upgrades to the filtration process to automate the filter backwash operations.

2. Secondary Drinking Water Standards

The secondary standard for fluoride in drinking water is 2.0 mg/l. Analysis results presented on Table #9 indicate that in 1999 the Kaukauna raw water supply did not exceed the fluoride secondary standard. However, the level of fluoride in both Well #4 and Well #5 was measured at 1.90 mg/l in 1999. In the past, the level of fluoride has exceeded 2.0 mg/l in both of these wells.

The secondary standard for iron in drinking water is 0.3 mg/l. Iron levels found in all wells, except Well #5, are greater than 0.3 mg/l. In the past the iron level in Well #5 water has also exceeded the limit. The raw water supply is treated and the iron level in the water delivered to the customer is less than 0.1 mg/l.

Table #18

SUMMARY & COMPARISON OF WATER TREATMENT ALTERNATIVES Water Revenue Impact Analysis

KAUKAUNA UTILITIES
Evaluation Of Water Supply System

	Alternative #1 Ion Exchange	Alternative #2 Reverse Osmosis	Alternative #3 HMO's	Alternative #4 Radium Selective Media (WRT)	Alternative #5 Purchase Water From Appleton
Initial Capital Cost	\$2,800,000	\$3,220,000	\$260,000	\$900,000	\$2,300,000
Debt Service Cost					
Principle & Interest With 30% Coverage (1)	285,000	322,000	26,000	90,000	230,000
Net Increase In O&M Costs (2001) From Existing	112,048	153,448	15,448	233,438	1,159,948
TOTAL INCREASE IN ANNUAL COST	\$397,048	\$475,448	\$41,448	\$323,448	\$1,389,948
TOTAL INCREASE IN ANNUAL REVENUE REQUIRED (2)	20.7%	25%	2.2%	17.0%	73.3%

⁽¹⁾ Annual debt service cost for 20-year amortization at 41/2% per annum. (2) Year 2001 annual water sales: \$1,895,636

The secondary standard for sulfate is 250 mg/l. The raw water obtained from all of the wells has sulfate levels in excess of 250 mg/l. It is not feasible to reduce the sulfate levels in the existing water supply.

3. Air Entrainment

As described previously, observations were conducted in January 2003 to document air entrainment conditions at each of the wells. The results are summarized on Table #4. From these observations, it is evident that all the wells have air entrainment resulting in a milky white coloration as the air comes out of solution and is released. Wells #4, #5 and #10, combined, pump through an iron filter to a large ground storage reservoir for re-pumping. There is a slight trace of remaining dissolved air in the supply to the booster pumps and in the pump discharge. As Well #9 pumps through an iron filter, air remains in the water and is evident in the filter effluent. Entrained air was also observed in a distribution system sample taken at Well #10. The results of that observation are summarized in Table #4 and included the following:

Distribution System Sample

Observation #1 - 10:00 a.m.

- a. Water sample cloudy with small bubbles, turns milky white within 15-seconds.
- b. Sample cleared of air in less than 3-minutes.

Observation #2 - 1:30 a.m.

- a. Water sample clear at time zero, then air bubbles start to form.
- b. Sample cleared of air in less than 3-minutes.

In an effort to determine the nature and source of the entrained gases in the water supply from each of the five wells, a detailed analysis of this condition was completed by Dr. Tim Grundl. Dr. Grundl's complete report is provided in Appendix I. In summary, the analysis of entrained gases collected at each well site have determined that excess nitrogen is present in concentrations of 28 to 30 ppm. Carbon dioxide is also present at levels of 22 to 25 ppm, which is causing the low pH levels in the wells. The purging or removal of the carbon dioxide will have the beneficial effect of increasing the pH of the water entering the distribution system.

Dr. Grundl proposes a theory as to the source and cause for these high nitrogen levels. The concepts contained in that theory are contrary to widely held opinions formulated in the Fox Cities Groundwater Study, where the upper geological bedrock units were considered as confining layers,

preventing the vertical movement of surface water to the Cambrian Sandstone aquifer used for the groundwater supply in the Kaukauna area.

The cause for this occurrence is under continued study by the United States Geologic Survey (USGS) and graduate students from the University of Wisconsin - Milwaukee. Reference Appendix J.

The presence of these entrained gases are most evident in the distribution system when Well #8 is in operation. It is at this well site that treatment to remove this air is required to allow continued use of this well.

The majority of the visible entrained gases escape upon release to atmospheric pressure within 30-seconds. The sampling conducted at Well #8 at the wellhead found the nitrogen to be 28.8 ppm and had reduced to 25.2 ppm after the 15-minute detention tank. This level was still greater than the concentration of one atmosphere partial pressure.

Complete removal or to a non-objectionable level requires several hours of detention time, as can be provided at the Main Filter Plant. The 15-minutes of detention time provided at Well #8 is not sufficient for all the gas to escape. There are several alternatives to remove these dissolved gases:

- a. Long detention ground storage reservoir.
- b. High efficiency air stripping towers.
- c. Membrane contactors.

Of these options, the use of the membrane contactor is the option most likely to effectively remove the dissolved gases as removal efficiencies of greater than 98% can be achieved with a multiple pass system. It is unlikely, however, that the removal of more than 85% of the dissolved nitrogen that can be obtained with a single pass system would be required. A completed proposal and projected removal efficiencies of single, double and triple pass systems provided by membrane Liqui-Cel membrane contactors is provided in Appendix K.

For Well #8, the use of three 14-inch diameter membrane modules operating at 200 gpm each would provide 600 gpm of treatment capacity. The membranes would operate under vacuum to create the driving force to cause the dissolved nitrogen and carbon dioxide to pass from the water through the membrane to release to the atmosphere. The estimated cost to implement this technology at Well #8 was documented in an earlier section of this report and that part of the cost specifically related to removing the air is detailed as follows:

Membranes	\$30,000
Vacuum Pump / Mechanical	20,000
Building Modifications	10,000
Electrical	5,000
Engineering & Contingencies	
Total	

Should the high levels of nitrogen, which are also evident at Well #9, result in customer complaints, a similar system could be implemented at Well #9. Prior to installation, it is proposed to operate a 50 gpm pilot study at Well #8 using a 6-inch diameter membrane module to verify the adequacy of a single pass system to provide the desired nitrogen removal levels.

IV. SUMMARY

A. Water Supply

Two alternatives were evaluated to provide an additional 700,000-gallons per day of supply that will be required, in addition to the supply from the existing water supply system, in order to meet the year 2020 maximum day demand. Improvements at each of the existing wells, pumphouses and treatment plants are recommended to increase the water supply and treatment capacity to meet this requirement at a cost of \$650,000. A more costly alternative would be to construct a new well and treatment system in a location north of the City, where a better quality can be obtained. While construction of an additional well is not warranted at this time, it may be advantageous to the Utility to identify and secure an area to the north for future siting of a well when additional capacity will be needed.

B. <u>Water Quality Compliance</u>

A total of five alternatives were investigated to address the non-compliance issue relating to the elevated gross alpha and Radium 226/228 levels in each of the wells. Clearly, the most cost effective alternative will be to implement the use of pre-formed hydrous manganese oxides, as is currently under a detailed and full-scale pilot operation at Well #8. The current operation at the Main Filter Plant and Well #9 would be modified to add a source of manganese and to replace the filter media with Greensand. Automation of the filter backwashing operations at Well #8 and the Main Filter Plant are recommended to implement a more vigorous filter backwash schedule, and a holding tank at Well #8 is recommended for controlled release of the backwash water to the sanitary sewer. The estimated cost to implement these system changes is \$260,000.

C. Entrained Air Issue

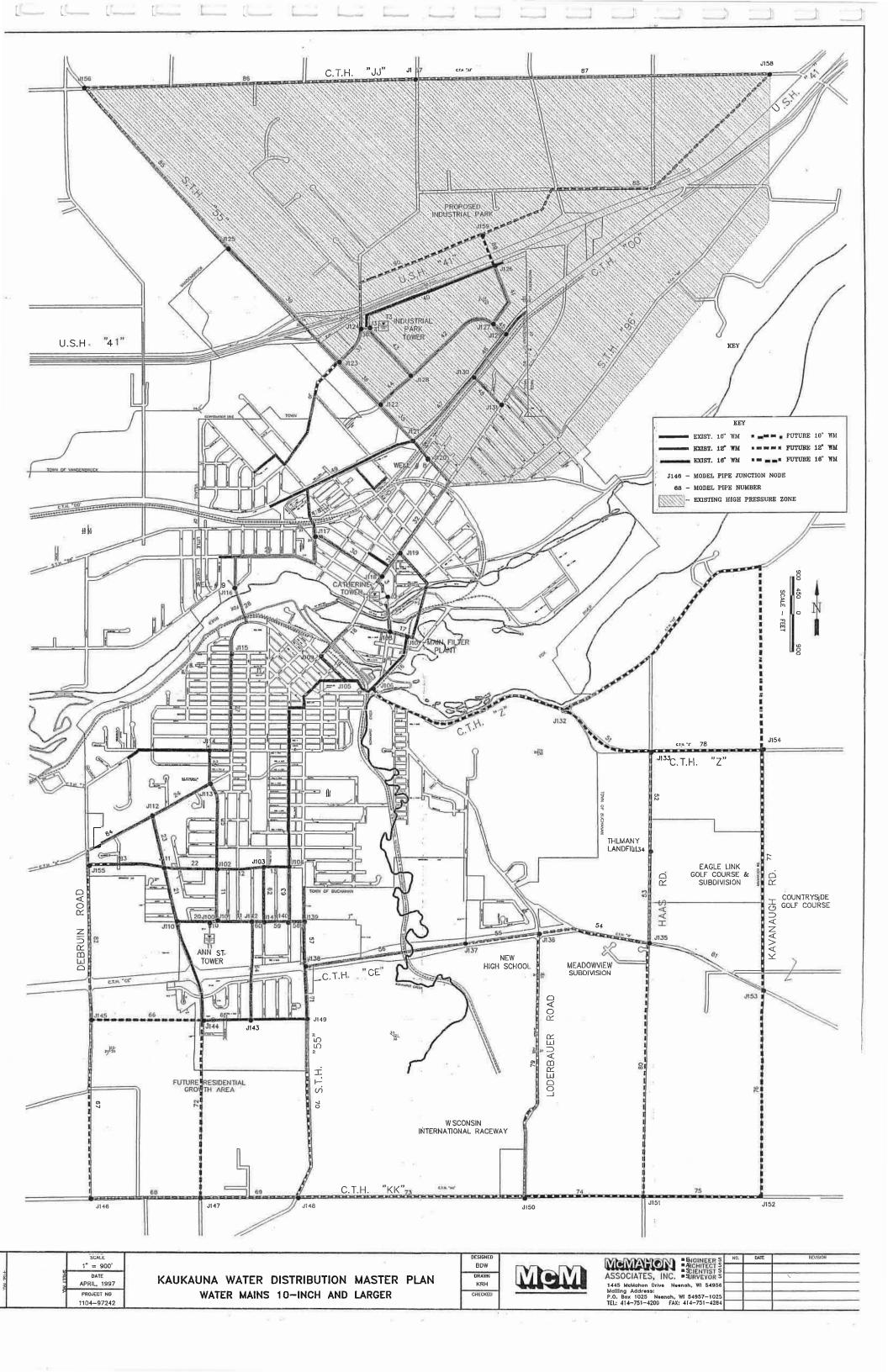
A detailed study of the entrained air problem, most evident at Well #8, was conducted by Dr. Tim Grundl. The entrained air is nitrogen, present at levels of 28 to 30 ppm, well above the saturation levels at atmospheric pressure. High levels of carbon dioxide are also present, which is depressing the pH in the water supply. While the source of the nitrogen and carbon dioxide is not known and under continued study, it would be necessary to remove these gases for aesthetic purposes. The most effective technology to remove this air is with an ultrafiltration membrane operating under a vacuum to pull the dissolved gases from the water. As this is a new application of this technology, it is recommended that a pilot study be conducted to determine the number of passes through the membrane reactor that would be required to remove the gases to an acceptable aesthetic level.

A 50 gpm pilot study would be implemented at Well #8 using a 6-inch membrane and a rented vacuum pump over the period of several weeks to verify the feasibility of this technology.

D. Implementation Schedule

The following schedule, provided in Table #19, is recommended for implementation of the water system improvements required to address the radium non-compliance issue, to increase the capacity of the water supply system and to address the entrained air issue at Well #8.

Table #19


IMPLEMENTATION SCHEDULE Capital Improvement Plan - Water Supply System

KAUKAUNA UTILITIES
Evaluation Of Water Supply System

Event	Schedule	Cost
Pilot Testing Of Air Removal System At Well #8	Summary 2003	\$3,500
Pre-Purchase Of Greensand Filter Media	Summary 2003	\$45,000
Air Removal System At Well #8 & Replace Piping & Automate Backwash System	Fall 2003	\$125,000
Change Media At Well #9 & Replace Pump/Motor	Fall 2003	\$90,000
Change Media At Main Filter Plant & Automate Backwash System	Fall 2003	\$70,000
Holding Tank At Well #8	2004	\$75,000
Deepen Well, New Pump/Motor At Well #5	2006	\$105,000
Add New Filters At Main Filter Plant	2007	\$400,000
TOTAL		\$913,500


APPE DIX A

WATER DISTRIBUTION MASTER PLAN

APPENDIX B

2002 WISCONSIN DEPARTMENT OF NATURAL RESOURCES (DNR)
SANITARY SURVEY

State of Wisconsin \ DEPARTMENT OF NATURAL RESOURCES

Scott McCallum, Governor Darrell Bazzell, Secretary Ronald W. Kazmierczak, Regional Director Northeast Region Headquarters 1125 N. Military Ave., P.O. Box 10448 Green Bay, Wisconsin 54307-0448 Telephone 920-492-5800 FAX 920-492-5913 TDD 920-492-5912

July 3, 2002

Mr. James Jellish
Superintendent
Kaukauna Electric and Water Department
777 Island Street Street
Kaukauna, Wisconsin 54130

FID# 445033600 MC Outagamie Co.

Subject: 2002 Sanitary Survey

Dear Mr. Jellish:

Attached is a report on the investigation of the Kaukauna public water supply system, conducted on June 20, 2002. The fine cooperation of Mr. Kevin Obiala and yourself was appreciated during this investigation. The report evaluates the water system, in relation to current construction requirements reviews operating procedures and water quality, and concludes with recommendations concerning conditions observed.

On the basis of this investigation, it is concluded that the operation and maintenance of the Kaukauna water supply is excellent. However, there are corrections/changes necessary to bring the system into compliance with current Wisconsin Administrative Codes. So to improve the water system, and to provide the best possible service to the consumer, the Utility is strongly urged to implement the recommendations in this report in a timely manner. Please provide a written response, regarding the recommendations in this report, by October 1, 2002.

Thank you for your cooperation.

Sincerely,

Robert P. Barnum

Water Supply Engineer

Cc: Mr. Jeff Feldt, General Manager

Mr. Kevin Obiala, Kaukauna Water Utility Operator

Le Clerc DG/2 Khatri

Report on the Investigation of the Public Water Supply System At the City of Kaukauna, And Opera ted by the Kaukauna E lectric and Water Utility

The City of Kaukauna water supply system consists of five wells, and two 500,000gallon elevated storage reservoirs. Also, present are a 15,000 gallon grounds torage reservoir on BlackwellStreet us ed tostrip air from the water provided from Well# 8, and two adjacent ground storage reservoirs at the Elm Street plant that have a combined capacity of 598,000 gallons.

Wells #4, 5, and 10 pump directly to the iron filters at the Elm Street treatment plant, with only the water from Well #5 disinfected prior to the plant. However, the water from all three wells is treated with potassium permanganate prior to the filters as an oxidant. After iron filtration, the water is treated with sodium silicate for corrosion control, and sodium hypochlorite as a disinfectant prior to being discharged into the adjacent ground storage reservoirs.

Well #8, located on Blackwell Street, would be treated much the same way with the addition of potassium permanganate, sodium silicate, and sodium hypochlorite, and iron filtration, however, this well is not being used for the distribution system, because it produces cloudy water, caused by entrained gases. A 15,000 gallon ground storage reservoir and repumping system was installed to try and eliminate this problem, but it has not been as effective as hoped.

Well #9 pumps directly to the iron filtrationplant in Riverside Park. Sodium hypochlorite, as a disinfectant, and potassium permanganate as an oxidant, are added prior to the iron filtration, and sodium silicate is added after the iron filters. This well is shock-chlorinated monthly to prevent iron bacteria growth.

The Kaukauna water system was initially constructed in 1898, and over the years saw the construction and eventual abandonment of numerous wells, and storage facilities. It is interesting to note that the original wells drilled for the City operated under artesian head, and now the static water levels in the current wells average between 110 and 200' below ground. As the population of Fox River Valley area continues to increase, it will place an even larger burden on the groundwater resources of the area and the Utility should expect continued dropping of the static and pumping water levels of the wells, and a continued decline in water quality characteristics. The City should be proactive in the promotion of water conservation, and in planning for the future growth and needs of the City, as well as, the growth and needs of the ValPy area as a whole.

As the Uti lity is aware, a violation of the radioa ctivity standard for alpha rad iation (15 pCi/l) exists for the water system. The level in the City water supply has been over

the years between 15 and 30 pCi/l, depending on sample location. The City is required to provide quarterly notices to the served public regarding this violation. In 2000, a composite radioactivity sample was taken from the distribution system that showed an alpha level at 64 pCi/l, and a combined radium level of 20.2 pCi/l. The combined radium standard is 5 pCi/l. These results were vaived as they were such a marked increase from previous results that it was thought that results were in error, however the Utility was asked to conduct quarterly composite samples during 2001. These results came back at a level of alpha of 15 pCi/l, right at the standard, and combined radium at 3.51 pCi/l, which is below the standard. During 2002, the Department has asked the Utility to conduct radioactivity sampling at each of the entry points to the distribution system.

The Utility still has a violation of the alpha standard and will be required to bring this level into compliance by December 2003, or to enter into a consent order, a legally binding a greement, with the D epartment on a timetable to bring the system into compliance.

Previous sample results from the individual wells appear to indicate that some of the wells will exceed the radium standard at the entry point to the distribution system. However, the Utility is being proactive in resolving this and has been approved to conduct a year pilot study at Well #8 to perform enhanced oxidation to determine if the utilization of hydrous manganese oxides will allow a higher percentage removal of radium 226/228.

I reviewed the City's Consumer Confidence Report (CCR) for 2000, during this survey, and found it to be a very well done report. On future CCR reports, the City might want to include information on water conservation, as this will be an issue for all water suppliers in the future, and on what the City is doing on the radioactivity issue. An informed public can be a very valuable asset in supporting water system improvements.

Security issues pertaining to drinking water supplies have long been a concern in the assurance of a safe supply of water. All public water supply systems are at risk. The Department recommends that the City perform a security analysis of its facilities to insure that all reasonable me asures are being taken to minimize the possibility of the drinking water being compromised. This analysis should include, but not be limited to, the installation of security lighting; the installation of motion detectors; the installation of security alarms; the maintenance of locks; the assurance of daily distribution system chlorine residual; the performance of daily inspections of water system facilities; restricting those with access to water system facilities; increasing police surveillance around water system facilities and restricting parking adjacent to water system facilities. The City is encouraged to address this issue as soon as practical. Listed below are the "top 10" things you can do to protect your water system from contamination and other harm:

1. Prepare (or update) a written emergency response plan. Make sure all employees help to create it and receive training on the plan;

2. Post updated emergency 24 - h our numbers at your facilities in highly visib le areas (pumphous door. vehicles, office) and give them to key personnel and local response officials:

personnel and local response officials:

3. Get to know your local police an ask them to add your facilities to their routine rounds. Practice emergency response procedures with local police, emergency response and public health officials:

4. Fence and lock your drinking water facilities and vulnerable areas (e.g. wellhead, hydrants, manholes, pumphouse, and stope tanks);

5. Lock all entry gates and doors and set alarms to indicate gal entry
Do not leave keys in equipment or vehicles at any time;

6. Install good lighting around your pumphouse, treatment facility and parking lot:

 Identify existing and alternate war supplies and maximize use of backflow prevention devices and maximize use of

8. Use your Source Water Assessment information to we with any businesses and homeowners that are listed as potential ources of contamination and lessen their that to your source;

9. Lock monitoring wells to prevent vandals or terrorists from pouring contaminants directly into ground water near your source. Prevent pouring or siphoning contaminants through vent pipes by moving them inside the pumphouse or treatment plant, or if that isn't possible, fencing or screening them; and

10. In case of an emergency, first cal "911", then follow your emergency response plan.

In my review of the well vulnerability maps (attached), it was apparent that many potential contaminant source sites are not reflected on the maps. The Department will be conducting a survey to update these maps in the near future, and you may be contacted for assistance. These vulnerability surveys are used to determine sampling requirements for the City.

Attached are data sheets regarding the investigation of the Kaukauna water system conducted June 20, 2002. Basically, the system is well operated and in very good condition. However, to improve the water system and protect the health and welfare of the consumer, the City Utility is urged to implement the following recommendations:

- The City Utility is reminded that public notification of the alpha radiation maximum contaminant level exceedance is required quarterly with a copy to be sent to this office.
- According to the Department records, a current system map is not on file with the
 Department. It is our understanding that the system map is currently being
 updated. Please provide this office with a copy of the updated system map when it
 becomes available.

Overflow points of reservoirs, both ground and elevated, are very difficult to seal from the entrance of insects and such. Most times an overflow incident will blow out the required screen at the terminus of the overflow, or the screen is such a mesh size that the entrance of insects and other small creatures is very difficult to prevent. Counter-balanced flaps with neoprene gaskets are being used very successfully by the City, however, the City should make sure that they open at a low pressure range, 2-4 psi., so that during freezing conditions ice plugs are not formed.

(+)

formed. The will attempt to adjust tension on the counterweight flaps to open at a pressure range of 2-4psi.

During the survey, it was noted that the City has an adequate program for cross-

4. During the survey, it was noted that the City has an adequate program for cross-connection control, however, inspections are not currently being documented. In our discussions, it was app arent that documentation could be provided on the computer system in the future, please make sure that this is done.

- 5. It was noted that valve exercising occurs only once every three years. To prevent future system maintenance problems, it is urged that this program be increased to at least every two years.
- An examination of the inspection history of the ground storage reservoirs at the Elm street plant shows that they have not had an interior inspection since 1991. Wisconsin Administrative Code states, "Water storage facilities shall be emptied and inspected at least once every 5 years". In addition, the elevated storage reservoirs need to meet this requirement. Please put together and implement a plan to conduct interior and exterior inspections of your ground and elevated storage reservoirs by October 1, 2002, as required by Wis. Adm. Code NR 811.08(5). The City is remirded that when conducting these inspections that an inspection form (found on the D epartment web site) needs to be completed and submitted to the Department.
- 7. During 2001, the City experienced a waterloss of only 9% In 1995, the loss was 17%. The City's to be commended for thesteps they have taken to a chieve this reduction.
- 8. The City is reminded that the Consumer Confidence Report is required to be provided to your customers by July 1, 2001, and by that date every year after. Also, a certification form is to be submitted to the Department by October 1, 2001. If you need additional help on this, please contact me.
- 9. Attached you will find the vulnerability maps for your wells showing potential contaminant sources. You'll note a buried bulk fuel tank adjacent to Well # 10. As a City, you might want to look critically atth ese sources, and develop well-head protection plans for future protection of your drinkingw ater supply
- 10. At Well #5, the water prelube line for the well pump bypasses the solenoid and is in a constant feed mode. This is a considerable loss of water and should be corrected.

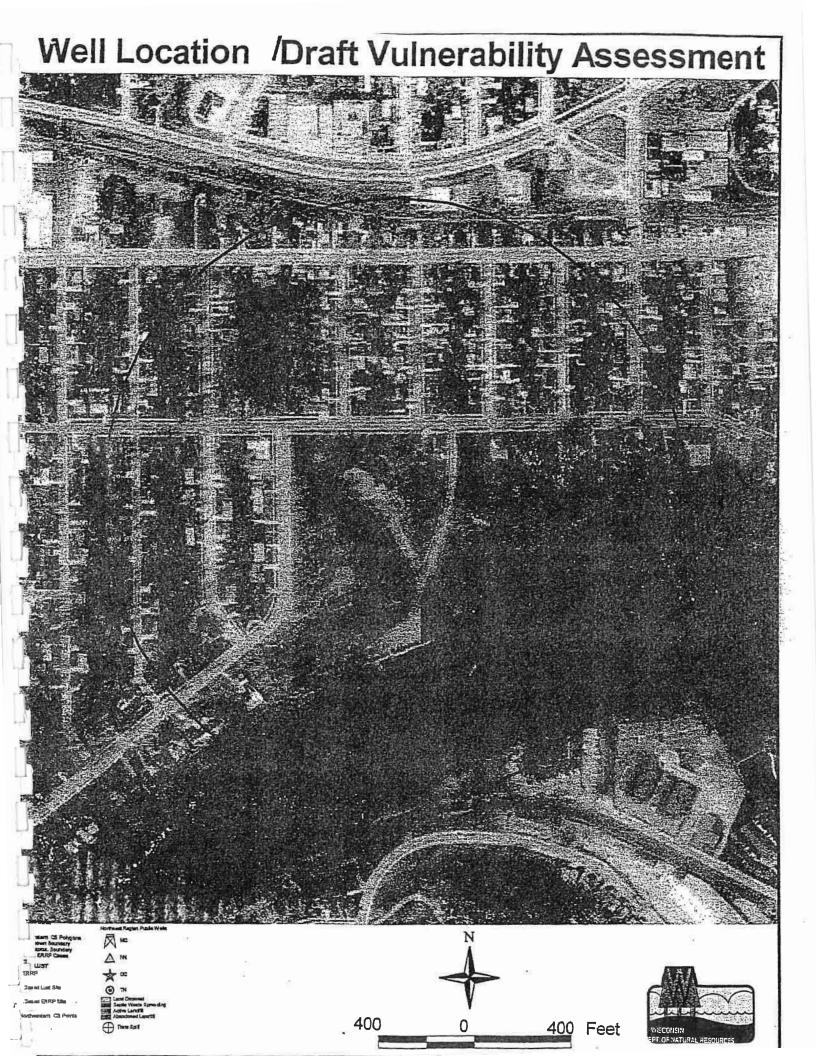
4

- The screen on the vent of the Blackwell Street reservoir needs to be replaced to preclude the entrance of animals and insects, as required in Wisconsin Administrative NR 811.58(8).
- The a dditon of sodium hypochlotie to the waterdischarged from Well #9, prior to the ironfilters at the RiversidePlant, see ms tobe un eccessary at this addition point, and robably add in excessive amounts oc ounter the chlorine demand through the filter poc ess. The City should investigate chlorine addition after the iron filter.
- 13. There has been some confusion regarding sampling point cations for the yearly monitoring requirements associated with the Safe Drinkis Water Act. Fol lowing is a listing of the sample points, and their designation:

Source	Designation	Number
Well #4 (BG 574)	Source	4
Well #5 (BG 575)	Source	5
Well #8 (HJ 196)	Source	8
Well #9 (BG 578)	Source	9
We 11 #10 (BG5%)	Source	10
Bla ckwell StreetPlant*	Entry Point	200
Riverside Plant*	Entry Point	300
Elm Street Plant*	Entry Point	400

^{*} These samples are all after treatment, prior to entering the distribution system.

14. The City shall include daily results of chemical residuals at each entry point into the distribution system, and chlorine residuals in the distribution system at least twice per week on the monthly reports. In addition, monthly water levels should be entered on the reports.


15. Please be reminded that, in accordance with W\$c onsin Statutes, plans and specifications for all modifications or additions to the water system should be prepared by a registered engineer and approved by the Department prior to installation or construction.

If you have any questions regarding this report, please contact me at 920-492-5888.

Well Location / Draft Vulnerability Assessment 400 400 Feet

Vell Location Draft Vulnerability Assessment 400 400 Feet

Well Location / Draft Vulnerability Assessment 400 Feet 400

Well Location / Draft Vulnerability Assessment 400 400 Feet

PAGE:: 1

GENERAL INFORMATION

SYSTEM NAME: Kaukauna Electric & Water Department

SURVEY DATE: June 20,2002

SYSTEM OWNER: City of Kaukauna

PWS I.D.: 445033600

INSPECTOR'S NAME: Bob Barnum

OFFICAL'S NAME: Jeff Feldt

TITLE: General Manager

OPERATOR'S NAME: Kevin Obiala

PHONE: 920-462-0233

ADDRESS: 777 Island Street

SUPERINTENDENT'S NAME: James Jellish

PHONE: 920-462-0216

ADDRESS: 777 Island Street

CLERKS NAME: Sue Duda

PHONE: 920-766-6300

UTILITY ADDRESS: 777 Island Street

ZIP CODE: 54130

COUNTY: Outagamie

DISTRICT: NER

OTHER PHONE NUMBER (S): 920-766-5988

FAX NUMBER: 920-766-7698

TOTAL STORAGE: 1,579,000 GALLONS

BOOSTED STORAGE: 579,000 GALLONS

GAVITY STORAGE: 1,000,000 GALLONS

PRESSURE TANK STORAGE: N/A GALLONS

DESIGN PUMPING CAPACITY: 4,608,000 GPD

EMERGENCY POWER PRODUCTION: 2,783,520 GPD

TOTAL NUMBER OF WELLS: 5

NUMBER OF PRESSURE ZONES: 1

SURFACE WATER SOURCE: --

NAME:

CHEMICAL ADDITION: Permanganate, Sodium Silicate, Sodium Hypochlorite

TREATMENT: Iron removal

SYSTEM CLASSIFICATION: G.D.I.

PAGE: 2

POPULATION / COMSUMPTION

WATERWORKS: Kaukauna

PWS I.D.: 445033600

CURRENT POPULATION: 12,983

YEAR: 2001

POPULATION AT PREVIOUS SANITARY SURVEY: 12,505

DATE: 1995

NUMBER OF SERVICES:

TOTAL:

5,003

METERED: 5,003

RESIDENTIAL: 4,620

INDUSTRIAL: 14

COMMERCIAL: 344

OTHER: 25 Public Use

CONSUMPTION:

YEAR

AVERAGE DAY

MAXIMUM DAY

PER CAPITA/DAY

2001

1,207,450

1,961,000

92.88

TOTAL

PUMPED

TOTAL

. . -

PERCENT

YEAR

FROM WELLS

PUMPED TO MAINS TOTAL METERED

LOSS

2001

434,189,000

407,749,000

363,444,000

9.00%

HOURS WELLS PUMP:

AVERAGE DAY: 18 hrs

MAXIMUM DAY: 21 hrs

ORDINANCES / PROGRAMS

WATERWORKS: Kaukauna

PWS I.D.: 445033600

CROSS CONNECTION CONTROL PROGRAM:

EFFECTIVE DATE OF ORDINANCE:

February 18, 1981

FREQUENCY OF INSPECTIONS:

At Meter Change

INSPECTION RECORDS ON FILE:

No

ADEQUATE PROTECTION AT WASTEWATER PLANT: Yes (RPBP) Tested Yearly

CONNECTIONS BETWEEN WATER MAINS AND SEWERS:

None

WATER MAINS PASS THROUGH SEWER MANHOLES:

None

PRIVATE WELL ABANDONMENT ORDINANCE:

Yes

EFFECTIVE DATE OF ORDINANCE:

September 18, 1990

OPERATION PERMITS AND ABANDONMENT FORMS ON FILE: None

ESTIMATED NUMBER OF WELLS IN WATER SERVICE AREA: 0

WELL HEAD PROTECTION PROGRAM:

None

ORDINANCE AVAILABLE:

RECHARGE AREAS DELINEATED:

WELL INFLUENCE AREAS DELINEATED:

GROUNDWATER FLOW DIRECTION(S) DELINEATED:

EQUIPMENT RELACEMENT FUND AVAILABLE:

Yes

CERTIFICATION

OPERATOR IN CHARGE: Jim Jellish

CERTIFIED: Yes

CLASS: G.D.Z.I.L.S.

OTHERS: Keven Obiala

CONTINUING EDUCATION REQUIREMENTS FULFILLED: Yes

DISTRIBUTION SYSTEM

WATERWORKS: Kaukauna

PWS I.D.: 445033600

WATER MAIN MATERIALS

LENGTH (FT)

TOTAL

SIZE (IN)	4"	6 "	8"	10"	12"	14"	16"	TOTAL
DUCTILE		29,995	26,359	22,579	22.524		11,574	113,031
CAST	7,060	134,607	15,466	11,193	4,813	120'		173,259
PVC		2,525	47,675'	19,525	63.248			132,973
OTHER								
TOTAL	7,060	167,127	89,500'	53,297	90,585	120'	11,574	419,263

TOTAL LENGTH OF MAIN EXISTING IN SYSTEM:

419,263

PERCENT OF MAINS LESS THAN 6 INCHES IN DIAMETER:

1.68%

STATIC PRESSURE RANGE THROUGHOUT SYSTEM:

65 psig

CURRENT SYSTEM MAP ON FILE WITH DNR:

No

LATEST REVISION DATE:

2001

INTERCONNECTIONS WITH OTHER WATERWORKS:

None

ISOLATED SERVICE AREAS: 2 MAINS OR BACKUP PROVIDED:

Yes (3 River Crossings)

FLUSHING DEVICES ON DEAD END MAINS:

Hydrants

FREQUENCY FOR FLUSHING DEAD ENDS:

2 X Yearly & with complaints

FREQUENCY FOR FLUSHING SYSTEM:

2 X Yearly

IS 500 GPM AT 20 PSI AVILABLE AT ALL HYDRANTS:

Yes

LATEST FIRE FLOW STUDY PERFORMED:

1978

FREQUENCY FOR EXCERCISING VALVES:

Once Every 3 Years

ADEQUATE MAINTENANCE AND LOCATION RECORDS:

Yes

OTHER MAINTENANCE RECORDS ADEQUATE:

Yes

PAGE: 5

SAMPLING / REPORTING

WATERWORKS: Kaukauna

SAMPLING:

PWS I.D.: 445033600

BACTERIOLOGICAL

NUMBER OF MONTHLY BACTERIOLOGICAL SAMPLES REQUIRED:

15

CORRECT NUMBER COLLECTED EACH MONTH:

Yes

SITE PLAN ON FILE WITH DEPARTMENT:

Yes

ADEQUATE BACTI, SAMPLING DATE SELECTION:

Yes

CHLORINE

TESTING FREQUENCY AT ENTRY POINTS:

No

Needs to be recorded on MR

TESTING FREQUENCY IN SYSTEM:

No,

Needs to be recorded on MR

RESIDUALS TESTED AND RECORDED AT TIME OF BACTI SAMPLING:

Yes,

FREE CHLORINE RESIDUAL AT SYSTEM EXTREMITIES:

Yes

FLUORIDE

AVERAGE NATURAL FLUORIDE IN WELLS:

1.8 ppm

SPLIT SAMPLING CONDUCTED:

N/A

DAILY RESIDUALS FROM SYSTEM:

N/A

RESIDUALS WITHIN ACCEPTABLE LIMITS:

N/A

OTHER SAMPLING REQUIRED:

N/A

SDWA CERTIFIED LAB:

Environmental Health Lab

ANALYSIS SUBMITTED TO DEPARTMENT:

Yes

SAMPLES COLLECTED WITHIN MONITORING PERIOD:

Yes

REPORTING:

MONTHLY OPERATING REPORTS:

TOTALS AND AVERAGES:

Yes

PUMPAGE: Yes

AMOUNT OF CHEMICAL USED:

Yes

WATER LEVELS: No, need static water levels

DAILY FLUORIDE:

N/A

THEORETICAL RESIDUALS: N/A

BIWEEKLY CHLORINE:

No

RESIDUALS: Yes

OTHER TESTING NECESSARY:

Permanganate level

on system

WATER QUALITY

WATERWORKS: Kaukauna

BACTERIOLOGICAL QUALITY:

PWS I.D.: 445033600

YEAR	SAFE	POSITIVE	MISSED	<u>O.S</u> .	<u>O.G.</u>	RAW	POSITIVE
2001 2000 1999 1998 1997	130 120 120 120 120	0 0 1 0	0 0 0 0	0 0 0 0	0 0 0 0	5 16 15 15	0 0 0 0

CHEMICAL QUALITY:

CONSUMER COMPLIANTS:

LATEST SAMPLE DATES:

INORGANIC:

January 21, 2002

RADIOLOGICAL:

December 10, 2001

VOC:

January 21, 2002

SOC:

Never completely sampled, will be in 2005

THM:

August 6, 2001

PARAMETERS EXCEEDING STANDARDS (INORGANICS / ORGANICA / RADIOACTIVITY)

WELL INFORMATION

WATERWORKS: Kaukauna

PWS I.D.: 44503360

WELL NUMBER: 4

UNIQUE WELL NUMBER: BG 574

STATUS:

WELL LOCATION: NE¼, NE¼, SECTION 22, T 21 N, R 18 E

STREET ADDRES S: ElmStreet

IS WELL LOCATED IN A FLOOD PLAIN: No

WELL ADEQUATELY PROTECTED: Yes

DATE CONSTRUCTED: 1921

WELL DRILLER: Louis Faust

LATEST RECONSTRUCTION DATE: --

CONSTRUCTION REPORT AVAILABLE: Yes

WELL DEPTH: 726'

AQUIFER TYPE: Limestone and Sandstone

GEOLOGIC DATA:	FORMATIONS		DEPTH TO	
	Droft Limestone Sandstone		FROM 0' 4' 380'	TO 4' 380' 726'
CASING DATA Inner Outer	<u>DIAMETER</u> 12" 18"	×	0 1	120 r 120 r
SCREEN/BOREHOLE	DIAMETER			

NONE

GROUT DEPTH 120'

STATIC WATER LEVEL: ORIGINAL CURRENT 125'

PUMPING WATER LEVEL: 243' @ 697 GPM 243' @ 685 GPM SPECIFIC CAPACITY: -- GPM/FT 5.8 GPM/FT

MEANS FOR MEASURING WATER LEVELS: Yes

AIRLINE LENGTH: 302'

AIRLINE SEAL: Yes

WELL SEAL: Yes

WELL VENT: Yes

U-BEND: Yes

SCREENED: Yes

HEIGHT ABOVE FLOOR: 36"

GRAVEL REFILL PIPES: --

CAPPED: --

HEIGHT ABOVE FLOOR: --

PUMP BASE HEIGHT: 12"

REHABILITATION PERFORMED: ---

DATE: --

PAGE: 8

WELL PUMP / PIPING / PUMPHOUSE

WATERWORKS: Kaukauna

PWS I.D.: 44503360

WELL NUMBER: 4

WELL PUMP

MAKE: Simmons

TYPE: Submersile

DESIGN CAPACITY: 700 GPM @ 72 FT. HD

SETTING: 302 (TOP OF THE BOWLS)

OPERATIONAL CAPA_{CITY}: 697 GPM @ 157 FT. HD.

(WELL DISCHARGE PRESSURE + PUMPING WATER LEVEL)

LUBRICATION:

PRELUBE: N/A

PRELUBE METERED: N/A

PRELUBE EQUIPPED WITH SOLENOID: N/A

MOTOR HP: 75

AUXILIARY POWER: --

BACKSPIN PROTECTION:

Time Delay

LATEST PUMP INSPECTION DATE: 1994

WELL DISCHARGES TO: Iron Filter @ Elm Street Reservior Entry Point 200

DISCHARGE PIPING

AIR RELIEF: Yes

U-BEND: Yes

SCREENED: Yes

HEIGHT ABOVE FLOOR: 24"

CHECK VALVE:

METER: Yes

SHUT OFF VALVE:

Yes

Yes

RAW WATER SAMPLE TAP: Yes

PRESSURE GAUGE: Yes

CHEMICAL ADDITION TAP: No

PIPING CONDITION: Good

ENTRY POINT SAMPLE TAP:

DESCRIPTION: Concrete Block & Wood

DOOR OPENS OUT: Yes

ROOF HATCH:

Yes

DEHUMIDIFIER:

HEATER: Yes

FLOOR DRAIN:

Yes

BACK-SIPHONAGE PROTECTION ON HOSE BIBS:

DISTANCE FROM WELL: 2'

DISCHARGES TO:

Dry Well

150'

DISTANCE TO SANITARY SEWER:

No Hose Bibs

GENERAL CONDITION OF PUMPHOUSE:

Good

WELL INFORMATION

WATERWORKS: Kaukauna

WELL NUMBER: 5

PWS I.D.: 44503360

UNIQUE WELL NUMBER: BG 575

STATUS: --

WELL LOCATION: SE¼, NE¼, SECTION 22 T 21 N, R 18 E

STREETADDRESS: Do dge & IslandStreets

IS WELL LOCATED IN A FLOOD PLAIN: No

WELL ADEQUATELY PROTECTED: Yes

DATE CONSTRUCTED: 1935

WELL DRILLER: Louis Faucet

LATEST RECONSTRUCTION DATE: --

CONSTRUCTION REPORT AVAILABLE: Yes

WELL DEPTH: 534'

AQUIFER TYPE: Dolimite & Sandstone

GEOLOGIC DATA:	FORMATIONS	9		PTH TO
	Glacial Drift Dolomite Sandstone		FROM 0' 8' 172'	TO 8' 175' 534'
CASING DATA Inner	DIAMETER 16"	*0	0'	121 '
SCREEN/BOREHOLE	DIAMETER		2	
NONE			9	

SCREENED: Yes

GROUT DEPTH 121'

ORIGINAL CURRENT STATIC WATER LEVEL: PUMPING WATER LEVEL:

155' @ 216 GPM 154' @ 210GPM SPECIFIC CAPACITY: 5.02 GPM/FT 4.77 GPM/FT

MEANS FOR MEASURING WATER LEVELS: Yes

AIRLINE LENGTH: 190'

AIRLINE SEAL: Yes

WELL SEAL: Yes WELL VENT: Yes

U-BEND: Yes

HEIGHT ABOVE FLOOR: 30"

GRAVEL REFILL PIPES: --

CAPPED: --HEIGHT ABOVE FLOOR: --

PUMP BASE HEIGHT: 12"

DATE: --REHABILITATION PERFORMED: --

WELL PUMP / PIPING / PUMPHOUSE

WATERWORKS: Kaukauna

PWS I.D.: 44503360

WELL NUMBER: 5

WELL PUMP

MAKE: Layne

TYPE: Vertical Turbine

DESIGN CAPACITY: 216 GPM @ 72 FT. HD

SETTING: 190

(TOP OF THE BOWLS)

OPERATIONAL CAPAC ITY: 380 GPM @ 157 FT. HD.

(WELL DISCHARGE PRESSURE + PUMPING ATER LEVEL)

LUBRICATION:

Water

PRELUBE: Water

PRELUBE METERED: Ys

PRELUBE EQUIPPED WITH SOLENOID: Yes, bypassing solenoid

MOTOR HP: 30

AUXILIARY POWER: --

BACKSPIN PROTECTION:

Ratchet

LATEST PUMP INSPECTION DATE: 1995

WELL DISCHARGES TO: Iron Filter @ Elm Street Reservoir, Entry Point 200

DISCHARGE PIPING

AIR RELIEF:

Yes

U-BEND: Yes

SCREENED:

Yes

HEIGHT ABOVE FLOOR: 24"

CHECK VALVE:

Yes

METER: Yes

SHUT OFF VALVE:

Yes

RAW WATER SAMPLE TAP: Yes

PRESSURE GAUGE:

Yes

CHEMICAL ADDITION TAP: Yes

PIPING CONDITION:

Good

ENTRY POINT SAMPLE TAP:

PUMP STATION

DESCRIPTION:

Brick Building

DOOR OPENS OUT: Yes.

ROOF HATCH:

Yes

HEATER: Yes

DEHUMIDIFIER:

No

FLOOR DRAIN:

Yes (2)

DISTANCE FROM WELL: 2' & 5'

DISCHARGES TO:

Dry Well

DISTANCE TO SANITARY SEWER:

. 1

BACK-SIPHONAGE PROTECTION ON HOSE BIBS:

No

GENERAL CONDITION OF PUMPHOUSE:

Good

CHEMICAL ADDITION

WATERWORKS: Kaukauna

WELL NUMBER: 5

CHEMICAL:

PWS I.D.: 44503360

NSF APPROVED: Yes

CAPACITY: 0 to 24 GPD

STROKE SETTING: 50%

SURFACE PLANT LOCATION: --

CHEMICAL NAME: Hawkins Sodium Hypochlorite

CONCENTRATION: Liquid (12.5%)

FEEDER TYPE: Pulsatron

STROKES PERMINUTE: 52

ROTAMETER SETTING: N/A

SPEED SETTING: 30%

FEEDER CONTROL: Well Pump

POINT OF APPLICATION: After check valve, prior to Iron Filter

FLUORIDE INJECTION ANGLE: --

ANTI SIPHONE DEVICE: Yes

SECONDARY CONTROL: --

SOLUTION LINE MATERIAL: Plastic

RESIDUAL TESTER TYPE: Hach

SOLUTION TANK MATERIAL: Poly

SIZE: 55 gallon

OVERLAPPING COVER: Yes

USAGE DETERMINATION: Scale

CHEMICAL DILUTION: None

CHEMICAL ROOM:

DOOR OPENS OUT: Yes

PANIC HARDWARE ON DOOR: No

SWITCH LOCATIONS: Outside

DOOR ACTIVATED: Yes

VENTED: Ok

OBSERVATION WINDOW: Yes

FRESH AIR INTAKE LOCATION: Ceiling

EXHAUST INTAKE LOCATION: Floor

GAS CHLORINE INJECTOR PROPERLY LOCATED AND PROTECTED: N/A

CHLORINATOR VENT: N/A

AIRPACK AVAILABLE: N/A

CYLINDER SIZE: N/A

CYLINDER (S) SECURED: N/A

WELL INFORMATION

WATERWORKS: Kaukauna

PWS I.D.: 44503360

WELL NUMBER: 10 *

UNIQUE WELL NUMBER: BG 576

STATUS: --

WELL LOCATION: SW1/4, NE1/4 SE CTION 23, T 21 N, R 18 E

STREET ADDRESS: 10th Street

IS WELL LOCATED IN A FLOOD PLAIN: No

WELL ADEQUATELY PROTECTED: Yes

DATE CONSTRUCTED: 1945

WELL DRILLER: Joseph Egerer

LATEST RECONSTRUCTION DATE: --

CONSTRUCTION REPORT AVAILABLE: 841'

WELL DEPTH: Yes

AQUIFER TYPE: Dolomite & Sandstone

GEOLOGIC DATA:	FORMATIONS	DE	HTY
		$\overline{\text{FROM}}$	TO
	Till	0'	TO 10'
	Clay	10'	60 '
	Dolomite	60'	455 '
	Sandstone	455'	841'
CASING DATA	DIAMETER		_
Outer	16"	0 '	71'
Inner	10"	0 '	159'
SCREEN/BOREHOLE	DIAMETER	656 53	

NONE

GROUT DEPTH 159'

	1994		
STATIC WATER LEVEL:	176'		
PUMPING WATER LEVEL:	220' @ 526 GPM	(8)	
SPECIFIC CAPACITY:	11.95 GPM/FT		
Ta.		9	33

CURRENT 188' 5 250' @ 39GPM 8.69 GPM/FT

MEANS FOR MEASURING WATER LEVELS: Yes

AIRLINE LENGTH: 260'

AIRLINE SEAL: Yes

WELL SEAL: Yes

WELL VENT: Yes

U-BEND: No

SCREENED: Yes

HEIGHT ABOVE FLOOR: 21

GRAVEL REFILL PIPES: --

CAPPED: --

HEIGHT ABOVE FLOOR: --

PUMP BASE HEIGHT: 24"

REHABILITATION PERFORMED: Yes, well deepened to 841

DATE: 1995

^{*} Service to keep line to filter plant pressurized controlled by solenoid.

WELL PUMP / PIPING / PUMPHOUSE

WATERWORKS: Kaukauna

PWS I.D.: 44503360

WELL NUMBER: 10

WELL PUMP

MAKE: Jacuzzi

TYPE: Submersible

DESIGN CAPACITY: 600 GPM @ -- FT. HD

SETTING: 260

(TOP OF THE BOWLS)

OPERATIONAL CAPAC ITY: 526PM @ 157 FT. HD.

(WELL DESIARGE PRES SURE + PUMPIG WATER LEVEL)

LUBRICATION:

Yes

PRELUBE: N/A

PRELUBE METERED: N/A

PRELUBE EQUIPPED WITH SOLENOID: N/A

MOTOR HP: 50

AUXILIARY POWER: --

LATEST PUMP INSPECTION DATE: 1996

BACKSPIN PROTECTION:

Submersible/Check Valve

WELL DISCHARGES TO: Iron Filter & GSR @ Flm Street Entry Point 200

DISCHARGE PIPING

AIR RELIEF:

Yes

U-BEND: Yes

SCREENED:

Yes

HEIGHT ABOVE FLOOR: 24"

CHECK VALVE:

Yes

METER: Yes

SHUT OFF VALVE:

Yes

RAW WATER SAMPLE TAP: Yes

PRESSURE GAUGE:

Yes

CHEMICAL ADDITION TAP: None

PIPING CONDITION:

Good

ENTRY POINT SAMPLE TAP:

PUMP STATION

DESCRIPTION: Brick & Concrete

DOOR OPENS OUT: Yes

ROOF HATCH:

Yes

HEATER: Yes

DEHUMIDIFIER:

No

FLOOR DRAIN:

Yes

DISTANCE FROM WELL: 2'

DISCHARGES TO:

Sanitary Sewer

DISTANCE TO SANITARY SEWER:

70'

BACK-SIPHONAGE PROTECTION ON HOSE BIBS:

No

GENERAL CONDITION OF PUMPHOUSE:

Good

CHEMICAL ADDITION

WATERWORKS: Kaukauna

PWS I.D.: 44503360

WELL NUMBER: #4, #5, and #10 Filter Plant

1 110 11011 11000000

CHEMICAL:

SURFACE PLANT LOCATION: --

CHEMICAL NAME: Potassium Permanganate (Cairox)

NSF APPROVED: Yes

CONCENTRATION: 100% Liquid

FEEDER TYPE: Pulsatron

STROKES PERMINUTE: 54

CAPACITY: 75 GPD

ROTAMETER SETTING: N/A

FEEDER CONTROL: Well Pumps #4, #5, or #10

SPEED SETTING: 40%

STROKE SETTING: 39%

POINT OF APPLICATION: Before Iron Filter

FLUORIDE INJECTION ANGLE: N/A

ANTI SIPHONE DEVICE: Yes

SECONDARY CONTROL: N/A

SOLUTION TANK MATERIAL: Plastic

RESIDUAL TESTER TYPE: Hach

SOLUTION TANK MATERIAL: Plastic

SIZE: 140 gallons

OVERLAPPING COVER: Yes.

VENTED: Yes

USAGE DETERMINATION: Graduated Tank

CHEMICAL DILUTION: 1 lb. permanganate per 10 gallons of water

CHEMICAL ROOM:

Inside Iron Filter Room

DOOR OPENS OUT: Yes

PANIC HARDWARE ON DOOR: No

SWITCH LOCATIONS: --

DOOR ACTIVATED: --

OBSERVATION WINDOW: Yes

FRESH AIR INTAKE LOCATION: --

EXHAUST INTAKE LOCATION: --

GAS CHLORINE INJECTOR PROPERLY LOCATED AND PROTECTED: --

CHLORINATOR VENT: --

AIRPACK AVAILABLE: --

CYLINDER SIZE: --

CYLINDER (S) SECURED: --

CHEMICAL ADDITION

WATERWORKS: Kaukauna

PWS I.D.: 44503360

WELL NUMBER: #4. #5, & #10 Filter Plant

SURFACE PLANT LOCATION: --

CHEMICAL:

CHEMICAL NAME: Sodium Hypochlorite (Hawkins)

NSF APPROVED: Yes

CONCENTRATION: 12.5% Liquid

FEEDER TYPE: Pulsatron

STROKES PERMINUTE: --

CAPACITY: 44 GPD

ROTAMETER SETTING: N/A

FEEDER CONTROL: Wells #4, #5, & #10

SPEED SETTING: 70%

STROKE SETTING: 70%

POINT OF APPLICATION: After Iron Filter

FLUORIDE INJECTION ANGLE: --

ANTI SIPHONE DEVICE: Yes

SECONDARY CONTROL: --

SOLUTION TANK MATERIAL: Plastic

RESIDUAL TESTER TYPE: Hach

SOLUTION TANK MATERIAL: Poly

SIZE: 30 gal

OVERLAPPING COVER: Ok

VENTED: Ok

USAGE DETERMINATION: Graduated tank

CHEMICAL DILUTION: No

CHEMICAL ROOM:

DOOR OPENS OUT: N/A

PANIC HARDWARE ON DOOR: N/A

SWITCH LOCATIONS: N/A

DOOR ACTIVATED: N/A

OBSERVATION WINDOW: N/A

FRESH AIR INTAKE LOCATION: N/A

EXHAUST INTAKE LOCATION: N/A

GAS CHLORINE INJECTOR PROPERLY LOCATED AND PROTECTED: N/A

CHLORINATOR VENT: N/A

AIRPACK AVAILABLE: N/A

CYLINDER SIZE: N/A

CYLINDER (S) SECURED: N/A

CHEMICAL ADDITION

WATERWORKS: Kaukauna

PWS I.D.: 44503360

WELL NUMBER: #4, #5, & #10

SURFACE PLANT LOCATION: --

CHEMICAL:

CHEMICAL NAME: PQ - Hawkins

NSF APPROVED: Yes

CONCENTRATION: Sodium Silicate (Hawkins)

FEEDER TYPE: Pulsatron

STROKES PER MINUTE: 64

CAPACITY: 120 gpd/day

ROTAMETER SETTING: N/A

SPEED SETTING: 40%

FEEDER CONTROL: Well p ump

STROKE SETTING: 60%

POINT OF APPLICATION: After Iron Filtration

FLUORIDE INJECTION ANGLE: N/A

ANTI-SIPHONE DEVICE: Yes

SECONDARY CONTROL: --

SOLUTION TANK MATERIAL: Plastic

RESIDUAL TESTER TYPE: Hach

SOLUTION TANK MATERIAL: Plastic

SIZE: 250 gallon

OVERLAPPING COVER: Ok

VENTED: Yes

USAGE DETERMINATION: Graduated site tube

CHEMICAL DILUTION: No

CHEMICAL ROOM:

NONE

DOOR OPENS OUT:

PANIC HARDWARE ON DOOR:

SWITCH LOCATIONS:

DOOR ACTIVATE D:

OBSERVATION WINDOW:

FRESH AIR INTAKE LOCATION:

EXHAUST INTAKE LOCATION:

GAS CHLORINE INJECTOR PROPERLY LOCATED AND PROTECTED:

CHLORINATOR VENT:

AIRPACK AVAILABLE:

CYLINDER SIZE:

CYLINDER (S) SECURED:

IRON FILTRATION

LOCATION: Kaukauna Wells #4, #5, & #10

STREET ADDRESS: Elm Street

TYPE: General Filter Co. Ames, Iowa

NUMBER OF TANKS / CELLS: 4

DIMENSIONS:

BYPASS LINE: Yes

ACCESS MANHOLE:

Yes (6 manholes)

PRESSURE OR LOSS OF HEAD GAUGES:

Yes

MEDIA TYPE

DIAMETER

DEPTH

Anthracite

Gravel

AIR RELIEF: Yes

SURFACE WASH: Yes

RAW AND FINISHED WATER SAMPLE TAPS: Yes

RATE CONTROLLER: Manual

OXIDATION METHOD:

AERATION FORCED DRAFT:

PH CONTROL:

GRAVITY:

AIR COMPRESSOR:

PERMANGANATE: X

CHLORINE:

DIFFUSOR INSPECTED:

Once Per Year

 \mathbf{X}

DESCRIPTION OF OXIDATION PROCESS:

Air and Permanganate

FILTRATION RATE:

2.78 GPM/FT2

CAPACITY: 1,313 GPM

SOURCE OF BACKWASH:

Treated Water from GSRW/booster

HOLDING TANK: None

BACKWASH FREQUENCY:

Weekly

BACKWASHRATE: 800 GPM/FT2

BACKWASH DURATION:

10 MIN.

DISCHARGES TO: Sanitary Sewer

BACKWASH LINE TERMINATES 24" ABOVE FLOOR: 6 Ft Above Bottom of Pit

DISCHARGE PERMIT: No - Discharge goes to sanitary sewer

SUITABLE AIR GAPAVAILABLE ON BACKWASH LINE:

12 in. above floor

RAW IRON:

LATEST INTERIOR INSPECTION IRON;

.1

TESTING FREQUENCY: Weekly

DATE: 1998

WELL INFORMATION

WATERWORKS: Kaukauna

PWS I.D.: 44503360

WELL NUMBER: 8 *

UNIQUE WELL NUMBER: HJ 196

STATUS: --

WELL LOCATION: NE¼, S W¼, SECTION 13, T 21 N, R 18 E

STREET AD DRESS: DeLanglade Street

IS WELL LOCATED IN A FLOOD PLAIN: No

WELL ADEQUATELY PROTECTED: Yes

DATE CONSTRUCTED: 1959

WELL DRILLER: Layne-Northwest Co.

LATEST RECONSTRUCTION DATE: --

CONSTRUCTION REPORT AVAILABLE: Yes

WELL DEPTH: 800'

AQUIFER TYPE: Dolomite & Sandstone

GEOLOGIC DATA:	FORMATIONS	<u>DE</u>	PTH
		FROM	TO
	Clay	0'	70'
	Dolomite	70'	455 '
3	Sandstone	455 '	800'
CASING DATA	DIAMETER		
Inner	16"	0'	151'
Outer	20"	0 '	73 '
		×	
Inner	16"	-	

SCREEN/BOREHOLE

DIAMETER

NONE

GROUT DEPTH

1994	CURRENT			
163				
PUMPING WATER LEVEL:	380	@ 320 GPM	238	@ 608 GPM
SPECIFIC CAPACITY:	1.7 GPM/FT	8.11 GPM/FT		

MEANS FOR MEASURING WATER LEVELS: Yes

151'

AIRLINE LENGTH: 290'

AIRLINE SEAL: Yes

WELL SEAL: Yes

WELL VENT: Yes

U-BEND: Yes

SCREENED: Yes

O-DEND: 168

HEIGHT ABOVE FLOOR: 24"

GRAVEL REFILL PIPES: --

CAPPED: --

HEIGHT ABOVE FLOOR: --

PUMP BASE HEIGHT: 12"

DATE: --

REHABILITATION PERFORMED: --

^{*} Well not run because of white water, well will be used for trial radium reduction.

PA : 19

GE

WELL PUMP / PIPING / PUMPHOUSE

WATERWORKS: Kaukauna PWS I.D.: 44503360

WELL NUMBER: #8

WELL PUMP

MAKE: Simmons

DESIGN CAPACITY: 610 GPM @ 170 FT. HD

TYPE: Submersible
SETTING: 290

(TOP OF THE BOWLS)

OPERATIONAL CAPAC ITY: 400 GPM @ 157 FT. HD.

(WELL DISCHARGE PRESSURE + PUMING WATER LEVEL)

LUBRICATION: Water

PRELUBE: N/A

PRELUBE METERED: N/A

PRELUBE EQUIPPED WITH SOLENOID: N/A

MOTOR HP: 100

AUXILIARY POWER: --

BACKSPIN PROTECTION: N/A

LATEST PUMP INSPECTION DATE: 1997

WELL DISCHARGES TO: Iron Filter @ Blackwell Stree t. Reservoir - Entry Point 300

DISCHARGE PIPING

AIR RELIEF:

Yes

U-BEND: Yes

SCREENED:

Yes

HEIGHT ABOVE FLOOR: 42"

CHECK VALVE:

Yes

METER: Yes

SHUT OFF VALVE:

 \mathbf{Yes}

RAW WATER SAMPLE TAP: Yes

PRESSURE GAUGE:

Yes

CHEMICAL ADDITION TAP: Yes

PIPING CONDITION:

Good

ENTRY POINT SAMPLE TAP:

PUMP STATION

DESCRIPTION: Brick & Concrete Block

DOOR OPENS OUT: Yes

ROOF HATCH:

Yes

HEATER: Yes

DEHUMIDIFIER:

No

FLOOR DRAIN:

Yes

DISTANCE FROM WELL: 4'

DISCHARGES TO:

Sanitary Sewer

DISTANCE TO SANITARY SEWER:

200°

BACK-SIPHONAGE PROTECTION ON HOSE BIBS:

No

GENERAL CONDITION OF PUMPHOUSE:

Good

CHEMICAL ADDITION

WATERWORKS: Kaukauna

PWS I.D.: 44503360

WELL NUMBER: 8 *

SURFACE PLANT LOCATION: --

CHEMICAL:

CHEMICAL NAME: Hawkins Sodium Hypochlorite

NSF APPROVED: Yes

CONCENTRATION: 12.5% liquid

FEEDER TYPE: -

STROKES PER MINUTE: --

CAPACITY: 0-75 gpd

ROTAMETER SETTING: N/A

FEEDER CONTROL: Well Pump

SPEED SETTING: 32%

STROKE SETTING: 30 %

POINT OF APPLICATION: Before and After Iron Filter

FLUORIDE INJECTION ANGLE: N/A

ANTI SIPHONE DEVICE: Yes

SECONDARY CONTROL: N/A

SOLUTION LINE MATERIAL: Plastic

RESIDUAL TESTER TYPE: Hach

SOLUTION TANK MATERIAL: Poly

SIZE: 15 gal

OVERLAPPING COVER: Ok

VENTED: Ok

USAGE DETERMINATION: Scale

CHEMICAL DILUTION: --

CHEMICAL ROOM:

DOOR OPENS OUT: Yes

PANIC HARDWARE ON DOOR: No

SWITCH LOCATIONS: Yes

DOOR ACTIVATED: Yes

OBSERVATION WINDOW: Yes

FRESH AIR INTAKE LOCATION: Ceiling

EXHAUST INTAKE LOCATION: Floor

GAS CHLORINE INJECTOR PROPERLY LOCATED AND PROTECTED: N/A

CHLORINATOR VENT: N/A

AIRPACK AVAILABLE: N/A

CYLINDER SIZE: N/A

CYLINDER (S) SECURED: N/A

* Not Presently Used

CHEMICAL ADDITION

WATERWORKS: Kaukauna

PWS I.D.: 44503360

WELL NUMBER: #8 *

SURFACE PLANT LOCATION: --

CHEMICAL:

CHEMICAL NAME: Sodium Silicate

NSF APPROVED: Yes

CONCENTRATION: Liquid

FEEDER TYPE: Pulsatron

STROKES PER MINUTE: --

CAPACITY: 42 gpd/day

ROTAMETER SETTING: N/A

FEEDER CONTROL: Well Pump

SPEED SETTING: --

STROKE SETTING: --

POINT OF APPLICATION: After Iron Filtration

FLUORIDE INJECTION ANGLE: N/A

ANTI SIPHONE DEVICE: Yes

SECONDARY CONTROL: N/A

SOLUTION TANK MATERIAL: Plastic

RESIDUAL TESTER TYPE: Hach

SOLUTION TANK MATERIAL: Plastic

SIZE: 250 gallons

OVERLAPPING COVER: Yes

VENTED: Yes

USAGE DETERMINATION: Graduated site tube

CHEMICAL DILUTION: As Is

CHEMICAL ROOM:

DOOR OPENS OUT: --

PANIC HARDWARE ON DOOR: --

SWITCH LOCATIONS: --

DOOR ACTIVATED: --

OBSERVATION WINDOW: --

FRESH AIR INTAKE LOCATION: --

EXHAUST INTAKE LOCATION: --

GAS CHLORINE INJECTOR PROPERLY LOCATED AND PROTECTED: --

CHLORINATOR VENT: N/A

AIRPACK AVAILABLE: N/A

CYLINDER SIZE: N/A

CYLINDER (S) SECURED: N/A

^{*} Not Being Used

IRON FILTRATION

Yes

LOCATION: Kaukauna Well #8

STREET ADDRESS: Blackwell Street

TYPE: General Filter Company

NUMBER OF TANKS / CELLS: 4

DIMENSIONS: 10' Dia - 24' Long

BYPASS LINE: Yes

ACCESS MANHOLE: Yes (6 Access Manhole)

PRESSURE OR LOSS OF HEAD GAUGES:

MEDIA TYPE

DIAMETER

DEPTH

Anthrafilt

Gravel

AIR RELIEF: Yes

SURFACE WASH: --

RAW AND FINISHED WATER SAMPLE TAPS: Yes

RATE CONTROLLER: Manual

OXIDATION METHOD:

AERATION FORCED DRAFT:

PH CONTROL:

GRAVITY:

AIR COMPRESSOR:

PERMANGANATE:

DIFFUSOR INSPECTED: Once Per Year

DESCRIPTION OF OXIDATION PROCESS:

FILTRATION RATE: 2.28 GPM / FT2

CAPACITY: 500

CHLORINE: X

SOURCE OF BACKWASH:

Well Water

 \mathbf{X}

HOLDING TANK: None

BACKWASH FREQUENCY:

2 X Weekly

BACKWASHRATE: 15 GPM/FT2

BACKWASH DURATION:

10 MIN.

DISCHARGES TO: Sanitary Sewer

BACKWASH LINE TERMINATES 12" ABOVE FLOOR: 6 ft Above Bottom of a Pit

DISCHARGE PERMIT: No, Discharge to Sanitary Sewer

SUITABLE AIR GAPAVAILABLE ON BACKWASH LINE:

12" Above Floor

RAW IRON:

.5

FINISHED IRON; .1

TESTING FREQUENCY: Weekly

LATEST INTERIOR INSPECTION DATE: April 1992

WELL INFORMATION

WATERWORKS: Kaukauna

PWS I.D.: 44503360

WELL NUMBER: #9

UNIQUE WELL NUMBER: BG 578

STATUS: --

WELL LOCATION: NW4, NE4, SECTION 3, T 21 N, R 18 E

STREETAD DRESS: Riverside Park

IS WELL LOCATED IN A FLOOD PLAIN: No

WELL ADEQUATELY PROTECTED: Yes

DATE CONSTRUCTED: 1976

WELL DRILLER: Egerer-Galloway Well Corp

LATEST RECONSTRUCTION DATE: July 19, 1989

CONSTRUCTION REPORT AVAILABLE: Yes

WELL DEPTH: 806'

AQUIFER TYPE: Limestone & Sandstone

GEOLOGIC DATA:	FORMATIONS	DEPT	H
	Clay & Stone Limestone Red Shale Limestone	FROM 0' 26' 353' 395'	TO 26' 353' 355' 795'
CASING DATA Inner Outer	DIAMETER 18" 24"	0 t	239 ' 36 '
SCREEN/BOREHOLE	DIAMETER		

No Screen

GROUT DEPTH 2391

CURRENT STATIC WATER LEVEL: PUMPING WATER LEVEL: 234' @ 1157 GPM 232' @ 1157GPM SPECIFIC CAPACITY: 14.81 GPM/FT 13.94 GPM/FT

MEANS FOR MEASURING WATER LEVELS: Yes

AIRLINE LENGTH: 280'

AIRLINE SEAL: Yes

WELL SEAL: Yes

WELL VENT: Yes

U-BEND: Yes

SCREENED: Yes

HEIGHT ABOVE FLOOR: 30"

GRAVEL REFILL PIPES: --

CAPPED: --

HEIGHT ABOVE FLOOR: --

PUMP BASE HEIGHT: 13"

REHABILITATION PERFORMED: Yes

DATE: Yes

WELL PUMP / PIPING / PUMPHOUSE

WATERWORKS: Kaukauna

WELL NUMBER: #9

PWS I.D.: 45503360

WELL PUMP

MAKE: Layne

TYPE: Vertical Turbine

DESIGN CAPACITY: 1,157 GPM @ 764 FT. HD

SETTING: 380

(TOP OF THE BOWLS)

OPERATIONAL CAPACITY: 1,220 GPM @ 157 FT. HD.

(WELL DISCHARGE PRESSURE + PUMPING WATER LEVEL)

LUBRICATION:

Water

PRELUBE: Water

PRELUBE METERED: Not directly

PRELUBE EQUIPPED WITH SOLENOID: Yes

MOTOR HP: 150

AUXILIARY POWER: Yes (Natural Gas Engine)

BACKSPIN PROTECTION:

Time Delay

LATEST PUMP INSPECTION DATE: 2002

WELL DISCHARGES TO: Iron Filter prior to GSR - Entry Point 400

DISCHARGE PIPING

AIR RELIEF:

Yes

U-BEND: Yes

SCREENED:

Yes

HEIGHT ABOVE FLOOR: 1.5'

CHECK VALVE:

Yes

METER: Yes

SHUT OFF VALVE:

Yes

RAW WATER SAMPLE TAP: Yes

PRESSURE GAUGE:

Yes

CHEMICAL ADDITION TAP: Yes

PIPING CONDITION:

Good

ENTRY POINT SAMPLE TAP:

PUMP STATION

DESCRIPTION: Stone & Concrete Block

DOOR OPENS OUT: Yes

ROOF HATCH:

Yes

HEATER: Yes

DEHUMIDIFIER:

No

FLOOR DRAIN:

Yes

DISTANCE FROM WELL: 6"

DISCHARGES TO:

Sanitary Sewer

DISTANCE TO SANITARY SEWER:

75'

BACK-SIPHONAGE PROTECTION ON HOSE BIBS:

No

GENERAL CONDITION OF PUMPHOUSE: Good

^{*} Ad ds 75 gallons of Sod ium Hypochlorite directly to well once a month for iron bacteria control & sulfur smell. Plastic tube t erminates at pump. Also, pump pumps 10 min to waste prior to filter.

CHEMICAL ADDITION

WATERWORKS: Kaukauna

PWS I.D.: 44503360

WELL NUMBER: #9

SURFACE PLANT LOCATION: --CHEMICAL:

CHEMICAL NAME: Potassium Permanganate

NSF APPROVED: Yes

CONCENTRATION: 100%

FEEDER TYPE: Milton Roy Pump LMI 8121-91

STROKES PERMINUTE: --

CAPACITY: 60 gal/day ROTAMETER SETTING: --

FEEDER CONTROL: Well Pump

SPEED SETTING: 55% STROKE SETTING: 72%

POINT OF APPLICATION: Before Iron Filter/After Well Gate Valve

FLUORIDE INJECTION ANGLE: N/A ANTI SIPHONE DEVICE: Yes

SECONDARY CONTROL: N/A SOLUTION LINE MATERIAL: Plastic

RESIDUAL TESTER TYPE: Hach

SOLUTION TANK MATERIAL: Plastic SIZE: 140 gallons

OVERLAPPING COVER: Yes VENTED: No

USAGE DETERMINATION: Graduated Tank

CHEMICAL DILUTION: 1 lb. permanganate per 10 gallons of water

CHEMICAL ROOM: Permanganate Room

DOOR OPENS OUT: Yes

PANIC HARDWARE ON DOOR: Yes

SWITCH LOCATIONS: Outside DOOR ACTIVATED: No

OBSERVATION WINDOW: Yes

FRESH AIR INTAKE LOCATION: 3 ft Above Floor

EXHAUST INTAKE LOCATION: Floor

GAS CHLORINE INJECTOR PROPERLY LOCATED AND PROTECTED: --

CHLORINATOR VENT: --

AIRPACK AVAILABLE: --

CYLINDER SIZE: --CYLINDER (S) SECURED: =-

CHEMICAL ADDITION

WATERWORKS: Kaukauna

FEEDER TYPE: Milton Roy LMI

RESIDUAL TESTER TYPE: Hach

DOOR OPENS OUT: Out

FRESH AIR INTAKE LOCATION: Ceiling

EXHAUST INTAKE LOCATION: Floor

CHLORINATOR VENT: N/A

WELL NUMBER: #9

CHEMICAL: SURFACE PLANT LOCATION: --

CHEMICAL NAME: Sodium Hypochloride (Hawkins)

NSF APPROVED: Yes CONCENTRATION: 12.5% Liquid

STROKES PERMINUTE: --

ROTAMETER SETTING: N/A

SPEED SETTING: 59%

FEEDER CONTROL: Well Pump

STROKE SETTING: 67 %

POINT OF APPLICATION: Before Iron Filter

FLUORIDE INJECTION ANGLE: N/A

ANTI SIPHONE DEVICE: Yes

SECONDARY CONTROL: -- SOLUTION LINE MATERIAL: Plastic

SOLUTION TANK MATERIAL: Poly

SIZE: 250 gal

OVERLAPPING COVER: Ok

VENTED: Ok

USAGE DETERMINATION: Sonar Measuring

CHEMICAL DILUTION: No

CHEMICAL ROOM:

PANIC HARDWARE ON DOOR: Yes

SWITCH LOCATIONS: Yes

DOOR ACTIVATED: Yes

OBSERVATION WINDOW: Yes

GAS CHLORINE INJECTOR PROPERLY LOCATED AND PROTECTED: N/A

AIRPACK AVAILABLE: N/A

CYLINDER SIZE: N/A

CYLINDER (S) SECURED: N/A

CHEMICAL ADDITION

WATERWORKS: Kaukauna

WELL NUMBER: #9

PWS I.D.: 44503360

SURFACE PLANT LOCATION: --

CHEMICAL:

CHEMICAL NAME: Sodium Silicate (Hawkins)

NSF APPROVED: Yes

CONCENTRATION: 29.9% Liquid

FEEDER TYPE: Pulsatron

STROKES PER MINUTE: --

CAPACITY: 120 gpd/day

ROTAMETER SETTING: N/A

FEEDER CONTROL: Well Pump

SPEED SETTING: 60%

STROKE SETTING: 60%

POINT OF APPLICATION: After Iron Filtration

FLUORIDE INJECTION ANGLE: N/A

ANTI SIPHONE DEVICE: Yes

SECONDARY CONTROL: N/A

SOLUTION LINE MATERIAL: Plastic

RESIDUAL TESTER TYPE: Hach

SOLUTION TANK MATERIAL: Poly

SIZE: 250 gallons

OVERLAPPING COVER: Yes

VENTED: Yes

USAGE DETERMINATION: Graduated Site Tube

CHEMICAL DILUTION: As Is

CHEMICAL ROOM: NONE

- 10

DOOR OPENS OUT: --

PANIC HARDWARE ON DOOR: --

SWITCH LOCATIONS: --

DOOR ACTIVATED: --

OBSERVATION WINDOW: --

FRESH AIR INTAKE LOCATION: --

EXHAUST INTAKE LOCATION: --

GAS CHLORINE INJECTOR PROPERLY LOCATED AND PROTECTED: --

CHLORINATOR VENT: --

AIRPACK AVAILABLE: --

CYLINDER SIZE: --

CYLINDER (S) SECURED: --

IRON FILTRATION

LOCATION: Kaukauna Well #9

STREET ADDRESS: Riverside Park

TYPE: Tonka Horizontal Pressure Filter

NUMBER OF TANKS / CELLS: 4

DIMENSIONS: 8' Dia. - 30' Long (2 tanks)

BYPASS LINE: Yes

ACCESS MANHOLE: Yes (access manhole)

PRESSURE OR LOSS OF HEAD GAUGES:

Yes

MEDIA TYPE DIAMETER

DEPTH

Anthacite

07 to .8

Gravel

AIR RELIEF: Yes

SURFACE WASH: --

RAW AND FINISHED WATER SAMPLE TAPS: Yes

RATE CONTROLLER: Automatic Dezurik Valves (Butterfly)

OXIDATION METHOD:

AERATION FORCED DRAFT:

PH CONTROL:

GRAVITY:

CHLORINE: X

DIFFUSOR INSPECTED:

AIR COMPRESSOR:

DESCRIPTION OF OXIDATION PROCESS:

Air - Permanganate

FILTRATION RATE: 2.54 GPM / FT2

CAPACITY: 1,220

SOURCE OF BACKWASH:

Well

HOLDING TANK: 13,500 gal

BACKWASH FREQUENCY:

2 X Weekly

BACKWASH RATE: 12 GPM/FT2

BACKWASH DURATION:

10 MIN.\CELL

DISCHARGES TO: Sanitary Sewer

BACKWASH LINE TERMINATES 36" ABOVE FLOOR: 42"

DISCHARGE PERMIT: No, Discharge to Sanitary

SUITABLE AIR GAPAVAILABLE ON BACKWASH LINE: Yes

RAW IRON:

.56

FINISHED IRON; .1

TESTING FREQUENCY: Weekly

LATEST INTERIOR INSPECTION DATE: 1991

LOW WATER LEVEL: --

STORAGE FACILITIES

(ELEVATED STORAGE)

WATERWORKS: Kaukauna

SAMPLING AND DISINFECTION TAPS:

DATE OF CONSTRUCTION:

LOCATION: Industrial Park

TYPE: Steel Fluted Pedestal CAPACITY: 500,000

OVERFLOR ELEVATION: --

HEIGHT: 146'

HIGH WATER LEVEL: --

VENT: Yes

SAFETY CLIMB DEVICE: Yes ACCESS LADDER: Yes

Yes

LOCKING ACCESS DOOR/GATE/LADDER: Yes

INSULATED RISER: No

OVERFLOW DIAMETER: 8"
HEIGHT ABOVE GRADE: 36"

SCREENED: Cantilevered Flap

RAISED ACCESS MANHOLE: Yes

FREEZING PROBLEMS: OVERLAPPING COVER: Yes

RECIRCULATION PUMP: No
LAST INTERIOR INSECTION DATE: 1996

LAST PAINTED: 1996
CONDITION OF EXTERIOR PAINT: Good

LAST PAINTED: 1996

MEANS FOR DRAINAGE: Hydrant

1974

STORAGE FACILITIES

(ELEVATED STORAGE)

WATERWORKS: Kaukauna

PWS I.D.: 445033660

LOCATION: Ann Street

CAPACITY: 500,000 gallons

TYPE: Steel Spheroid

OVERFLOR ELEVATION: 141.5'

HEIGHT: 146'

LOW WATER LEVEL: --

HIGH WATER LEVEL: --

SCREENED: Yes

VENT: Yes

SAFETY CLIMB DEVICE: Yes

ACCESS LADDER: Yes

LOCKING ACCESS DO OR/GATE/LADER:

Yes

SAMPLING AND DISINFECTION TAPS:

Yes

INSULATED RISER:

Yes

OVERFLOW DIAMETER:

12"

HEIGHT ABOVE GRADE: 12"

SCREENED:

Cantilevered Flap

SPLASH PAD: Concrete

RAISED ACCESS MANHOLE:

Yes

OVERLAPPING COVER: Yes

FREEZING PROBLEMS:

No

RECIRCULATION PUMP: No

LAST INTERIOR INSECTION DATE:

1998

LAST PAINTED: 1998

CONDITION OF EXTERIOR PAINT:

Good

LAST PAINTED: 1998

MEANS FOR DRAINAGE:

Hydrant

DATE OF CONSTRUCTION:

1998

STORAGE FACILITIES

* (GROUND EARWELL

WATERWORKS: Kaukauna

PWS I.D.: 44503360

CONSTRUCTION DATE: --

LOCATION: Blackwell Street

DIMENSIONS: 12'x8'x21'8"

CAPACITY: 15,000 gal

CONSTRUCTION: concrete

PERCENT BELOW GRADE: 60%

TYPE: --

HIGH WATER LEVELS: --

NUMBER OF CELLS: -LOW WATER LEVEL: --

VENT: Yes

SCREENED: No

OVERFLOW ELEVATION: --

OVERFLOW SUBJECT TO FLOODING: No

OVERFLOW DIAMETER: 10"

SCREENED: OK - Weighted Cantilever

SPLASH PAD: Yes

HEIGHT ABOVE SPLASH PAD: 3'

RAISED ACCESS MANHOLE: Yes

OVERLAPPING COVER: Yes

INFLOW AND OUTFLOW LINES PRESSUREIZED: --

BYPASS: --

LAST INTERIOR INSPECTION DATE: --

MEANS FOR DRAINAGE: --

HIGHT LIFT PUMPS

NUMBER

CAPACITY

TOTAL HEAD

MOTOR HP AUX. POWER

PUMP DISCHARGE PIPING:

CHECK VALVE:

WATER METER: Yes

AIR RELIEF:

SHUT OFF VALVE: Yes

PRESSURE GAUGE: --

SMOOTH ENDED SAMPLE TAP: Yes

CHEMICAL INJECTION TAPS: --

^{*} Used to Strip Air From Well #8

APPENDIX C

WELL LOGS

162	WISCON:	SINUNIQ	ction Report F VEWELL NO			ВС	3574					
Pro Ow	pertyKAL ner	IKAUN	A, CITY OF	Te	lephone imber 44	- 766	- 57	21				
Ma Add	iling dress 777	ISLANI	ST						1. Well Location Pag C T=TounG=C		Tree aver	
Cit	y	CAUNA			State	Zip Cod	4130		of KAUKAUNA	V-1110	Fire # (If av	(a)1.)
Cou	unty of We	II Location		Permit	Well C	ompletion			Grid ^{PT} Street Address ELM ST #4	Road Name a	nd Number	
Cnty	Well Co	nstructor	(Business Name)		License		, 1921 ates		Subdivision Name	Lot #	Bloc	k#
45	Address		LL DRILING I	NC	157			Rc'd	Gov't Lot # or	NE 1/4 of	NE 1/4 o	f
Dist 4	7391 S	PORC	UPINE LAK	Ctoto	7'- C-1-				Section 22 T	21 _N R 18	E	(E/W)
	LENA			State WI	Zip Code 54139			Create	1 l = New 2=	Replacement 3	3 = Reconstru	ction
М			N=NonCom P ode L-Loop H=I		Other	11/	19/98	Last FM	of prevous unique well # Reason or new, replaced	or reconstructed	ructedin 19	0
. Well ser	7		nomes and or	Jiimole .		High Ca Well?	pacity:					
(Ex: be	am, restau	ant, churc	ch, school, industr	y, etc.)	1	Property	?		1 = Drilled 2 =	DrivenPoint 3	= Jetted 4 = 0	Other
5. Well lo	ocatedon l cated in flo	nighestpou oodplain?	nt ofproperty, co	nsistent w	th the gen 9. Dov	eral layou vnspout/Y	ard lydr	rooundin int	gs? 17. Wa	stewater Sump		
	ce in Feet	FromWel	I To Nearest:		Privy	,			18. Pav	ed Animal Barn		
	 Landi Buildir 		ng		11. Foun	dation Dr				imal Yard or She o - Type	iter	
		_	g Tank (circle one	:)	13. Build					n Gutter		
	4. Sewag			,	1 = 0	Cast Iron o	r Plastic	2 = Ot	her 22. Ma	nure Pipe 1=0	ravity 2=Pre	ssure
	5. Nonco	_			14. Build	ling Sewe	r l=	Gravity .	11000010	I = Cast Iron or I		Other
			eating Oil Tank		1	= C ast I	ron or P	ast 2 =	O diei	ner Manure Stora	_	
	7. Buried 8. Shorel		n Tank ming Pool		15. Colle	ctor or S rwater Su		ver	Oti 24.	ier NR 112 Wast	e Source	
(Deillh	ole Dimen					water 5d		0	Geology	Flag	T.	T
	From	To	Method of const enlarged drillho	ructing up le only.	oper		USE ONLY	9. Tu	pe, Caving/Noncaving, Colo		From (ft.)	To
Dia. (in.)	(ft.)	(ft.)	1.0				D	DRIFT	A, Caring Honearing, Colo	1	Surface	(ft.)
18.0	surface	34	1. Rotary - N 2. Rotary - A		tion		L		STONE GAL PLAT		4	1
10.0		0,	3. Rotary - Fo				GNL		STONE STP		170	1
15.5	34	75	4. Reverse Ro	otary			H		E STP		185	2
			5. Cable-tool			dia.	NN		STONE STP		210	
12.0	75	726	6. Temp. Out	V -	i	n. dia.	LH		STONE LMAGN STONE TREMP		340	3
			Removed?				N		STONE FRANCO		380	5
			7. Other				N		STONE DRESB		380 510	7
7. Flag		Casi	ng, Liner, Screen Weight, Specificat		From	То	_					
Dia. (in.)	Mar	Material, V infacturer	Weight, Specificat & Method of Ass	embly	(ft.)	(fL)						-
15.5					surface	34						
12.0					34	120						
						-	10. Sta	ic Water	Level Fag	12. Well Is:	Flag	
							117.0	í		O ¹ n.	Grade	
							11 Pos	т	A=Above B=Below	A=A Developed?	Above B=Be	elow
Dia. (in.)	screen typ	e, materi	al & slot size		From	To	5-00-00	np Test ig Level	Flag 145.0 ft. below 15 groundsurface	Disinfected?		
8.	Grout or	Other C-	aling Material				Pumpi	ng at 697	7.0 GPM M hrs	Capped? Depth(feet)		
Method	Grout or	Other Se	anng Material	From	To	# Sacks	13. Did	you perm	nanently seal all unused, no		nsafe wells?	_
	Kind of	Sealing N	faterial	(ft.)	(ft.)	Cement	If no,	explain	20	Michigan Service Community		Flag
	*	7		surface			14. Sign Flag	ature of	Point Driver of Licensed Su	pervisory Driller	Date S	igned
						-	Signatu	re of Dril	l Rig Operator (Mandatory	unless same as al	oove) Date S	Signed

Owner Sent Label? Y Comments?

WELL NO. 4. 00-44 KAUKAUNA

J.J. Faust & Sons Co.

Completed, May, 1921

Samples examined by F.T. Thwaites, U.W. Nos. 530 64-53185,

53505-53530 Elevation 645

NE14 SW4 SEC 24 TZIN R18E

		Nr.	1"= 100'	TZIN KIBE	
-	44	0-4 /		Drift no amples	10-4010
RIFT	-	4.20		Linestone, magnesium, a samples	11111111111111
		20-90		Limestone, magnesian, gray	-i- i34
		20 00		Zimear orie, mayingsvan, gray	1 15/2 nole .
		10		. 1	:111
>	8.8	:			1 275 , 11/1
, E				7 - 12m2 - 20m2 (10 - 1 - 1) 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12 -10 Line
A-		90-110	الماسيد ا	Limestone, magnesian, gray; layers of blue	120
ZI		7/0-120	ニーニー	- impliant maintain ore the bive misted	
AE		125-130		Lime Cane, instantion, are.	11.
걸리		130-140/	1-1-1	Linestane, ma gressian, matters gray & bive	
10	166.	140-115		Limes tane nicones inn, over with block bots	11
	1	16.5-170	53555-2550	Lien stone mannestan liver blunk gray.	
1 . 43		170-10.5		Shall, miredoray bred, caves	11
당된	1	200-210		shale, prized gravered with white fine	4.1
	30	3/0.320	74,727,00	sandarane rint need, gray & binh ited aran blackses!	
Ar.		220-245	7-1-	Limestone, magnesian, gray, blue spots	
1		3445 0 55	1	Limestone, maynes him grav. Floating same drain	
1 8	10	250-255		Limes que magnesians gray; green shale	100
건		255.340	1-1-1-		434
100	4	233.370		Limestone, magnesian, gray	1 1
多	1		1	k a stra 8 K	11.
20		t .	-	× * * * * * * * * * * * * * * * * * * *	11
1-1-	120		THE)	
4.		340-380	1:1:1:1:1	Limes Tone magnesian, sandy, ra and red layers	
뜬.				shall, red', bink, 2 green - 9 y	1 12 - hale
1	40				. [
1	1	380-415	の生活の主意	Sandstone, wary fine , pinh and brownish re	· []
10		6		rery limy greensand, green shale	
12	1	415.430		Sa were sine, fine greensh gray seed imperentans.	
ANCONIA	1	430-425		Wandstaring warsets fire Pinking . St are, Vst	
10		435.455		Sandatens, mediumps contie, write por	. 8
12		455-460	1.7 10-11-11	is it is range need from to course to be rained your in.	
14		460-485	15 - C. C. C.	Sands Tone, mediens to coderse, white	1 (
	1	405-495	1.1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Jund . Fant medium to find, white, hard, limit	1
E		500-505		Marl, grav, limie, grav, shalo	
11-	130	50 5-510		sandusa titine, gray line ; gray mar!	
-	1	510-700		Sandstone medium to time, gray to white	i i
1	1	0,0,00			1 1
9				*	1 1
-		The second			1 1
-1-		.}	1	· · · · · · · · · · · · · · · · · · ·	[]
		1		(98)	i
A	1	j			1 10
3.8	1				1 1 1
5			100		
T	03				
0		}	1	200	
-		17:0-7/		Ssiled on to Fine, ore vie spiot is y redss	
	-31	750 - 77 0	\	Sandstone yor of me to medium white. Y	1 1
	1216	70-715		Same to the to the first to the colon with the	! !

Drift; Galena-Platteville (includes Decorah); St. Peter. 1 ---- W.

rt den

County of Well Lossistion Co. Well Permit Well Completion Date January 1, 1955	
Mailling Address 777 ISLAND ST City KAUKAUNA County of Well Losation OUTAGAMIE As LUISIER WELL DRILLING INC 157 As Milliser Stroot Address Road Americal As LUISIER WELL DRILLING INC Ost 45 LENA Mell Completion Date Juliser Well Losation No. As Jaylord 1, 1935 Mell Constructor (Business Name) Lot 8 Lot 9 Lot 9 Create Mell Constructor (Business Name) Lot 8 Create Mell Assembly Mell Mell Service (Business Name) Lot 8 Create Turn 1, 1935 Subdivision Name Lot 8 Groff Stroot Address Road Americal Groff Lot 19 Groff Stroot Address Road Americal Subdivision Name Lot 8 Groff Cove Lot 19 Groff Stroot Address Road Americal Groff Lot 19 Groff Stroot Address Road Americal Form 157 Subdivision Name Lot 8 Subdivision Name Lot 8 Subdivision Name Lot 8 Subdivision Name Lot 8 Groff Tisner Address Road Americal Groff Lot 19 Groff Namerical Road Americal Groff Stroot Address Road Americal Form 157 Subdivision Name Lot 8 Subdivision Name Lot 9 Groff Lot 19 Groff Stroot Address Road Americal Groff Lot 19 Groff Stroot Address Road Americal Groff Lot 19 Groff Cove Cove 19 The New 2 = Replacement 19 Lot 20 Groff Cove Lot 19 Grof	
Courty of Well Location OUTAGAMIE OUTAGAMIE Address	
County of Well Location OUTAGAME Cony Well Completion Date January 1, 1935 Locate at 2, Dates Address Pacul Name and Subdivision Name Lot 3 Locate at 2, Dates Address Pacul Name and Subdivision Name Lot 3 Lot 3 Locate at 2, Dates Address Pacul Name and Subdivision Name Lot 3 Subdivision Name Lot 3 Subdivision Name CovT Lot 8 or SE 1/4 of 18 Subdivision Name CovT Lot 9 or SE 1/4 of 18 Subdivision Name CovT Lot 9 or SE 1/4 of 18 Subdivision Name CovT Lot 9 or SE 1/4 of 18 Subdivision Name CovT Lot 9 or SE 1/4 of 18 Subdivision Name CovT Lot 9 or SE 1/4 of 18 Subdivision Name CovT Lot 9 or SE 1/4 of 18 Subdivision Name CovT Lot 9 or SE 1/4 of 18 Subdivision Name CovT Lot 9 or SE 1/4 of 18 Subdivision Name CovT Lot 9 or SE 1/4 of 18 Subdivision Name CovT Lot 9 or SE 1/4 of 18 Subdivision Name CovT Lot 9 or SE 1/4 of 18 Subdivision Name CovT Lot 9 or SE 1/4 of 18 Subdivision Name CovT Lot 9 or SE 1/4 of 18 Subdivision Name CovT Lot 9 or	re # (If avail.)
Section Sect	umber
Address Company Comp	Block #
Total Section Total Sectio	_L
City State Zip-Ode LENA Wil 54 139 Created Will 54 139 Created Will 54 139 MeManic O=OTM N=NonCom P=Priv Z=Other 11/19/98 Last FM I1/19/98 Last FM I1/19/99 Last FM I1/19/98 Last FM I1/19/99 Last	VE 1/4 of
M M-Munic O-OTM N-NonCon P-Priv Z-Other 11/19/98 Last FM M Exhon-Pot. A-Anoed L-Loop H=Drillhole 11/19/98 Last FM Reason for New, replaced or reconstructed well New Yell Ne	E (E/W)
M X=Non-Pot. A=Anode L-Loop H=Drillhole 11/19/98 Last FM Reason for few. replaced or reconstructed well 4. Well serves # of homes and or Well? Property? 1 1 = Drilled 2 = Driven Point 3 = Je Je Property? 1 1 = Drilled 2 = Driven Point 3 = Je Je Property? 1 1 = Drilled 2 = Driven Point 3 = Je Je Property? 1 1 = Drilled 2 = Driven Point 3 = Je Je Property? 1 1 = Drilled 2 = Driven Point 3 = Je Je Property? 1 1 = Drilled 2 = Driven Point 3 = Je Je Property? 1 1 = Drilled 2 = Driven Point 3 = Je Je Property? 1 1 = Drilled 2 = Driven Point 3 = Je Je Property? 1 1 = Drilled 2 = Driven Point 3 = Je Je Property? 1 1 = Drilled 2 = Driven Point 3 = Je Je Property? 1 1 = Drilled 2 = Driven Point 3 = Je Je Property? 1 1 = Drilled 2 = Driven Point 3 = Je Je Property? 1 Je Drilled 2 = Driven Point 3 = Je Je Property? 1 Je Drilled 2 = Driv	
Section Company Comp	:dni 19 <u>U</u> 1?
(Ex: barn, restaurant, church, school, industryetc.) 5. Well located fon highest point of property/consistent with the general layout and surrooundings? Distance in Feet FromWell To Nearest: 1. Landfill 2. Building Overhang 3. Septic or Holding pank (circle one) 4. Sewage AbsorptionUnit 5. Nonconforming Pit 6. Buried Home Heating Oil Tank 7. Buried Petroleum Tank 15. Collector of Streed Sewer 16. Clearwater Sump 18. Paved Annimal Barn Pen 19. Annimal Yard or Shelter 20. Silo - Type 21. Barn Gutter 22. Manure Pipe 1=Gravit 1 = Cast Iron or Plastic 23. Other Manure Storage Other NR 112 Waste So 24. 6. Drillhole Dimensions From To (R.) (R.) (R.) 1. Rotary - Air 3. Rotary - Foam 4. Reverse Rotary 5. Cable-tool Bit 6. Temp. Outer Casing Removed? 7. Other 7. Pea Casing, Liner, Screen Manufacturer & Method of Assembly 16. O 17. Prom 18. Paved Annimal Barn Pen 19. Annimal Yard or Shelter 20. Silo - Type 21. Barn Gutter 22. Manure Pipe 1=Gravit 1 = Cast Iron or Plastic 22. Manure Pipe 1=Gravit 1 = Cast Iron or Plastic 23. Other Manure Storage Other NR 112 Waste So 24. Ceology Flag Type, Caving/Noncaving, Color, Hardness, Etc. Dia. (in.) (ft.) (ft.) 1. Rotary - Air 3. Rotary - Foam 4. Reverse Rotary 5. Cable-tool Bit 6. Temp. Outer Casing Removed? 7. Other 7. Pea Casing, Liner, Screen Manufacturer & Method of Assembly 11. Pump Test 11. Pump Test Flag Dia. (in.) Screen type, material & slot Size From 10. Static Water Level 112. O 11. Pump Test Flag Daving Level 155. 0 Daving Leve	
Distance in Feet FromWell To Nearest: 1. Landfill 2. Building Overhang 3. Septic or Holding Tank (circle one) 4. Sewage AbsorptionUnit 5. Monconforming Pit 6. Buried Home Heating Oil Tank 7. Buried Petroleum Tank 8. Shoreline/Swimming Pool 6. Clearwater 19. Animal Yard or Shelter 12. Foundation Drain to Clearwater 13. Building Drain 1 = Cast Iron or Plastic 2 = Other 14. Building Sewer 1 = Gravity 2 = Pressure 1 = Cast Iron or Plastic 2 = Other	tted 4 = Other
Distance in Feet FromWell To Nearest: 1. Landfill 2. Building Overhang 3. Septic or Holding Tank (circle one) 4. Sewage AbsorptionUnit 5. Monconforming Pit 6. Buried Home Heating Oil Tank 7. Buried Petroleum Tank 8. Shoreline/Swimming Pool 6. Clearwater 19. Animal Yard or Shelter 12. Foundation Drain to Clearwater 13. Building Drain 1 = Cast Iron or Plastic 2 = Other 14. Building Sewer 1 = Gravity 2 = Pressure 1 = Cast Iron or Plastic 2 = Other	
2. Building Overhang 3. Septic or Holding puk (circle one) 4. Sewage AbsorptionUnit 5. Nonconforming Pit 6. Buried Home Heating Oil Tank 7. Buried Peroteum Tank 8. Shoreline/Swimming Pool 6. Orillhole Dimensions From To Dia (in.) (ft.) 1. Rotary - Mud Circulation 2. Rotary - Air 3. Rotary - Foam 4. Reverse Rotary 5. Cable-tool Bit in. dia. 6. Temp. Outer Casing in. dia.	
3. Septic or Holding Tank (circle one) 4. Sewage AbsorptionUnit 5. Nonconforming Pit 6. Buried Home Heating Oil Tank 7. Buried Petroleum Tank 8. Shoreline/Swimming Pool 16. Collector or Stred S ewer 19 Cast Iron or Plastic 19 Cast Iron or Plastic 19 Collector or Stred S ewer 19 Collector or Stred S ewer 20 Other NR 112 Waste So 21 Cher NR 112 Waste So 22 Other NR 112 Waste So 23 Other Manure Storage Other NR 112 Waste So 24 Other NR 112 Waste So 25 Other NR 112 Waste So 26 Other NR 112 Waste So 27 Type, Caving/Noncaving, Color, Hardness, Etc. 28 Castary - Air 29 Casing Liner, Screen Material, Weight, Specification Dia. (in.) Manufacturer & Method of Assembly 19 Casing Liner, Screen Material, Weight, Specification Manufacturer & Method of Assembly 10 Oin Manufacturer & Method of Assembly 11 Ostatic Water Level 112.0 ft. B ground surface 113. Did you permanently seal all unused, noncomplying, or unsafe 113. Did you permanently seal all unused, noncomplying, or unsafe 113. Did you permanently seal all unused, noncomplying, or unsafe 11 Cast Iron or Plastic 12 Cother 12 Other NR 112 Waste So 23 Other Manure Storage Other NR 112 Waste So 24 Other NR 112 Waste So 25 Other NR 112 Waste So 26 Other NR 112 Waste So 27 Other NR 112 Waste So 28 Other NR 112 Waste So 28 Other NR 112 Waste So 29 Other NR 112 Waste So 29 Other NR 112 Waste So 20	
5. Nonconforming Pit 6. Buried Home Heating Oil Tank 7. Buried Petroleum Tank 8. Shoreline/Swimming Pool 15. Collector or Stred S ewer 16. Clearwater Sump 24. 6. Drillhole Dimensions From To (ft.) (ft.) 1. Rotary - Mud Circulation 2. Rotary - Air 3. Rotary - Foam 4. Reverse Rotary 5. Cable-tool Bit 6. Crempt To Dia. (in.) (in.) (in.) 1. Rotary - Foam 4. Reverse Rotary 5. Cable-tool Bit 6. Crempt To Dia. (in.) (in.) (in.) 1. Cother 1. Rotary - Foam 4. Reverse Rotary 5. Cable-tool Bit 6. Crempt United Reverse Rotary 7. Other 7. Pag Casing, Liner, Screen Material Weight, Specification (ft.) (ft.) 1. Cother 1. Rotary - Foam 1. Collector or Stred S ewer 1 = Cravity 2=Pressure 1 = Cast Iron or Plast 2 = Other NR 112 Waste So 24. 1. Collector or Stred S ewer 24. 1. Rotary - Rotary 1. Rotary - Rotary 1. Rotary - Air 3. Rotary - Foam 4. Reverse Rotary 5. Cable-tool Bit 6. Temp. Outer Casing in. dia. 6. Temp. Outer Casing (ft.) (ft.) 1. Collector or Stred S ewer 24. 1. Rotary - Rotary 1. Rota	
6. Buried Home Heating Oil Tank 7. Buried Petroleum Tank 7. Buried Petroleum Tank 8. Shoreline/Swimming Pool 16. Clearwater Sump 16. Dilancinology Plast 15. Collector or Stred S ewer 16. Clearwater Sump 16. Dilancinology Plast 16. Clearwater Sump 17. Post 17. Post 18. Reverse Rotary 18. Reverse Rotary 19. Casing Liner, Screen Material, Weight, Specification Dia. (in.) 19. Manufacturer Method of Assembly 19. Static Water Level 112. Of the Bellow B	•
7. Buried Petroleum Tank 8. Shoreline/Swimming Pool 16. Clearwater Sump 24. 6. Drillhole Dimensions From To Dia (in.) (ft.) (ft.) Surface 1. Rotary - Mul Circulation 2. Rotary - Air 3. Rotary - Foam 4. Reverse Rotary 5. Cable-tool Bit in. dia. 6. Temp. Outer Casing Removed? 7. Other 7. Pag Casing, Liner, Screen Material, Weight, Specification Manufacturer & Method of Assembly Dia. (in.) screen type, material & slot size 8. Grout or Other Sealing Material Method 15. Collector or Streed Sewer 16. Clearwater Sump 16. Clearwater Sump 24. DNN V Supp. Geology Flag Type, Caving/Noncaving, Color, Hardness, Etc. DOLOMITE GAL PLAT N SANDSTONE STP To (ft.) (ft.) 10. Static Water Level 112.0 ft. B ground surface A=Above B=Below 11. Pump Test To pumping Level 155.0 ft. below ground surface A=Above B=Below 11. Pump Test To Sacks To Dia (in.) screen type, material & slot size Trom To Sacks Sacks To Dia (in.) screen type, material & slot size Trom To Sacks Sacks To Dia (in.) screen type, material & slot size Trom To Sacks Sacks To Dia (in.) screen type, material & slot size Trom To Sacks Sacks To Dia (in.) screen type, material & slot size Trom To Sacks Sacks To Dia (in.) screen type, material & slot size Trom To Sacks Sacks To Dia (in.) screen type, material & slot size Trom To Sacks To Dia (in.) screen type, material & slot size Trom To Sacks To Dia (in.) screen type, material & slot size Trom To Sacks To Dia (in.) screen type, material & slot size Trom To Sacks To Dia (in.) screen type, material & slot size Trom To Sacks To Dia (in.) screen type, material & slot size Trom To Sacks To Dia (in.) screen type, material & slot size To Dia (in.) screen type, material & slot size To Dia (in.) screen type, material & slot size To Dia (in.) screen type, material & slot size To Dia (in.) screen type, material & slot size To Dia (in.) screen type, material & slot size To Dia (in.) screen type, material & slot size To Dia (in.) screen type, material & slot size To Dia (in.) screen type, material & slot size To Dia (in.) sc	ic 2 onici
6. Drillhole Dimensions From To Dia (in.) (ft.) (ft.) surface 1. Rotary - Mud Circulation 2. Rotary - Air 3. Rotary - Foam 4. Reverse Rotary 5. Cable-tool Bit in. dia. Removed? 7. Pag Casing, Liner, Screen Dia (in.) Manufacturer & Method of Assembly Dia (in.) Manufacturer & Method of Assembly Dia (in.) Screen type, material & slot size 10. Static Water Level 112.0 ft. B ground surface 113. Did you permanently seal all unused, noncomplying, or unsafe line, explain	ource
Prom To (ft.) (ft.	
Surface 1. Rotary - Mud Circulation 2. Rotary - Air 3. Rotary - Foam 4. Reverse Rotary 5. Cable-tool Bit in. dia. 6. Temp. Outer Casing in. dia. Removed? 7. Other 7. Pas Casing, Liner, Screen Material, Weight, Specification Manufacturer & Method of Assembly Manufacturer & Method of Assembly 121 10. Static Water Level 112.0 ft. B ground surface 112.0 ft. B Grout of Other Scaling Material From To Developed? Disinfected? Capped? Capp	From To
surface 2. Rotary - Air 3. Rotary - Foam 4. Reverse Rotary 5. Cable-tool Bit	(ft.) (ft.)
3. Rotary - Foam 4. Reverse Rotary 5. Cable-tool Bit	8 1
5. Cable-tool Bit in. dia. 6. Temp. Outer Casing in. dia. Removed? 7. Pag	172 5
6. Temp. Outer Casingin. dia. Removed? 7. Other 7. Pag Casing, Liner, Screen Material, Weight, Specification Manufacturer & Method of Assembly (ft.) (ft.) 16.0 Surface 121 10. Static Water Level Pag 12. Well Is: 112.0 ft. B ground surface 12. Well Is: 0 in A=Above B=Below 11. Pump Test Flag Dia. (in.) Screen type, material & slot Size From To Pumping Level 155.0 Ground surface Pumping at 216.0 GPM M hrs Developed? Disinfected? Capped? Capped? Capped? Capped? Depth (feet) Capped? Capped	
7. Pag Casing, Liner, Screen Material, Weight, Specification Dia. (in.) Manufacturer & Method of Assembly (ft.) (ft.) 16.0 Surface 121 10. Static Water Level Page 122 112.0 ft. B ground surface 123 112.0 ft. B ground surface 124 113. Dia (in.) screen type, material & slot size From To 8. Grout or Other Sealing Material From To Method From To Sacks Iso John John	
Casing, Liner, Screen Material, Weight, Specification (ft.) (ft.) 16.0 Surface 121 10. Static Water Level 112.0 A=Above B=Below 11. Pump Test Flag To Pumping Level 155.0 Replace To Sacks Kind of Sealing Material From To Sacks Kind of Sealing Material Casing, Liner, Screen Material, Weight, Specification (ft.) From To Sacks Cement To Sacks T	
Material, Weight, Specification (ft.) Manufacturer & Method of Assembly In the surface of the	
16.0 Surface 121 16.0 Surface 121 10. Static Water Level 7000 11. Pump Test Flag Flag	
10. Static Water Level 112.0 ft. B ground surface 113.0 ft. below 114. Pump Test 125.0 ft. below 115.0 ft. below 115.0 ft. below 116.0 GPM M ft. below 117. Pumping Level 155.0 ft. below 118. Grout or Other Sealing Material 128. Well Is: 129. Opin 129. A=Above 129. Developed? 129. Developed? 130. Did you permanently seal all unused, noncomplying, or unsafe 131. Did you permanently seal all unused, noncomplying, or unsafe 132. Well Is: 133. Did you permanently seal all unused, noncomplying, or unsafe 133. Did you permanently seal all unused, noncomplying, or unsafe	-
Dia. (in.) screen type, material & slot size 8. Grout or Other Sealing Material Method Kind of Sealing Material To Kind of Sealing Material To To Sacks Kind of Sealing Material To To Sacks Kind of Sealing Material To To Sacks Cement To Sacks Cement To Sacks Cement To Sacks Cement To Sacks To Sacks Cement To Sacks To To Sacks To Sacks To To Sacks To Sacks To Sacks To To To Sacks To To To Sacks To To To To To To To To To T	
112.0 ft. B ground surface A=Above B=Below A=Above Disumface A=Above B=Below I1. Pump Test Flag Pumping Level 155.0 ft. below Below To pumping Level 155.0 ft. below From To Sacks Kind of Sealing Material From To Sacks Kind of Sealing Material To Sacks	
112.0 ft. B ground surface A=Above B=Below A=Above II. Pump Test Flag Pumping Level 155.0 ft. below Pumping Level 155.0 ft. below From To Sacks Kind of Sealing Material From To Sacks Kind of Sealing Material To Sacks To Sacks To Sacks To Sacks If no, explain	
A=Above B=Below A=Above B=Below II. Pump Test Flag Pumping Level 155.0 ft. below ground surface Pumping at 216.0 GPM M From To Sacks Kind of Sealing Material A=Above B=Below A=Above Developed? Disinfected? Capped? Depth (feet) II. Dump Test Flag Pumping at 216.0 GPM M hrs Developed? Disinfected? Capped? Depth (feet) II. Dump Test Flag Pumping at 216.0 GPM M III. Developed? Disinfected? Capped? Depth (feet) III. Developed? Disinfected? Capped? Depth (feet) III. Developed? Disinfected? Depth (feet)	Flag
Dia. (in.) screen type, material & slot size 8. Grout or Other Sealing Material Method Kind of Sealing Material Method Me	Grade ve B=Below
8. Grout or Other Sealing Material From To Sacks Kind of Sealing Material From Kind of Sealing Material	
8. Grout or Other Sealing Material Method From To Sacks Kind of Sealing Material (ft.) (ft.) Cement Facility of Sealing Material From To Sacks Kind of Sealing Material (ft.) (ft.) Cement From To Sacks If no, explain	
Method From To Sacks Kind of Sealing Material (ft.) (ft.) Cement If no, explain	
(ft.) (ft.) Cement II no, explain	e wells?
	Date Signed
surface Flag	Date Biglied
Signature of Drill Rig Operator (Mandatory unless same as above) Date Signed

Registry Section Sec		-		60		. !		8	5.00	et);
Jerry Donohus Engineering Co., Engineer Layne-Northwest Co., Drill in, January 1959 Sample Mon. 205892-206011 - Examined by J. B. Stauerwald 8 0 - 35 35								2000 2000		N 10 10 10 10 10 10 10 10 10 10 10 10 10
200		s *						d) 0		a)
Sample Nos. 205892-206011 - Exerined by J. B. Steuerwald	П		100						60 30	1907
1	(6)	70	797	20				*	90	14 T
35 - 45	D		1					1.1	4	19
335 - 45	R		0 -	135	35	===	Clay, pale red, non dolomitic	1		(*)
Total damber Total damber Colorate Co	I							J :		20" pipe
Total damber Second Seco	P	1 T	35:	4.5	1.10		Clay(till?), pale red-grav, few stones, dolomitic			(i)
Dolomite, light tan-gray, little blue-gray mottling, pyritic 100-110, 130-135 190 - 210 20 Dolomite, blue-gray & tan 15" hole 16" pipe 151 190 - 210 20 Dolomite, medium gray, little blue-gray 15" hole 16" pipe 151 175 225 - 245 20 Dolomite, tan much blue-gray, some green shale & sandstone 235-245 245 - 270 25 Dolomite, light medium gray, sandy, pyritic some ss, trace of Collider by & tan-gray, sandy pyritic some ss, trace of Collider by & tan-gray, sandy pyritic some ss, trace of Collider by & tan-gray, sandy pyritic some ss, trace of Collider by & tan-gray, sandy pyritic some ss, trace of Collider by & tan-gray, sandy pyritic some ss, trace of Collider by & tan-gray, sandy pyritic some ss, trace of Collider by & tan-gray, sandy pyritic some ss, trace of Collider by & tan-gray, sandy pyritic some ss, trace of Collider by & tan-gray, sandy pyritic some ss, trace of Collider by & tan-gray, sandy pyritic some sandstone, spme collitic white chert 310 - 315 - 340 25 Dolomite, light medium gray, sandy, some fine ss, sandstone, spme collitic white chert 340 - 410 70 Dolomite, tan & pale red-gray, very sandy 455 - 465 10 Tolomite, tan & pale red-gray, pyritic, spale collider 40 480 - 495 15 Solitistone, & shele, dk red, sandy, slave., dolo, 455 - 505 10 Sandstone, cr., & W fine sr, pinkish sy, dolo, 505 - 525 20 Sandstone, fine grained, light gray, very dolo-sandstone, spme collider by pale red-gray, pyritic, glauconitic, very 505 505 - 505 505	T	100	1	70	25		Clay, pale red, non dolomitic			
mottling, pyritic 100-110, 130-135 19 hole 16 pipe 190 - 210 20 / Dolomite, blue-gray & tan 190 - 210 20 / Dolomite, medium gray, little blue-gray 175 225 - 245 20 - Dolomite, tan, much blue-gray, some green shale & sandstone 235-245 245 - 270 25 / Dolomite, blirp & tan-gray some, syride, some ss, trace of collitic ch. collitic 301,750-779 275 - 275	4	70			<u> </u>	7-7-		1	:	721
mottling, pyritic 100-110, 130-135 19n hole 16" pipe 190 - 210 20	G		70 -	. 190	120	1		17	_	75 water
150 - 210 20	A			1		1	mottling, pyritic 100-110, 130-135		2.0	
190 - 210 20 Dolomite, blue-gray & tan 15w hole 175 225 - 245 20 Dolomite, tan, much blue-gray, some green shale & sandstone, glate, light medium gray, little blue-gray 245 - 270 25 Dolomite, tan, much blue-gray, some green shale & sandstone, made, grained, & dolomite, light medium gray, sandy, pyride, some state, coloring to dolomite, light medium gray, sandy, pyride, cherry 225 - 285 16 / Dolomite, light medium gray, sandy, pyride, cherry 225 - 310 23 Dolomite, light medium gray, sandy, pyride, cherry 235 - 310 23 Dolomite, light medium gray, sandy, pyride, cherry 315 - 340 25 Dolomite, light medium gray, sandy, pyride, cherry 340 - 410 70 Dolomite, light medium gray, sandy, some fine 340 - 410 70 Dolomite, light medium gray, very sandy 455 - 465 10x Sands one, fine gra, w dolo, glauc, red, micaceous 465 - 480 15 Dolomite, tan & purplish-gray 210 425 - 455 30 Silstone, & shale, dk red, sandy, glauc, dolo, 455 - 555 10x Sands one, fine grained, light gray, wery dolomite, show with 465 - 480 15 Silstone, & shale, dk red, sandy, glauc, dolo, 555 - 555 20 Sandstone, fine grained, light gray, wery dolomitic, wery dolomitic (breaks in chips) 556 - 600 35 Sandstone, medium & coarse grained, light gray & light 569 - 600 35 Sandstone, medium & coarse grained, light 560 - 600 35 Sandstone, medium & coarse grained, light 560 - 600 35 Sandstone, medium & coarse grained, light 560 - 600 35 Sandstone, medium & coarse grained, light 560 - 600 35 Sandstone, medium & coarse grained, light 560 - 600 35 Sandstone, medium & coarse grained, light 560 - 600 35 Sandstone, medium & coarse grained, light 560 - 600 35 Sandstone, medium & coarse grained, light 560 - 600 35 Sandstone, medium & coarse grained, light 560 - 600 35 Sandstone, medium & coarse grained, light 560 - 600 35 Sandstone, medium & coarse grained, light 560 - 600 35 Sandstone, medium & coarse grained,	17			30.		11		1 1		
210 - 225 15	7		: 17		-	11.		1	4	il To. bibe
210 - 225 15	٦ 🗓		- ·	* ***	E	1/1			4.	Ü .
210 - 225 15	3				8	1/1		1		11571
210 - 225 15	. 0					1/		7.	1 -3	1 131
210 - 225 15	4					1:1			.1 .	
210 - 225 15	17		- 00	010		1/			[1 . 15# bole
225 - 245 20/	1	Til.	190	Z10.	20	111	Dolomite, blue-gray & tan	8	121	1 - IJ NOIE
Dolomite, tan much blue-gray, some green shale 6 sandstone 235-245 245 - 270	-		210 -	225	15	/ /	Dolomite medium gray, little blue-gray	100		1
sandstone 235-245 245 - 270 25	4		225 -	245	20	1.2		2	1 . *	1 1000
270 - 275 Sundstone med grained & dolomite it ey sandy 285 - 285 10 / Dolomite light medium gray, sandy pyritic 285 - 310 25 / Dolomite, light medium gray, sandy some fine 315 - 340 25 / Dolomite, light medium gray, sandy, some fine 340 - 410 70 Dolomite, light medium gray 410 - 425 15 / Dolomite, tan & purplish-gray 425 - 455 30 / Dolomite, tan & pale red-gray, very sandy 455 - 465 10 / Dolomite, tan & pale red-gray, very sandy 455 - 465 10 / Dolomite, tan & sandstone, glauconitic 40 480 - 495 15 Siltstone, & shale, dk red, sandy glauco, dolo. 495 - 505 10 / Sandstone, cr. & w fine grained, light gray wery dolomite, shot with sandstone, fine grained, light gray, very dolomite, shot with sandstone, fine grained, light gray & light gray belight gray every 10 from 505- 525 - 565 40 Sandstone, medium & coarse grained, light cream-gray dolomitic (breaks in chips) 526 - 600 35 Sandstone, medium & coarse grained, light cream-gray dolomitic (breaks in chips) 527 - 528 10 Sandstone, medium & coarse grained, light cream-gray dolomitic (breaks in chips)	1 3	.75	(X g)			.7	sandstone 235-245	37) 37# .	34,00	(i) " a i
270 - 275	1		245 -	2/0	.25		Dolomite bl-gy & tan-gy, sandy, pyritic some ss,	X5		k
225 - 310 25 / Dolomite, light medium gray, sandy pyrific 310 - 315, S	7		270 -	275	4	11. 3			1:	
310 - 315. 5 Dolomite light brown-gray little colitic chert 315 - 340 25 Dolomite, light medium gray, sandy, some fine sandstone, some colitic white chert 340 - 410 70 Dolomite, light medium gray 410 - 425 15 Dolomite, light medium gray 425 - 455 30 Dolomite, tan & purplish-gray 425 - 455 30 Dolomite, tan & pale red-gray, very sandy 455 - 465 10 Sands one, fine gr., ww dolo., glauc., red, micaceous sands one, fine grained, light gray, very dolomite, sands sone, fine grained, light gray, very dolomite, sands sone, fine grained, light gray, very dolomite, sands sone, fine grained, light gray & light pale red-gray, pyritic, glauconitic, very dolomitic (breaks in chips) 569 - 600 35 Sandstone, medium & coarse grained, light cream-gray, dolomitic 5901	Į.		275 -	285			Dolomite, light medium grav. sandy pyritic	7	-	I (5)
315 - 340 25 /- / Dolomite, light medium gray, sandy, some fine sandstone, spme colific white chert 340 - 410 70 / Dolomite, light medium gray 410 - 425 15 / / Dolomite, tan & purplish-gray 425 - 455 30 / / Dolomite, tan & pale red-gray, very sandy 455 - 465 10x / Sandstone, fine gr., ww dolo, glauc, red, micacecus x 460 shot with 465 - 480 15 / Dolomite, pale red, & sandstone, glauconific 40 480 - 495 15 / Dolomite, pale red, & sandstone, glauconific 40 480 - 505 10x / Sandstone, & shale, dk red, sandy, glauc., dolo. 505 - 505 10x / Sandstone, cr., & vy fine gr., pinkish gy, dolo, shill c, much drift 525 - 565 40 / Sandstone, fine grained, light gray, & light pale red-gray, pyritic, glauconific, very dolomitic (breaks in chips) 569 - 600 35 / Sandstone, medium & coarse grained, light gray & light cream-gray, dolomitic (breaks in chips) 500 / Sandstone, medium & coarse grained, light cream-gray, dolomitic (breaks in chips)			285 -	310	25	1.	Dolomite, light medium gray	177	0.55	
sandstone, some colitic white chert 340 - 410 70		*]			3		Dolomite light brown-gray little politic chart	*	1 1	
210 40 - 425 15 / Dolomite, tan & purplish-gray 410 - 425 15 / Dolomite, tan & pale red-gray, very sandy 425 - 455 30 / Dolomite, tan & pale red-gray, very sandy 455 - 465 10 / Dolomite, pale red, & sandstone, glauconitic 465 - 480 15 / Dolomite, pale red, & sandstone, glauconitic 40 480 - 495 15 Siltstone, & shale, dk red, sandy, glauconitic 495 - 505 10 / Sandstone, cr. & w fine gr. pinkish gy dolomitic, much drift 525 - 565 40 Sandstone, fine grained, light gray, very dolomitic matter fine grained, light gray & light gate red-gray, pyritic, glauconitic, very dolomitic (breaks in chips) 569 - 600 35 Sandstone, medium & coarse grained, light 590	6.	540	315 -	·340	. 25	1.0.1.	Dolomite, light medium gray, sandy, some fine		10	The state of the s
410 - 425 15 / Dolomite, tan & purplish-gray 210 425 - 455 30 / Dolomite, tan & pale red-gray, very sandy 455 - 465 10 / Sands one, fine gr., vv dolo, glauc, red, micaceous (465 - 480 15) / Dolomite, pale red, & sandstone, glauconitic (40 480 - 495 15 Siltstone, & shale, dk red, sandy, glauc, dolo. 495 - 505 10 / Sandstone, cr., & vv fine gr., pinkish gv, dolo. 505 - 525 20 Sandstone, fine grained, light gray, very dolomitic, much drift 525 - 565 40 Sandstone, fine grained, light gray & light pale red-gray, pyritic, glauconitic, very dolomitic (breaks in chips) 569 - 600 35 Sandstone, medium & coarse grained, light cream-gray, dolomitic 590	and:				- /	- 1-		•	3	
425 - 455 30 // / Dolomite, tan & pale red-gray, very sandy 455 - 465 10	1	* **	340 -	410	. 79	1/	Dolomite, light medium gray	*		· ******
425 - 455 30 // / Dolomite, tan & pale red-gray, very sandy 455 - 465 10	1	· (E _E		1		e".	٠. "	l
425 - 455 30 // / Dolomite, tan & pale red-gray, very sandy 455 - 465 10	٧,	8:3				1//		200	170	
425 - 455 30 // / Dolomite, tan & pale red-gray, very sandy 455 - 465 10	1					///			100	0 8 9
425 - 455 30 // / Dolomite, tan & pale red-gray, very sandy 455 - 465 10				1		1 . / .		900	E 11 7	The state of the s
455 - 465 10 Sands one, fine gr., vv dolo, glauc, red, micacecus 465 - 480 15 Dolomite, pale red, & sandstone, glauconitic 40 480 - 495 15 Siltstone, & shale, dk red, sandy, glauc., dolo. 495 - 505 10 Sandstone, cr., & vv fine gr., pinkish gv, dolo, shot with mitic, much drifted fight gray, very dolomitic, much drifted pale red-gray, pyritic, glauconitic, very dolomitic (breaks in chips) 565 - 600 35 Sandstone, medium & coarse grained, light cream-gray, dolomitic			410 -	425	15	/ /	Dolomite, tan & purplish-gray	ّ ٿِ	î	878 P
455 - 465 10: Sands one, fine gr., vv dolo., glauc., red, micaceous 465 - 480 15/ Dolomite, pale red, & sandstone, glauconitic 40 480 - 495 15 Siltstone, & shale, dk red, sandy, glauc., dolo. 495 - 505 10: Sandstone, cr., & vv fine gr., pinkish gv, dolo. 505 - 525 20: Sandstone, fine grained, light gray, very dolomitic, much drift 525 - 565 40: Sandstone, fine grained, light gray & light pale red-gray, pyritic, glauconitic, very dolomitic (breaks in chips) 563 - 600 35: Sandstone, medium & coarse grained, light cream-gray, dolomitic	2	10	425 -	455	30	7 / 1	Dolomite, tan & pale red-gray, very sandy	,		As, sea
40 480 - 495 15 Siltstone, & shale, dk red, sandy, glauc., dolo. 495 - 505 10 Sandstone, fine grained, light gray, very dolomitic, much drift 525 - 565 40 Sandstone, fine grained, light gray & light pale red-gray, pyritic, glauconitic, very dolomitic (breaks in chips) 569 - 600 35 Sandstone, medium & coarse grained, light gray & light cream-gray, dolomitic					ŀ	1//	X 20	- 1 - 1:	1	5) (500 °54 Par
40 480 - 495 15 Siltstome, & shale, dk red, sandy, glauc., dolo. 495 - 505 10 Sandstome, cr., & vv fine gr., pinkish gy, dolo. 505 - 525 20 Sandstome, fine grained, light gray, very dolomitic, much drift 525 - 565 40 Sandstome, fine grained, light gray & light pale red-gray, pyritic, glauconitic, very dolomitic (breaks in chips) 565 - 600 35 Sandstome, medium & coarse grained, light gray & light cream-gray, dolomitic					10:	C	Sands one, fine gr., vy dolo., glauc., red, micaced	15		
495 - 505 10: Sandstone, cr., & vy fine gr., pinkish gy, dolo. 505 - 525 20: Sandstone fine grained, light gray, very dolo- mitle, much drift 525 - 565 40: Sandstone, fine grained, light gray & light pale red-gray, pyritic, glauconitic, very dolomitic (breaks in chips) 569 - 600 35: Sandstone, medium & coarse grained, light cream-gray, dolomitic Total depth				767457277	15/	r / / /		į.	- X	470 25# shots
505 - 525 20 Sandstone fine grained, light gray, very dolomitic, much drift 525 - 565 40 Sandstone, fine grained, light gray & light every 10 from 505-dolomitic (breaks in chips) 563 - 600 35 Sandstone, medium & coarse grained, light cream-gray, dolomitic	fΈ	40	480 -	495	15		Siltstone, & shale, dk red, sandy, glauc., dolo.	- 1	<u>.</u>	a n si
525 - 565 40 Sandstone, fine grained, light gray & light pale red-gray, pyritic, glauconitic, very dolomitic (breaks in chips). 565 - 600 35 Sandstone, medium & coarse grained, light cream-gray, dolomitic	Ш		495 -	505	10	2.2 (Sandstone, cr., & vy fine gr., pinkish gy, dolo.		_ x [[]	5720 12 (20052)
525 - 565 40 Sandstone, fine grained, light gray & light pale red-gray, pyritic, glauconitic, very dolomitic (breaks in chips). 565 - 600 35 Sandstone, medium & coarse grained, light cream-gray, dolomitic		1	505 -	525	20	20.53	Sandstone fine grained, light gray, very dolo-	·I	X	
pale red-gray, pyritic, glauconitic, very dolomitic (breaks in chips). 565 - 600 35 Sandstone, medium & coarse grained, light cream-gray, dolomitic	11		525 -	565	40	01411111111111111111111111111111111111			X	
dolomitic (breaks in chips). 569 - 600 35 Sandstone, medium & coarse grained, light cream-gray, dolomitic			15		70	7 1 7 C				
Sandstone, medium & coarse grained, light cream-gray, dolomitic	Seed		20.97					050	x.	
cream-gray, dolomitic	1		56% -	600	35	***************************************	Sandstone medium & coarse orgined light	0400	. 5	, ,
502 Total depth				1203	-55	- <u>' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '</u>			· ×	20 . 20
602 Total depth	H	15			1	7		- 1	-X	901
	ر لا ا	net-	ione.	602			Total depth :			8

Ore shoot ing: Tested at 433 gpm for 14½ hrs., specific capacity = 1.70 gpm/ft.of drawdown. er shoot ing: Tested for 9½ hrs. @ rates varying from 240-751 gpm, last 25 min. @ 751 gpm, pecific capacity at end of test = 4 gpm/ft.

To hole was 73' deep water level was 52'. Before shooting water level was 83', after shoot-

DRILLED to 770 IN \$1995

Cillan + 700 -

1	VISCONS	SIN UNI	QUE W	e port Fo ELL NU	MBER		Н	J196								
	perty KA	UKAU		ECTR	IC Te	lephone imber 4			1							
Mai	iling dress 777									1. Well L				-		
City	y	JKAUN				State	Zip Cod	e 54130		C of K	AUKAUN	IA .	V=Village			al.)
Cou	inty of We			o. Well P	ermit	1	ompletion			Gridor	Street Add	ress or	Road Name	and Numi	ber	
Cnty		GAMIE Instructor	10,000	lo. s Name)		License	July 1-	4, 199 0/08/97			sion Name WELL		Lot #		Block	#
45	MUNI	CIPAL		@ PUN	IP INC	13	_ 10)/08/97	Red	Gov't I		-	NE 1/4	r SM	1 1/4 -	
Dist 4	20950	ENTE	RPRIS	E AVE						Section					- 0	(E/W)
		OKFIEL			State WI	Zip Code 5304			Create	3. Well T		-	Replacement	_	PE	20
М	M=Munic X=Non-P					Other	11	/25/97	Last FM			ell#	cons	tructed ir	1 19 _	0
. Well se					UNICIPA	ALITY	High Ca			-	ASE CA			I WCIII		
Flag (Ex: ba	ırn, restaur	ant, chure	ch, schoo	l, industr	, etc.)		Well? Y Property	?		40	= Drilled	2 = Dr	iven Point	3 = Jetter	d 4 = 0	Other
5. Well lo Well lo	ocated on h	iighest po loodplain?	int of pro	operty, cor	isistent wi			and su ard Hydr	rroounding ant	gs?			water Sump			
Distan	ce in Feet		ll To Nea	rest:		10. Priv	y ndation D	rain to C	learwater	•			Animal Bar al Yard or Sl	11	Filing	
		ng Overha	ang				ndation D					Silo -		icitci		
	-			circle one	:)		ding Drain					Barn (
	-	ge Absorp		:					2 = Ot		22.		re Pipe 1= Cast Iron or	-		
		l Home H		il Tank			ding Sew		-Gravity astic 2 =	2=Pressure	23		Manure Sto		2-0	Julei
		l Petroleu	•				ector or S			- Oulei			NR 112 Wa	•	e	
	8. Shore	line/Swim	ming Po	ol		16. Clea	rwater Su	mp			24.					
6. Drillh	ole Dimen	sions	Method	of consti	ucting up	per		DNR	9,		Geology	-	Flag		rom	То
Dia. (in.)	From (ft.)	To (ft.)	enlarge	d drillhol	e only.			USE ONI Y	Тур	æ, Caving/N	loncaving,	Color, E	lardness, Etc	· II	(ft.)	(ft.)
20.0		73		-	ud Circula	tion		N	SAND	STONE					riace 500	8
20.0	surface	73	1	otary - Ai otary - Fo					S/ (IVE)	OTOIL					300	0
19.0	73	151		everse Ro able-tool	-	14 in	dia.	-							-	
15.0	151	600	1		er Casing		in. dia.									
14.0	600	800	R	Removed?												
17.0	000			Other												
· Dia dia v	, N	Aaterial, \	ng, Liner Weight, S	specificati	on	From	То	0.22								
20.0	CASIN			od of Asse	embly	(ft.)	(ft.)									_
	LINER					Surface	73				SOLO ARE					
16.0						1	151								-	
								10. Sta 150.0	tic Water fi		ound surfa		2. Well Is:		inade	
				-/							ve B=Be	low		Above	B=Be	low
Dia, (in.)	screen typ	e, materi	al & slot	size		From	10	-	np Test	enn f	Flag t. below		Developed? Disinfected?			
				-55					ig Level 2	5.0 GPM	ro und sur	ice C	apped? Y	'		
8. Aethod	Grouter	Other Se	aling M	aterial	E	Flag	#,					- 1	Depth (feet)		11.0	17
remod	Kind of	Sealing 1	Material		From (ft.)	To (ft.)	Sacks Cement	If no,	you perm explain	nanently sea	all unused	, nonco	mplying, or 1	msate we		Flag
	G	ROUT			surface	151.0				Point Driver	or License	Super	visory Drille	T.	ate Si	
								Signatu	re of Dril	l Rig Opera	tor (Mandat	ory unl	TG ess same as	bove) I		9/97 igned
													CK			2
				Additional		More C										
				Comment	57 OW	mer Sent La	meil A	t .								

1815 University Avenue, Madis d

Wisconsin 53706

Well name Kaukauna City Well #9

r.... City of Kaukauna عنور ess.. 200 W. 2nd St.

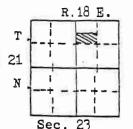
Kaukauna, WI 54130

Driller.. Egerer-Galloway Well Corp. Engineer. Donohue & Associates, Inc.

Sheboygan, Wisconsin

County: Outagamie

Completed... 5/7/74


Field check.

Altitude.... 685' ETM

Use..... Municipal

Static w.l.. 72'

Spec. cap... 15 GPM/ft

-		Dril	l Hole		West of the West o	Ť-	C	asing 8	Line	Kauk Pip	auna 75' e or Curbin	of Nest va	
Dia.	from	to	Dia.	from	to	Dia					Wgt.& Kind		to
24" 17 ‡ "	0 239'	239 ' 806 '					A-53 ·375 Wall Welded A-53 ·375	0	36'				
							Wall Welded	+3'	239'				
		ethod:					1	rout				from	to
Samp	les fro	om. 0 1	to 806	Rec'	'd: 4/:	16/74		Pure (Cement	Grout	t	0	239'
Stud	ied by:	Marv	J. Har	tman (0	-185'	2251	-806')						

Kathleen Massie (185'-225')

Issued: 3/22/84

Formations: Drift, Sinnipee Gp, St. Peter Ss, Prairie du Chien Gp, Jordan Fm (Coon Valley,

Van Oser & Norwalk Mbrs), St. Lawrence Fm, Tunnel City Gp, Elk Mound Gp, Precambra

Remarks: Well tested 24 hours at 1560 GPM with 106 feet of drawdown.

FILLED to 620 in 1989

1	Depths	Graphic	Rock	Color	Gra	in Size	Wassall and Change the state of the
	Depths	Section	Type	Color	Mode	Range	Miscellaneous Characteristics
T	0-5	252	Clay	Red brown	-		Dolomitic, Little sand, si . Trace gravel.
	5-10	2222	11	H		-	Dolomitic. Trace silt.
F	110-15	~~~ t	ti .	11	-	-	Dolomitic, Trace gravel, sand, silt.
	5-20	2222	1	n	-		Same.
1	20-25	2522	11	Rd bn & It gy	-	7	Dolic . Samo is 25% lt grv w/mch gvl ,snd ,st : 75% rd bn w/tr snd
T	25-30	///	Dolomite	Lt bn grav	M	Fn/M	Trace calcite crystals, pyrite, gravel from above,
	30-35	1//	TP .	Brown	11	19	Slotly sugary, Tr pyrite, gry stng from pyrite. / gran
	35-40		Π	Pale brown	18	H	Slatly sug. Tr pyrtzd fos frags, gry stng from pyr, bn sh, cvd
	40-45	/	n	Lt bn grav	11	n	Sigtly sug, limy, Tr pyrtzd fos frags(more than aby), gry stng,
	45-50	11	n	1	1	tt.	Same. bk spklg.cvd grans.
ſ	50-55	1-1	11	Gray brown	11	u.	Slatly sug, Few pyrtzd fos frags, Ltl gry stng from pyr, Tr
Γ	55-60	10/	11	11	II		Same but no caved granules. wh mot.cvd grans
T	60-65	1		11	11		Same,
T	65-70	1/0/	11	II	II	II	II .
T	70-75	10/0/	11	ir.	n	11	Same but many pyritized fossil fragments.
T	75-80	/	11	п	1	tt .	Slatly sug. Tr pyrtzd fos frags, wh mot, an gry & wh sh, ary str
T	80-85	/ /	T.	11	n	n n	Same but no white shale,
	85-90	////		11	II	п	Sugary. Ltl gry stng from pyr. Tr pyrtzd fos frags,cvd grans,
Γ	90-95	1/2/	11	Lt bn gray	11	L	Sugary, Few pyrtzd fossil fragments, Tr gry stng from pyrite.
	95-100	10/04	n n	II	11		Sug. Mny pyrtzd fos frags. Ltl gry stng from pyr. Tr bn & gn
ſ	- 100-105	/ ^ / A	11	11	tt	n n	Same but few fossil fragments. ory sh, wh mot, wh cht,
[05-110	1/ 0/1		11	n ·	n	Slatly sug, Few pyrtzd fos frags, Tr gry stng from pyr,wh cht
	110_115	1/4 ~ /		II.	1	11	Same, pyr xls,bn sh,
	115-120	10/01	11	ıı	n	II	Sug. Mnv ovrtzd fos frags. Ltl gry stng from pyr. Tr gn gry &
	1 20-125	100/0	n n	Gray	n	11	Sug, Mny pyrtzd fos frags, Ltl pl bn mot, Tr wh cht, bn sh.
	125-130	100/	п	11	11		Suc, Mny pyrtzd fos frags, Ltl pl bn mot, Tr qn an gry sh.
i	130-135	1/1	tı	Pale brown	1	11	Sua. Meh ary stng. Mnv pvrtzd fos ary sh.cale xis.pvr xls.
1	135_140	10/0	11	11	1	tt .	Same. frags. Tr gn gry shale, pyr xls.
	140_145	1	11	Lt bn grav	1	H	Limy. Ltl ary stna. Tr pyrtzd fassil frags, wh mot. pyrite xls.
	1 45_150	/ -/	h	Land Land	1	ii S	me.
15	5-150-155	1	п	Brown	n	- 11	Little gray staining, Trace pyrite, sugary texture, brown shale
1			11 .		11	H	Same plus trace green gray shale,

Well name: Kaukauna City Well #9

	1					*	
	Depths	Graphic	Rock	0-1	Gra	in Size	
	Depths	Section	Type	Color	Mode	Range	Miscellaneous Characteristics
S	160_165	//	Dolomite	Pale brown	М	Fn/M	Sigtly sugary. Trace gry staining,mottling,pyrite,bn shale
1	165_170	1	11	Brown	п		Same,
N.	170-175		n n	Gray brown	п	- "	Slatly sucary. Ltl gry stng. Tr rd speckling pyrite, le.
30		-/	- · it	ti		T	Slotly sucary. Ltl gry stng. Tr rd speckling, pyrite. Slotly sucary. Ltl gry stng. T C ss. fltg gtz snd. pyr. bn sn. r
št.	185_190		Shale	Light gray	-	_	Sil. Meh fnly dis pyr(st/M xls), atz Vfn/NC snd, st, Tr spklo
Р	190_195	P P A N		Green gray			See end of log. agg of pyr xls(Fn/M).pyr & sil cem ss,wh cht
E	195-200 200-205	PAPER	n g	Rd ylard br			See end of log. It are lyred cht
I	205-210	EPZ PSL 表	n	Pl bl an	=	<u> </u>	Sil. Mch fnly dis pyr(most Vfn st,st/Fn),st,pnk feld sft sh,
ER	210-215	PEGEN SIPROM	π	Pl bl an & pk		_	See end of log. atz snd, sh as main rock type as in 185'-190'
- 35	215-220	SPP S	п	Pl bi gn to hi gn	-		See end of log. Ltl sft hemic sh,G sil cem feld M ss
0	220-225	X	7	Grav to wh			Dolic, Mch arv dol, atz snd, st. Ltl bl an sil sh, sil cem M/C s
P	230-235	/=	Dolomite	Light gray	M	Fn/M	See end of log. Slotly sug. Ltl gn gry sil sh. Tr hemic & dk gry sh,lt gry sh
R	235-240		п	tr .	tf	11	See end o flog. w/mch dis pyr, fltg otz sand, pyr xls agg, sil
A	240-245	γ Δ /	п	Lt bn gray	ri .	11	Slatly limy sug. Tr flta atz snd, an ary & rd bn sh cem ss
I	245-250	1.7	7	Bn to pl bn	Fn	11	Slotly limy. Tr fltg atz sand, w/pyr,mssv mal.onk cht.pyr
R	250 <u>-255</u> 255 <u>-</u> 260	0 TO X TO .	n n	Gyba to piba	М	7	See end of log. mssv malachite, pyrite, gn gry & rd bn shale
I		/A-9-/00	11	Pale brown	11	11	V limy, Meh flta atz snd. Mny ool. Tr dk rd bn sh.an stna from Same plus tr wh sh. mal.an ary sh w/mch dis pyr.pnk cht.dol
E	265-270	4/-0-/	Ħ	11	tr	,	V limy, Slatly sug. Tr pyr.ool.atz snd.wh cht.drsy cem se
	270-275	.♥./		П	п	ı	See end of log
iu		A /	11	11	1	H	Slatly limy, Sug. Tr wh cht(some col), atz and, drsy col cht.
С	280 <u>-285</u> 285 <u>-</u> 290	1 4 1	11	Lt bn gray	n	11	See end of log. atz.mssv mal.chalc.pvr.qn qry sh, Slatly sug.limv, Trace guartz sand.wh chert.gry staining.vugs.
H	290-295	Δ/	Π	1	it	. 11	Slotly suc, limy, Trace quartz sand, which truly staining, vads, Slotly suc, limy, Tr gtz and & pebs, which they rehale, gry stng.
I	295-300		π	11	H.	11	Slotly limy. Tr quartz sand, gray staining, very sugary texture.
E	20-305		It	II II	11	11	Slatly limy. Tr atz sand & pebbles, gry stng, pyrite, v sug text.
N	310-3 5	-/	n n	Pale brown	11	n n	Slatly limy. Tr quartz sand, pyrite, zircon xls(?), bk speckling.
14	315-320	-/	н	H H	n	n	Limy. Tr calcite xls, vuqs, suqary texture, quartz sand, pyrite. Limy. Slightly sugary. Trace pyrite, quartz sand, vuqs.
Ър.		A -/	π	H.	1	tt	Limy. Slotly sugary, Trace pyrite, quartz sand, colitic chert.
177	325-330	1	. н	Lt bn gray.	ft .	1	Slightly sugary, Trace pyrite, brown staining, white mottling.
	330 <u></u> 335 335 <u></u> 340	/,	II H	Light gray	II I	17	Slightly sugary, Trace pyrite, green gray shale with dis pyrite
	340-345	7-1	tr	Lt bn gray	II I	n	Sigtly limv, Sugary, Trace pyrite, zircon crystals, bn speckling Limy, Sugary, Trace quartz crystals w/pyrite inclusions, yugs,
	345-350	1 -/	н	Grav brown	н	n	Limy, Sugary, Trace pyrite.
	350-355	-/	a n	II	If	11	Same. & lt rd bn sh.
35	The second secon	_/	п	Brown		П	Limy, V sug, Ltl dol cem ss w/tr Fn glauc,rd bn mot, Tr an arv
	360-365	/ / /	n n	11	11	"	Limy. Sug. Mch flta qtz snd,dol cem ss, Ltl rd bn mot. Tr on
.V.	170-177	/	п	-		- i-	Same but no drsy gtz. stng,wh cht,drsy gtz, spklg,lt rd bn Limy. Sug. Mch fltg gtz snd. Ltl dol cem ss. Tr gn gry & sh.
	1375-1380 185-290	-/		Gray brown		11	See end of log. It rd bn sh,rd bn mot,ool(occur singley & cem
5′	385-390	00-0/		Brown		п	Limy. Mnv and cored col(samp is 85% by dol), gn stng,pvr.
0.	390-195			Light brown		Vfn/VC	See end of log. ooldol). Tr pyrs, tg atz snd,rd bn mot,bn do
3		in A M G M E	11	Lt rd bn	II .	VIS- /C	Srnd. Mch v G dol cem. Mny sec atz grwths. Ltl ool cem ss.
Or.	395-400		Siltstone	Yellow red Red brown	Fn	Vfn/C	Seeend of log. d ol. T. bn dol w/fltg snd & rd bn mot. Tr gn Dolic. Mch fltg snd, dolic sh. Tr Fn glauc. gry sh w/dis pyr,
-	46904105 410-415	G 4 G.	T T	THE BY CWIT			Dolic, Mch fltg sand, dolic shale. Ltl Fn wh sh,mfc incl,
	415_420	GE G	П	ti ti	_		Dolic. Mch flta snd,dolic sh, Ltl glauconite. Tr pyrite.
Ā		05-5-00	Suate	"			See end of log. Fn/M glauc. Tr gn gry sh w/dis byr.
٧.	420-425	GATHER SIGG	#		-		Hemic, Mch fltg sand, dolic silt, Fn/M glauc, Tr wh & bn shale,
	425-430 430-435	o≅Ç**¥G G'2G≣-G	Siltstone	11			Hemic, Mc fltg snd, dolic st, Fn/M glauc, Ltl lt gry dol w/fltg Dolic, Mch fltg snd, hemic sh, Fn/M snd & glauc, Tr col.pyr.
10'		Ge, G	311tstone	Dark nown	=		See end of log, glauc, Tr gn gry & wh sh, lt gry dol as abv, py
	440-445	にいいまったいと	Sandstone	Brown	Fn	Vfn/VC	Srnd, Mch P dolic sh cem,Fn/M glauc, Tr v 6 dol cem,on gry
	4 445-450	GG2	п	H	М		See end of log. sh, byr, sec gtz grwths, mfc incl.
	50-455 455-460	Gイース 表G・夏G・	11	11	11	11	Srnd. Mch P dolic sh cem, st. Ltl Fn/M glauc. Few sec atz grwth Same but no wh shale, Tr v G dol cem, fros, pvr(some in fils on
1	460-465	日、一直	"			11	See end of log.
1	465-470	ic√∃c. E.G.	11	1	i	n	Srnd, Mch P dolic sh cem, st, Ltl Fn/M glauc, Few sec qtz grwth
T	47479-475	G <i>ベ</i> 温火 ■GP:=:ベ	п	1	Ç	n n	es end of log. Tr fros.pvr fils on grns,gn gry & wh sh, It ar
T		GP = 1	N.	u	u		Srnd. Ltl P dolic sh cem. st. Mny pyr fils on dol, mfc incl.
Y	480 <u>485</u> 485 <u>4</u> 90	デルモG・ In G P人・	П	ant hrows	M	11	See end of log, arms, sec atz grwths. Tr wh dol, fros, Fn alauc, Srnd, Tr P dolic sh cem, v G dol cem, mfc incl. an ary & wh sh,
	447-441	Willes	11	lt lt			arno. ir r doile so cem. V b dol cem. mrc incl. on dry o wh sh,
- 4	10,7-1,70						wh sh, fros, Fn alauc, Mnv sec atz arwths, pyr fils on arms.

Well name: Kaukauna City Well #9

	1	D 1		- 0	· 5178	
Depths	Graphic	Rock	Color	-	inSize	Miscellaneous Characteristics orns. W
	Section	Type		Mode	Range	fros, Fg glauc, and mfc grns, Mny sec gtz grwths, pyr fils or
490_495	22 G P∠.	Sandstone	Lt brown	M	Vfn/VC	Srnd. Tr dolic sh cem, v G dol cem, mfc incl, gn gry & wh sh,
495-500	G. 4.	11	"	n	H H	Srnd. Tr P dolic sh cem, v G dol cem, zircon grns, mfc incl, fro
500-505 505-3 0	3.G.	m m	n n	Fn	11	See end of log. Fn glauc, an gry sh. Mny sec gtz grwths, Mct See end of log.
510-515	G -	п	Brown	M	11	See end of log. st, Few pyr fils on grr Srnd. Ltl v G dol cem. Tr p dolic sh cem.pyr(some in fils or
515-520	EG≝ · €	if	Gray brown	Fn/M	TI TI	See end of log grns Fn glauc, fros, mfc incl, wh shlv pnk dol
520-525		п	Pale brown	Fn	11	See end of log. w/pyr, hemic sh w/M alauc. Mny sec atz grwti
525-530	A CONTRACTOR OF THE PARTY OF TH	п	n	11	1	Srnd, f v G calc cem, v G pyr cem, Fn glauc, gry Few calc x
530-535	≣G	n n	Light gray	C	п	See end of log, bn & wh sh, mfc incl, fros, Mny sec atz grwth
535-540		1	V pl brown	11	п	Rnd, Mch fros, Mny sec qtz grwths, Tr pyr xls,mfc incl.pl y
540-545			11	11		Same but no dolomite, do
545-550 550-555	(h)	n n	n	17	11	Rnd, Tr v G calc cem, pyr xls, mfc incl, Mch fros, Mny sec at:
555-560		u u	11	n		Rnd. Mch fros. Mny sec atz grwths. Tr pyr xls,mfc grwth Same but no dolomite, incl,rd bn dol w/glau
560-565	98	TI	White	II	11	Rnd. Tr v G sil cem, mfc incl, pyr. Mch fros, Mny sec qtz grwt
565-570	100		ft	1	H	Rnd. Tr v G calcite cem, pyrite, Mch fros, Mny sec gtz grwths
570-575	10 10 10 10 10 10 10 10 10 10 10 10 10 1		V pl brown	1	1	Rnd, Mch fros, Mny sec atz grwths, Tr wh & rd bn.sh,mfc inc]
575-580	1775.		It	М	ıı	Same. Mch fros, Mny sec atz grwth
580-585	Ti.	п	Whit e	C	TI	Rnd. Tr v G calc cem.pl yl dol.mfc incl.pyr cotg grns.wh sh.
585-590 590-595		11	n I	11/0	11	Same, pyr cota grr
595-600		n		M/C	"	Rnd. Mch fros, Mny sec atz grwths. Tr rd bn & wh sh.mfc incl Same plus trace zircon grains.
600-605		n	n	C	n	Same plus trace zircon grains, cotq grr Rnd. Meh fros. Mny sec gtz grwths. Tr Fn glauc.mfc incl.pyr
605-8 0	i G		V pl brown	-	п	Rnd, Mch fros. Mny sec atz grwths, Tr pl bn dol.mfc incl.Fn
610-615		40	White	12	ıı	Rnd. Try 6 calc cem, wh sh, mfc incl. Mch fros, Mny sec glau
615-620		П	V pl brown	1	н	Rnd, Mch fros, Mny sec quartz grwths, Tr pl bn atz grwth
620-625	=	"	White	M	и	Srnd, Tr P to v G dol cem.pyr, mfc incl. \ dol,pyrite, M clau
625-630		H	ll ll	С	п	Same, Mch fros, Mny sec atz grwth
30 <u>-635</u> 15-640	를 · G B	11	V pl brown	M C	n	Same plus trace white shale, Fn glauconite, Rnd. Mch frosting, Mny sec guartz grwths, Tr mafic inclusion
640-645	를 G	n	White	M	11	Srnd. Tr P to v G dol & calc cem.mafic incl.pvrite.Fn glauc.
1545-650		. 11	V pl brown	C	п	Rnd, Mch fros, Mny sec atz grwths, Tr pyr,mfc incl,rutile in
1550-655	G	1	11	TT .	н	Rnd, Mch fros, Mny sec atz grwths, Tr pyr, mfc incl, Fn alaz
655-660	G		White	M	n	Same.
6 60-665		n	11	u	II	gry & wh s
6 65-670		T T	11	M/C	n n	Rnd. Mnv sec gtz grwths. Ltl fros. Tr wh dol.mfc incl.pyr.gr Rnd. Mny sec guartz growths. Ltl frosting. Tr pyrite,mfc inc
675-680	Hag G	10	17	m/C	11	Rnd. Mny sec dtartz drowths. Ltl frosting. Ir byrite, mrc int
680-685	G	11	11	C	· n	Same but no green gray shale.
685-690	ii. G	п	V pl brown	Ħ	11	Rnd. Mny sec gtz grwths, Ltl fros. Tr pyr.mfc incl.bn sh.cvc
690-695	B	II.	White	tt	ti	Rnd, Mny sec atz grwths. Ltl fros, Tr mfc bk cotd snd gr
695-700	in-	H	u	Ħ	tt	Same plus tr pyrite, bn shale, incl, cvd grains as at
700-705	ii . G	11	п	TI.	H	Rnd, Mny sec atz grwths, Ltl fros, T pyr, mfc incl, M glauc,
705-710	G		11.	II W	tt	Rnd. F v G calc cem, pyr, mfc incl, cvd grns as grns as a
710-715		11	pl brown		И	Same plus to bn sh, Fn glac . abv. Mny sec qtz grwths. Ltl
715-720		- ti	Red brown	11	11	Srnd. Try G sil sh cem(rd)y G calc em.pyr, fros, mfc incl.
720–725		п	Lt rd bn	11	ii ii	Rnd, Tr v G sil sh cem(rd), v G calc cem, pyr, sec atz grwt! Same, fros, I gry dol, mfc incl, Mny sec atz grwt!
730-735		ir.	Pink	C	n	Rnd. Try 6 sil sh cem(rd), v 6 calc cem, pyr, wh sh, mfc incl.
735-740		11	II	M	π	Srnd. Tr v G sil sh qry dol, Ltl fros. Few sec atz grwt
740-745		16	11	II II	11	Same, cem(rd),pyr,zircon grns,mfc incl,wh sh, Mny sec gtz
745-750		"	_t brown	Fn	11	Sang, Tr P sil cem, v G calc cem, wh sh, pyr, grwths, Ltl fr
750-755		n		II	ll II	Sang, Try 6 sil cem, on gry sil mfc incl, Mny sec otz grwt
755-760			Pink	M	1	Sag but srnd. sh w/mch st sized dis pyrwh sh,pyr,fros,mf
760-765	WE	11	11	11	11	Srnd. Tr P to v G sil cem, an ary sh incl, Mny sec atz arwt
765-770		11	"	Fn M	tt H	Same, as abv, wh sh, pyr, mfc incl. Mny sec qtz grwths, Mch f
770 – 775 775 – 780		n	Lt brown	III.	11	fros, Mny sec atz grwt
780-785	A A		Pink	n	11	Srnd. Ltl P to v G sil cem. Tr an arv & wh sh, wh cht, mfc in
785-790	题	11	V pl brown		11	Srnd. T P toy G ilcem ,wh sh,mfc incl,zircon grns. Mny s
'90-795		11	Red brown	11	11	Se e end of log. atz grwths1 1 fr
-15800	XXXXXXXX	Granite	Dk rd bn	11	Fn/M	Ortnoc 50%, plag 40%, qtz 5%, fc 5%. Mch sap. I qtz snd, V w
800-805	XXXXXXX		n	II	lt	See end of log Perthitic fe
805-806		11	Red brown	118	l l	Plagicolase 50%, orthoclase 35%, mafics (mostly biotite) 10
~	18			-		The course of the second of the second secon
			NE) OF I	100	1	Slightly perthitic feldsp

TEST RUSULT

NOTE WHITE COPY - DIVISION'S COPY GREEN COPY - DRILLER'S COPY YELLOW COPY - OWNER'S COPY IF STATE OF WISCONSIN
DEPARTMENT OF NATURAL RESO
Box 450

Madison, Wisconsin 53701

COUNTY	Dutagam	ie	u_{ij}		CHECK Town		/illage [E City	NAME Kaukau	ia.	in 6	01
LOCATIO	100000000		Section T		R18E		2 OWNER AT	OF Ka			75 - FR	
OR - Grid or -	street no.		Street name	- 1.	-	:	ADDRESS		ic and pal Bui		<u>netite</u>	7
AND -I (avai	lable subdivis	on name,	lot & block n	o.	7A.S		POST OFFI	Kankan	ma, Wis	5413	0 C	200
4. Distance	in feet from	0.0	* ;	BUILDING	C.L	TILE	C. L TILE		NDATION DE			1
CLEAR WAT	TUE	SEPTIC TA	ANK PRIVY	SEEPAGE	E PIT AL	SORPTION	FIELD BAR	N L SILO	ABANDONE	D WELL S	INK HOLE	-
OTHER POL	UTION SOL	RCES (Gi	ve description	such as du	mp, quarr	, drainage	weil, stream, po	nd, lake, etc.)	J. S.		• .,	٠
5. Well is in	tended to st		ter for:	C1	tv of	Kank	mma, Wi	g	WEL	-1. #c	9 ===	•
6. DRILLH	OLE			16	18		9. FORMA			11 13	'	
	From (ft.) Surface			n.). From	(ft.)	To (ft.) .		Kind			From (ft.)	+
24**		239					Clay	with st		- 'òā'	Surface	+
17½	239	806	AND SCR	- EEN	-		Limes	tone		· 1.	261	+
Dia. (in.)		Kind and W	52 .	700	(ft.)	To (ft.)	"Red S	hale	1.		353	. 1
24**	K-53	375 W	all	Sur	face	36°	Lines	tone	1 7		355	-1
	Hel	ded				0	Sanda	tone	(); (); ();	K	395	-
18 **	A-53 ,	,375 W	all	+3	2	391	Broke	n Gran	ite		7951-	
	Wel	Lded										
						i.			9		1	
8. GROUT	OR OTHE		NG MATER	- 6	m (ft.)	Γο (ft.)	10. TYPE		NG MACHIN	NE USED	□ Rew	
Pura	Cement	Grou	it	Surf	face 2:	39 1	Rotary - w/drillin			ry — hamme ling mud & a		
			•				Well constr	ruction com	pleted on	May		
11. MISCI Yield test:	LLANEOU		24 Hrs.	at	15 60	GPM	Well is term	ninated	24 inc	thes [above below	1
pth fron	surface to	normal w	vater lev d			72 ft.	Well disinfe	cted upon	completion :		K Y	/ es
De oth to w	rater level w	hen our	noina			L78 ft.	Well sealed	watertight	upon comple	tion	K Y	Y es
			_	atory	of H	yglane	, Madiso	n, WI la	boratory on:	May	7	
pe of cas	concerni	ng other ethod of	pollution ha	azards, info	ormation	concernin	g difficulties ed in grouting	encountered	i, and data re	lating to n		
TIGNATUR			BALLOWA	77.77	L COR		COMPLETE		RESS P.	O Bo	× 7296.	

Please do not write in s pacebelow GAS IN HOR

GAS - 24 HRS

. [Well (Constru	ction Report Fo	IT WAFA		Δ,	Y326				=1			
Pro			NA WATER	Te	lephone						,		,	
Ма	iline			Nu	mber 41	4 - 76	5 - 5	721	Weil Location	Floor	econs	tru ct	200	
Add	dress 777	ISLANI	DST		State	Zip Cox	e		C T=Tow		V=Village	Fire # (If a	vail.)	
	KAU	KAUNA			WI	54130			of KAUKAU Grid or Street A		Road Name a	nd Number		
Cot	inty of We	I Location		ermit	Well Co	April 1	n Date 9 , 198	8		C.172 (0.92)	road Faire a	SPECIAL CHEST CHES		
Cnty	Well Co	nstructor	(Business Name)		License	# 2. D	ates		Subdivision Na WELL		Lot #	Blo	ck#	
45 MUNICIPAL WELL @ PUMP INC 13 Dist Address							7/21/89	Rc'd	Gov't Lot # or NW 1/4 of NE 1/4 of					
4	RCT							1 N;R 1		(E/W)				
	City	KESHA		State WI	Zip Code 5318	53188			3. Well Type 3 1 = New		Replacement	3 = Decoret	Fing	
OZ	M=Munio	CTO=O	M N=NonCom P	=Priv Z=			1/13/99	Create	of previous unique	well #	const	nucted in 19		
			ode L-Loop H=D		1	High Ca		Last FM	Reason for new, re		r reconstructed	well?		
4. Well se					`-	Well? Y			-		riven Point 3	= Jetted 4 =	= Other	
5. Well le	ocated on h	ant, churchighest por	ch, school, industry int of property, cor	v, etc.) isistent wi	th the gen	Property eral layor	at and su	roounding	1 1 gs?					
			ll To Nearest:		 Dov Priv 		ard Hydr	ant	•		tewater Sump d Animal Barn	Pen Plag		
Distan	I. Landf	ill			II. Four	ndation E		learwater	elter					
		ng Overha or Holdir	ang ng Tank (circle one	•)	12. Four			rain to Sewer 20. Silo - Type n 21. Barn Gutter						
			tion Unit	•)		-		2 = Ot	her		ure Pipe 1=0	Gravity 2=P	ressure	
		nforming			14. Buil	_		-	2=Pressure	_	= Cast Iron or		Other	
		i Petroleu	leating Oil Tank om Tank			l = Cast l ector or S		astic 2 = /er	Other		r Manure Stor or NR 112 Was			
	8. Shore	ine/Swin	ming Pool			rwater S				24.				
6. Drillh	ole Dimen From	sions To	Met hod of constr enla rged drillhol		per	1,00	USE	9.	Geolo	200 000	Flag	From		
Dia. (in.)		(ft.)					ONLY	Typ	e, Caving/Noncavin	e, Color.	Hardness, Etc.	(rt.)	(ft.)	
24.0	surface	239	1. Rotary - Mi 2. Rotary - Ai		tion									
-			3. Rotary - Fo											
17.3	239	806	4. Reverse Ro X 5. Cable-tool	otary Bit 2	24in	dia							1	
			6. Temp. Out											
			Removed?				-	-						
-			7. Other											
7. Flag	N	Casi Material	ng, Liner, Screen Weight, Specificati	on	From	То	_			-			-	
Dia. (in.)	Man	ufacturer	& Method of Asse	embly	(fl.)	(ft.)								
24.0	A53 P.	E375	WALL		surface	36							-	
18.0	A-53 P	.E375	WALL		3	239								
							1	ic Water	Level Flag		12. Well Is:	Pag		
							129.0	ft	. B ground sur	rface		A Grade	2.	
							11. Pu	np Test	A=Above B=		A=A Developed?	Above B=I Y	Below	
Dia. (in.)	screen typ	e, materi	al & slot size		From	To	-	g Level 2	10.0 ft. below	1	Disinfected?			
8.	Grouter	aling Material		Flag		Pumping at 1200. GPM 10.00 hrs Depth (feet)								
Method		Sealing N		From (ft.)	To (ft.)	# Sacks Cement		13. Didyou permanently seal all unused, noncomplying, or unsafe wells? Y If no, explain						
NEW TOTAL	NEAT C	EMENT	r GRO	surface	239.0		Flag		oint Driver or Licer	25 1	TG	7/	Signed 19/89	
	BENTO	NITE P	ELLE	600.0	806.0		Signatu	re of Drill	Rig Operator (Man	datory ur			Signed 19/89	

Additional More Geo?
Comments? Owner Sent Label? Y

721 N R18E 56,56 56223

		_,	A 16	9 17	Kenneth Ave. and 10th St.; about 65' above Well No. 5	
		5_ % . * a		Ř	Mead, Ward and Hunt, Engineers H. F. Weckwerth, Supt. Water	Di
	15° X	7187	500		Jos. Egerer, Contractor, 1945 Sulf EL = 720 Samp les examined to F. T. Thwai tem Nos. 122160-122265	100
T	'k	0-10	110	01:01.020.1	Till, pink, dolomitic	_
1	R	-	1		- - - - - - - - -	
	F	10-60	50	#123	Clay, pink, dolomitic	
		30 g 9745				
	1	*		555		
1	70	60-70.	10		No semple :- 61 wet er	
	118	70-125	55	1	Dolomite, light gray	
1	2			7	15" hole	
I				1,1		
3	300 100	30.0		, ,,	10" pips	
1 %	4	125-155	30	1,1	Dolomite, light gray, blue specks	ě.
1		127-177	٥٥		Bolomite, Hight Elly, olds apools	
1		155-165	70	7 7		
4 D			10		Dolomite. light grav	
=	150	165-180	15		Dolomite, light blue-gray	
1 -	739	180-190	10		Dolomita, blue-gray and light gray	
3		190-225	35		Dolomite, light gray	
$1^{\frac{T}{2}}$	N 155	225-230	5	(·	Dolomite. light gray. green-gray	
1		230-235	13		Dolomite blue-gray and light gray	
f L	175	235-245	10	/ -	Dolomite. light grav. sandy, pyritic	
- 5		245-255	10		Dolomite, light gray; some green shale	
		255-265	1	······································	Sandstone, medium to fins. light gray. dol. 10 hole.	
Jż		265-305	40		Dolomite, light gray	
		β} - g ⁽⁸⁾	8	7		
1		305-310	5	9 18	Dolomita, light gray; chert, white	
		310-315	15		Dolomite, light gray, some sand	
-	d .**	315-400	. 85	7	Dolomite, light gray	2
-		301 2		, ,		10
-				. 1		8
J.				· · · · · ·		
4.2	0.42	3 10 11 2		7,7		
		NEW 1986	0.5			20
40		400-415	15		Dolowite, gray and pink, glauconitic	2
	(a)	415-445	30	1	Dolomite, sandy, pink-gray; chert, colitic	
4	200	(#) Ti:		0	nt bottom	-
		445-455	10	4.:/		
Ш		455-465.	10	31.00 S	Siltstone, red, very dolomitic	
	35	465-470	120	07-7-4-1-1	Dolomite, mandy, red to light gray	
Ιĥ	-	470-480	110		Siltstone, red. dolomitic, gleuconitic	
1		490-500	10		Sendstone, very fine to silty, gn-gy, d. gl. Sendstone, fine to medium, pink, dol. glade.	
۳.	1	500-510	10		Sandstone, fine to medium, light gray	
9-	1	510-520	10		Sandstone, fine, gray, dolomitic	
		520-550	30		Sandstone, medium to fine, light gray	
	1	550-555	5		Sandatona, fine, light area dolomitic	
I.		550-555. 555-560	3		Siltstone: light stay, aclomitic	
11	90 .	560-565	15:1	- A74	Sendstone. fine to silty. it.gray. dol.	
ا د		tod + -1 -1	121	7/0	Siltstone, light gray, colomitic	
30	#	ted total d	repun	200 0 0	The state of the s	

palons: Drift; Galena-Platteville; Lower Magnesian (Prairie du Chien); Tremp ealeau;

ot with 300 lbs, 3 of 50 lbs, 2 of 75 lbs. Tested 30½ hours Specific capacity = 5 g.p.m. at end of test; rate 340 g.p.m.

Drilled to 841 12 1995

Filled to 660 is 2000

T	Well (Construc	ction Report Fo	or NADEO		BC	3576						
			NA ELECTRI	C Te	lephone								
Ow	ner @		R LITII	Nu	mber 4	14 - 76	6 - 5	721					
Add	iling Iress 777	ISLANE	DR			lei con			1. Well Location C T=Tow	n C=Cit	v V=Village	Fire # (If av	vail)
Cit		KAUNA	1		State	Zip Code	54130		of KAUKA	UNA		The state of	
Cou	inty of Wel			ermit	Well Co	ompletion			10.00.00.00.00.00.00		Road Name ar		
Cnty	1104 12 2 4	GAMIE	No. (Business Name)		License		, 1995	-	Subdivision Na	me	@ 10TH ST Lot #	Bloc	k#
45			WELL @ PUN	IP INC	13	# 2. Da	ites	Rcd	WELL		10		
Dist	Address 20950		RPRISE AVE						Gov't Lot #		SW 1/4 of		
4	City				ZipCode					_, T	21 N; R 1	3 E	(E/W)
	_	O=OTA	N=NonCom P	WI Priv 7-	5304	15		Create	3. Well Type 1 l = New		Replacement		
M			ode L-Loop H=D		Oulei		/14/97	Last FM	of previous unique Reason for new, r	eplaced o	r reconstructed	ucted in 19 _ well?	
4. Well se	rves	# of	homes and or Cl	TY		High Car Well? Y	расиу:						
(Ex: be	ım, restaur	ant, churc	h, school, industry	,etc.)		Property	? Y		1 7	$led 2 = \Gamma$	riven Point 3	= Jetted 4 =	Other
5. Well lo	ocated on h	ighest por oodplain?	nt of property, cor	isistent wi	th the gen 9. Dov	eral layou vnspout/Y	t and sur ard Hydr	roounding	gs?	17. Was	tewater Sump		
	ce in Feet	From Wel	1 To Nearest:		10. Priv	y					d Animal Barn		
	 Landf Building 	ill ng Overha	ing			ndation Dr ndation Dr				19. Anu 20. Silo	nal Yard or She - Type	eller	
	3 Septic	or Holdin	g Tank (circle one	:)		ding Drain				21. Barr	7.1		
	4. Sewag					Cast Iron					ure Pipe 1=0		
	5 Nonco		Pit eating Oil Tank			ding Sewe l = Cast Ir		-	2=Pressure	-	= Cast Iron or l ar Manure Store		Other
		l Petroleu				ector or St			- Other		er NR 112 Wast	_	
	8. Shorel	ine/Swim	ming Pool		16. Clea	ırwater Su	mp			24.			
6. Drillh	ole Dimen From	sions To	Method of consti		per		DNK	9.	Geol	-	Flag	From	To
Dia. (in.)	(ft.)	(ft.)	enlarged drillhol	E 201			USE ONLY NH		e, Caving/Noncavir			(1€.)	(ft.)
16.0	surface	159	1. Rotary - Mi 2. Rotary - Ai		tion		INIT	SAND	STONE WITH	SHALE	N	Stillaci	84
	surrace	105	3. Rotary - Fo										
10.0	159	568	4. Reverse Ro	otary									
10.0	568	841	X 5. Cable-tool 6. Temp. Out			. dia. in. dia.	-					7-1	
10.0	300	041	Removed?	er Casting .		m. dia.							
			7 044										
7. Fag		Canin	7. Other										
Dia. (in.)	Man	Material, V	ng, Liner, Screen Weight, Specificati & Method of Asse	on	From (ft.)	To (ft.)							
10.0		NG CA	The same of the sa	chioty	surface	1							
10.0					Sta racc	159							
							-						+
								ic Water			12. Well Is:	Flag	
			-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				180.0	İ	t. B ground su A=Above B=	rtace Below	13 in .	A Grade Above B=E	e Below
							11. Pu	np Test	F	lag	Company of the Control of the Contro	Y	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Dia. (in.)	screen typ	e, materia	al & slot size		From	To	Pumpir	g Level 2	242.0 ft. below	3350	Disinfected?	Y	
8.	Grout or	Other Se	aling Material		Flag		Pumpir	g at 726		2.00hrs	Capped? Y Depth(feet)		
Method			in a line in the line in	From	То	# Sacks		w (55)	nanently seal all unu	sed, none	150-365-00	nsafe wells?	
	Kind of	Kind of Sealing Material (ft.)				Cement	If no,	explain	Point Dayson I is	N.	A Deille	Data	Flag Signad
	EX	CISTING	3	surface	159.0		Flag	iature of 1	Point Driver or Lice	used Supe	TRG	5/3	Signed 30/95
						_	Signatu	ra of Deil	I Rig Operator (Mar	adatam, m		D.	Signed
							Dignate	ie of Dill	ring Operator (Mai	idatory in		xove) Date	
							, and the second	ie or Dill	ring Operator (Mai	idatory u	AEK	5/3	30/95

Additional More Geo?
Comments? Owner Sent Label? Y

705/23/99 08:24 MUNI CIPAL WELL	→ 1 920 751 4200 Department of National Resources A & CON STREET / U/EDA 4
APPROPERTY KAUKAUNA ELECTRIC Telephone	Box 7921 Madison, WI 53707 (Please type or print. W/FLL # 10
Mailing Address 777 ISLAND DR.	1. Well Location Please use declinals instead of fractions
City State Zip	Code Of KAUKAUNA Fire # (If avail.)
County of Well Location Co. Well Pounit Well Complete	ion Date (mm-dd-yy) . Grid or Street Address or Rosed Name and Number (If avail.)
Well Constructor (Business Name) License # 2	Mark well location avith a dot in correct
Address	#0-acre parcel of section. N Gov't Lot # or 1/4 of 1/4 of
City State Zip Code	W E 3. Well Type New N
BROOKFIELD WI 53045	Replacement Reconstruction
	of previous unique well # constructed in 19 h Capacity: Reason for new, replaced or reconstructed well?
Well serves # of homes and or / Z / Well (Ex: barn, restaurant, church, school, industry, etc.) Prop	17 Yes No Drilled Driven Point Jetted Other
Well located in floodplain? Ver No 9. Downspo	layout and surroundings? Yes No If no. explain on back side.
Distance in Feat From Well To Nearest	218. Paved Animal Barn Pon 219. Animal Yard or Shelter
2. Building Overhang 12. Foundation 3. Septic or Holding Tank (circle one) 13. Building I	on Drain to Sewer 20. Silo - Type 21. Barn Gutter
	ron or Planic Cher 22 Manure Pipe Gravity Pressure
	Sewer Gravity Pressure / Cast Iron or Plastic Cher
	ron or Plastic Other
8. Shoreline/Swimming Pool 16. Clearwater	
u. Drillhole Dimensions Method of constructing upper	TANE 9. Geology From To
From To enlarged drillhole only.	Type, Caving/Nonceving, Color, Hardness, Etc. (ft.) (ft.)
1. Rotary - Mud Circulation	Surface
surface 159 2. Rotary - Air 3. Rotary - Foam	SANDSTONE WITH 568 841
2 159 568 4. Reverse Rotary 5, Cable-tool Bit 93/4 in.	Tracont value
Ho E ☐ 6. Temp. Outer Casingin_ Removed? ☐ Yes ☐ No	dia SHALE STREAKS
0 " 568 841 7. Other	- Management of the state of th
Casing, Liner, Screen	WELL SHOT WITH /#
IVIALLIAL, IVILLEIL, DECARITMENT	OF DYNAMITE PERFOOT
surface .	(407 185)
EXISTING	Polytocommunication Polyto
A B WITH BURNEY	10. Static Water Level 12. Well Is:
	11. Pump Test Developed? X Yes No
in.) screen type, material & slot size . From To	Pumping Level 242 ft. below surface Disinfected? Yes No
Grout or Other Sealing Material	Pumping at 726 GPM for 12 hours Capped? X Yes No
Method From To Sack	ks 13. Did you permanently seal all unused, noncomplying, or unsafe wells?
runtary .	14. Signature of Point Driver or Licensed Supervisory Driller Due Signed
EXISTING	Signature of Drill Rig Operator (Manufatury unless game as above) Date Signed
	1 1 1 1 1 1 1 1 1

AP PEND K D

MAIN PLANT GROUND STORAGE WATER RESERVOIR OBSERVATIONS April 16, 2003

ENGINEERS ■ ARCHITECTS PROJ. MGRS. ■ SURVEYORS

1445 McMahon Drive Neenah, WI 54956 Mailing Address: P.O. Box 1025 Neenah, WI 54957-1025 Tel: (920) 751-4200 Fax: (920) 751-4284 e-mail: mcm@mcmgrp.com

MAIN PLANT GROUND STORAGE WATER RESERVOIR OBSERVATIONS Kaukauna Electric & Water Utility

April 16, 2003 McM. No. K0004-920857.00

Rectangular Reservoir

- 1. Suction pipe in southeast corner of tank covered with rust blisters. Scraping away rust shows the pipe is in good condition with only minor pitting.
- 2. East wall in southern half of the tank is in good condition. Cracks in the wall were previously repaired and the repairs are still intact.
- 3. Cracks in the ceiling were previously repaired with a mastic material and the repairs are still intact. No new cracking was observed in the ceiling. The ceiling appears damp from condensation, not roof leaks.
- 4. Some rust spotting on the ceiling is from supports used to keep the reinforcing steel off of the bottom of the formwork. This condition does not appear to have worsened over time.
- 5. Overflow pipe near southeast corner of tank appears in good condition.
- 6. South wall of tank appears in good condition. Cracks in the wall were previously sealed and the repairs are intact. The walls are very hard and no voids detected when tapped with a hammer.
- 7. The tank floor appears in good condition. There was less than ½-inch of silt/sediment on the floor. The floor is sloped from the walls down to the center of the tank approximately 14-inches. Several areas of the floor have a rough finish, which occurred during the original floor pour.
- 8. West wall of tank appears in good condition with no visible leads. Cracks in the wall were previously repaired and the repairs are intact. Overflow pipe near southwest corner is covered with a stainless steel screen.

GROUNDS TORAGE WATER RESERVOIR OBSERVATIONS

Rectangu br Reservoir (continued)

- There is a brick masonry baffle wall running east-west across the tank with an opening at the west end. The east and middle sections at the baffle wall appear in fair condition. There is a vertical crack in the concrete column in the west section of the baffle wall, approximately 4-feet above the floor. The west section of the baffle is in poor condition. This masonry wall section has a large diagonal crack that is approximately 2-inches wide. The brick masonry column at the west end of the baffle wall is cracked and bulging outward. The brick masonry is very soft and hollow sounding when tapped with a hammer. The masonry joints are separating. The baffle wall goes up to within 2-feet of the ceiling. The tank is approximately 13-feet deep.
- 10. The west wall in the north half of the tank appears in good condition. Cracks in the wall were previously sealed and the repairs are intact.
- 11. The north wall of the tank is in good condition. Cracks in the wall were previously sealed and the repairs are intact.
- 12. The east wall in the north half of the tank appears in good condition. There is a square bump out in the east tank wall which is in good condition. The transfer pipe through the east wall is in good condition.
- 13. There is a 4-inch deep sump in the floor directly below the hatch.
- 14. There is a pipe penetrating the ceiling near the northeast corner of the tank that is capped.
- 15. The 12 concrete columns in the tank appear in good structural condition.
- 16. The roof on the tank appears water tight and in good condition.
- The roof hatches are raised approximately 24-inches above the roof level. The hatch lid overlaps the access hatch. The hatch is locked.
- 18. There are two 3-inch diameter pipe vents through the roof. Both vents are screened.
- 19. The tank has a 6-inch overflow pipe located on the west side of the tank. The overflow pipe has a flapper gate on the end of the pipe. The overflow is approximately 16-inches above grade and discharges to the ground.
- The exterior concrete walls of the tank are in good condition, with some previously repaired cracks visible.

GROUND STORAGE WATER RESERVOIR OBSERVATIONS

Summary - Rectangular Reservoir

The tank appears in good structural condition. The previous repairs to cracks in the walls and ceiling are intact. No leaks were observed.

The brick masonry baffle wall in the tank is in poor condition. The Owner should consider budgeting funds for repairs to the baffle wall.

Since the round and rectangular reservoirs are direct connected by piping, all the vents serve both tanks and hence should be of adequate size.

Round Reservoir

- 1. The tank is approximately 18-feet deep. The floor is sloped approximately 12-inches down toward the middle of the tank.
- 2. The tank has nine interior columns and six columns built into the wall of the tank. Three beams run across the tank columns in an east-west direction.
- 3. Some rust spotting on the ceiling is from supports used to keep the reinforcing steel off of the bottom of the formwork.
- 4. The vent pipes through ceiling appear in good condition. No leaks were observed around the vents.
- 5. Roof on reservoir appears watertight. No leaks were observed in the roof or along the top of the wall at the ceiling.
- 6. A small piece of reinforcing steel was exposed in the ceiling in the southeast corner, 1-foot south of southeast wall column.
- 7. All columns cast into the wall have cracks just below the beam which extends across the top of the columns. The beam is approximately 12-inches below the ceiling of the tank. Some of the column cracks have areas of spalled concrete.
- 8. All interior columns appear in good condition with no cracking. The beams in the tank are in good condition with no cracking observed.

GROUNDS TORAGE WAT ERR ES ERV OIR EV ALUATIONS

Round Reservoir (continued)

- 9. There are approximately 22 areas along the north and south sides of the north beam where the steel reinforcing is exposed in the ceiling. There are approximately 9 areas along the south side of the center beam where the reinforcing steel is exposed in the ceiling. The amount of reinforcing steel exposed ranged in length from less than 1-inch to approximately 12-inches. See attached sketch for areas of exposed reinforcing steel.
- 10. The inlet pipe in the north wall appears in good condition as well as its two concrete support piers.
- 11. Cracks in the ceiling have been previously patched with a mastic type sealant. The repairs appear to be intact.
- The tank walls are in good condition, with a hard, sound surface. No new cracks were observed. Old cracks previously repaired with a mastic type sealer showed no leaks.
- 13. There is a brick masonry wall extending from the east side of the tank to 2/3 across the center of the tank. The wall is approximately 6-feet high. The top of the wall is very weak and the top several courses of brick are loose.
- 14. The floor of the tank is in good condition. Less than ½-inch of sediment is on the tank floor.
- 15. The suction pipe in the southwest corner of the tank is in good condition. No leakage was observed around the pipe penetrations through the wall.
- 16. The fill pipe in the southeast corner of the tank is in good condition.
- 17. The tank has two 4-inch vent pipes that are screened.
- 18. The tank has a 6-inch overflow pipe located on the north side. The overflow pipe has a flapper gate on the end of the pipe. The overflow is approximately 3-feet above grade and discharges onto the gravel drive.
- 19. The access hatch is raised 24-inches above the top of the roof. The hatch lid overlaps the access hatch. The hatch is locked.
- 20. The exterior wall of the tank has some previously repaired cracking. No new cracks were observed.

Page 5 April 16, 2003

GROUND STORAGE WATER RESERVOIR EVALUATIONS

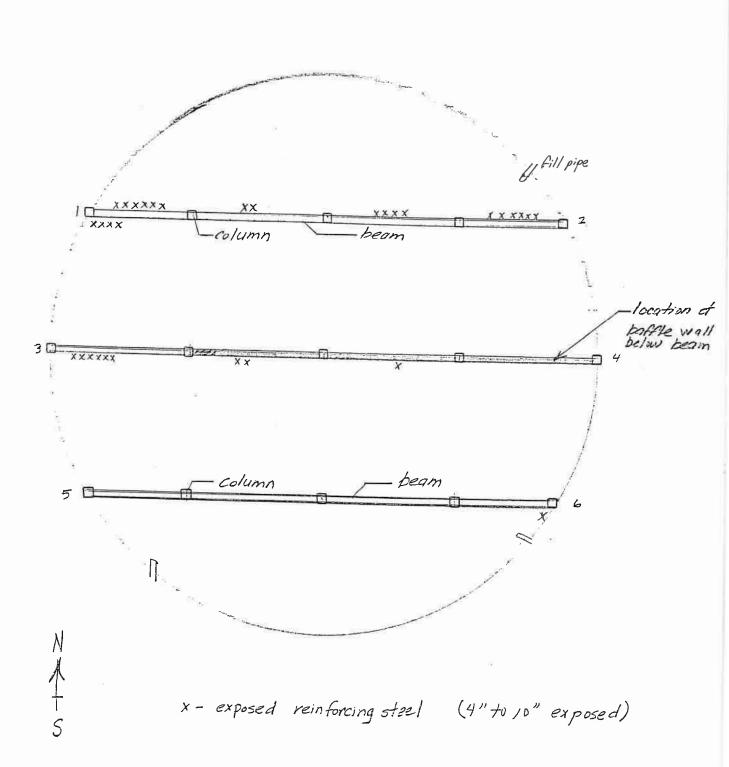
Summary - Round Reservoir

Overall, the round reservoir is in good condition. The previous repairs to cracks in the walls and ceiling are intact. No leaks were observed.

The brick masonry baffle wall is in poor condition. The Owner should consider budgeting funds for repairs to the baffle wall.

The cracks near the top of the wall columns should be repaired, preferably by epoxy injection. The areas of exposed reinforcing steel should be cleaned and coated to prevent further oxidation and corrosion of the steel.

PROJECT Resolver Evaluation

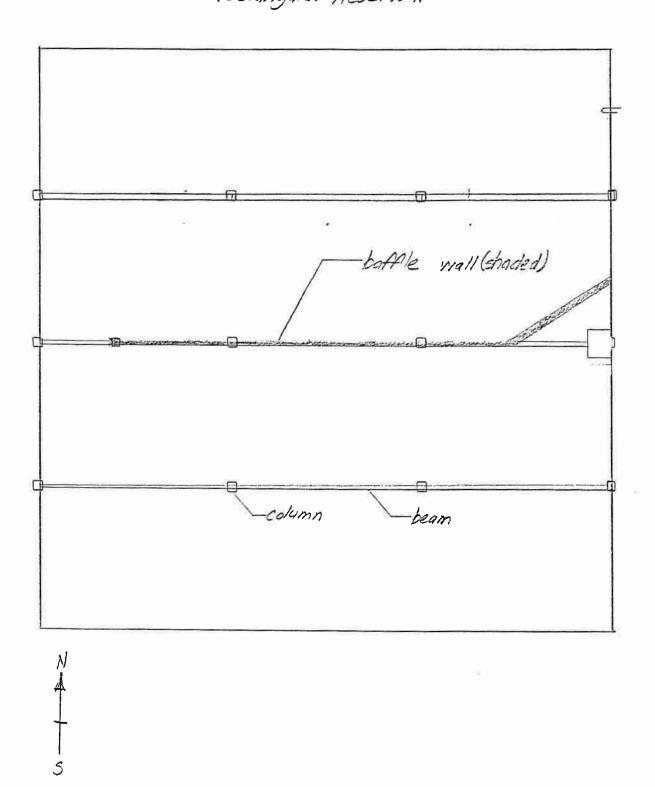

PROJECT Resolver Evaluation

PROJECT No. HODO 4- 920 857

BY HOTTON PAGE 1 OF 1

305 Elm St.

Round Reservoir

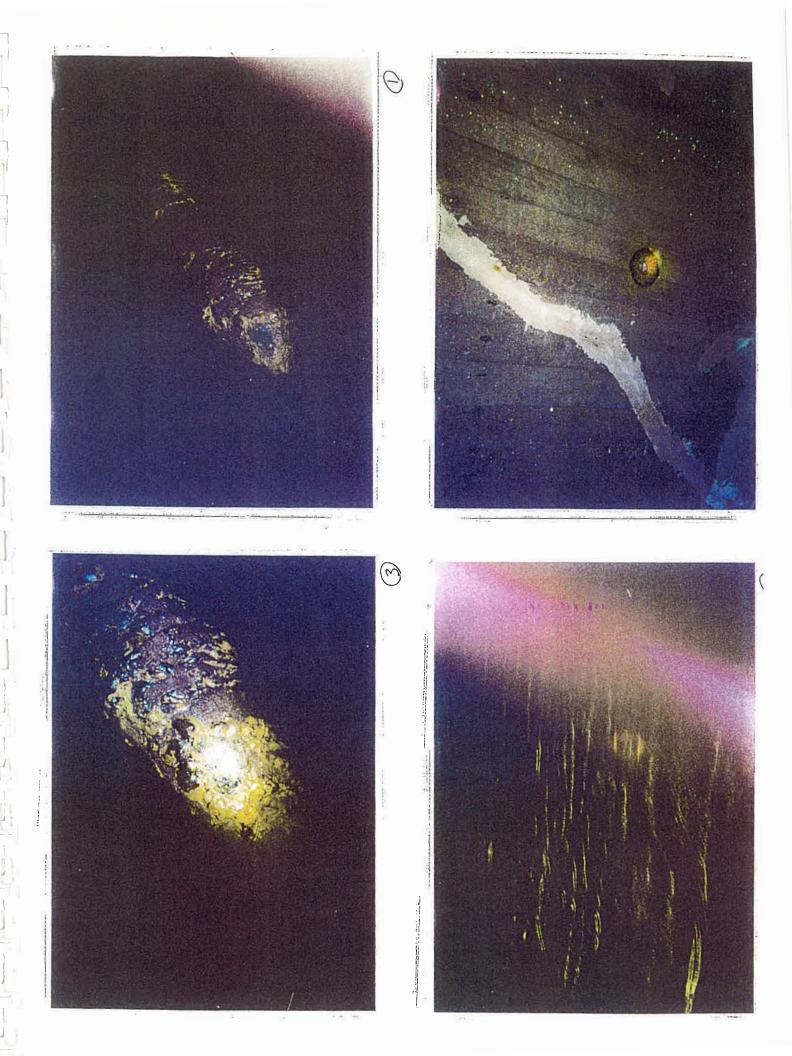


ARCHITECTS = ENGINEERS = PROJECT MANAGERS MILLER WAGNER TEL: 920-725-6346 FAX: 920-751-4284 e-mail: mcm@mcmgrp.com

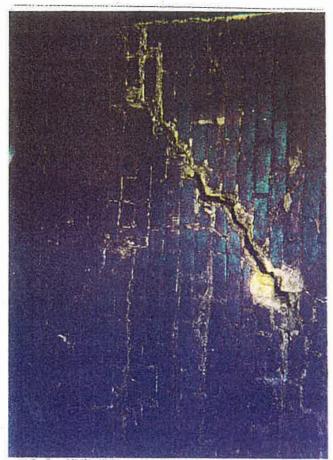
McMAHON An Affiliate of McMahon Associates, Inc.

DATE 4//6/6 3	
CLIENT KA KOLINA UHILIT	
PROJECT RESOLUTION EVA	burchisp
PROJECT No. KODO 4 22085	7
BY Ke Ilner	PAGE/_ OF/_

Rectangular Reservo ir

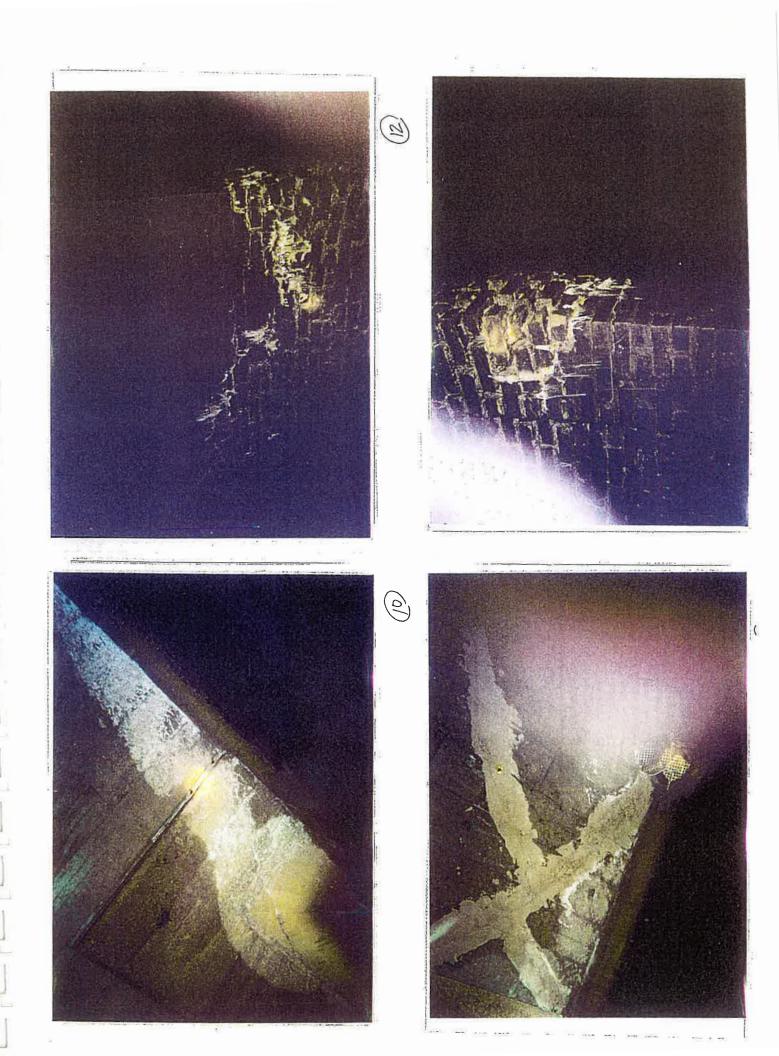

PHOTOGRAPHS

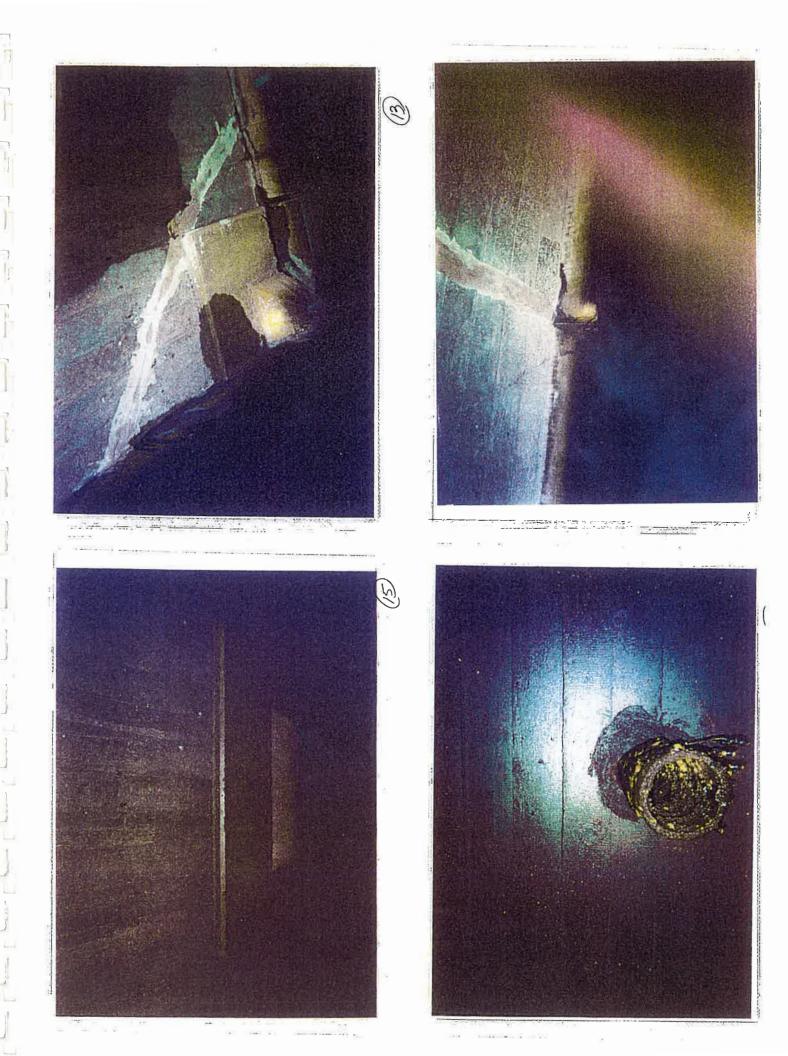
Rectangular Tank

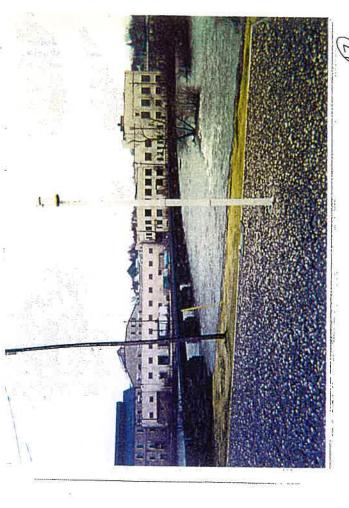

- 1. Inlet Pipe
- 2. South Vent Through Roof
- 3. Inlet Pipe
- 4. Light Sediment on Floor Underwater
- 5. Small Rust Area in Previously Repaired Crack
- 6. Small Piece of Exposed Reinforcing Steel Near Column
- 7. Brick Masonry Baffle Wall Crack
- 8. Capped Pipe Through Ceiling; Fill Pipe from Round Reservoir
- 9. Screened Overflow Pipe; Patched Ceiling Cracks
- 10. Wood Scrap from Original Column Forming
- 11. West End of Baffle Wall
- 12. West End of Baffle Wall
- 13. Corner Column
- 14. Ceiling Wall Intersection
- 15. Top of Column
- 16. Inlet Pipe
- 17. North Vent Pipe
- 18. South Vent Pipe
- 19. Access Hatch
- 20. Fill Pipe
- 21. South End of Tank
- 22. North End of Tank

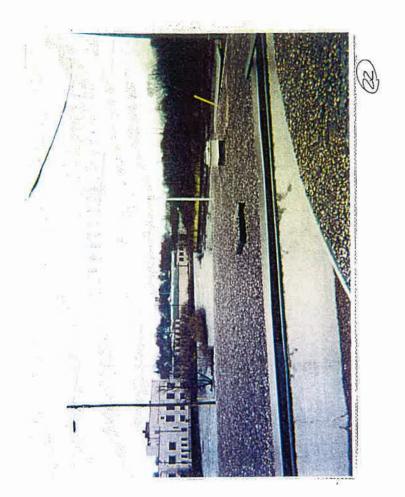

Round Tank

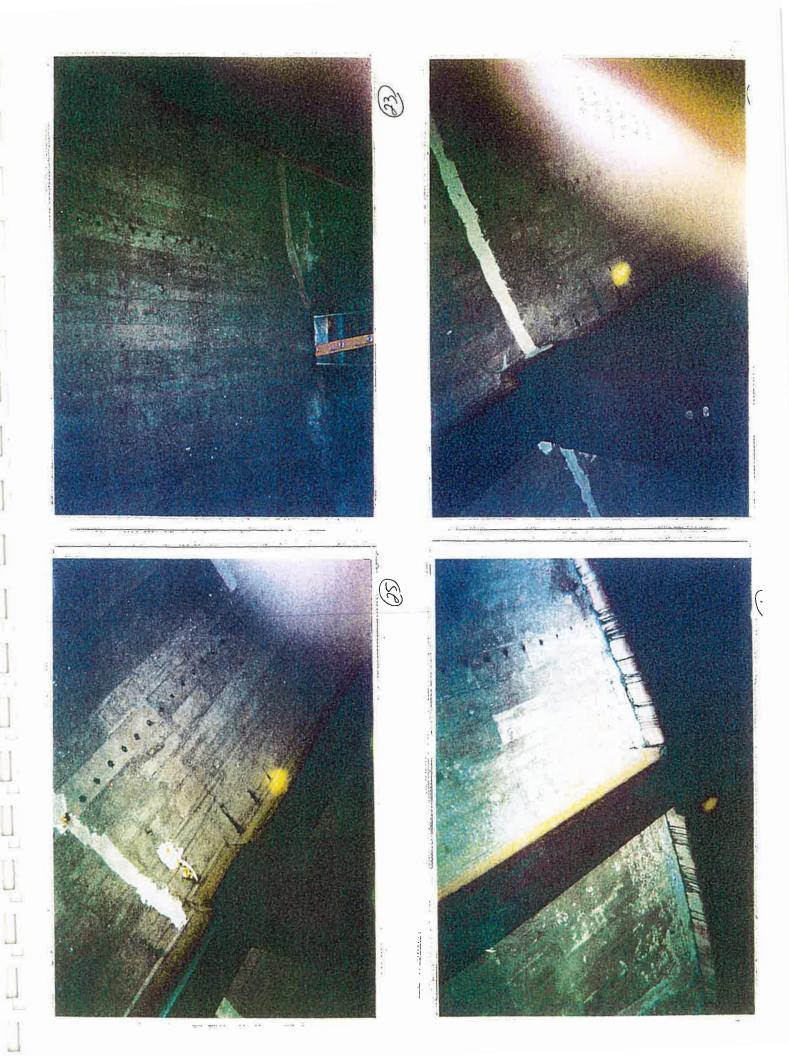
- 23. Rust Due to Reinforcing Supports
- 24. Exposed Reinforcing Steel on North Side of North Beam
- 25. Exposed Reinforcing Steel on South Side of North Beam
- 26. Intersection of Ceiling, Beam, Column and Wall
- 27. Access Hatch
- 28. Intersection of Ceiling, Beam and Wall
- 29. Suction Pipe
- 30. Fill Pipe
- 31. Small Areas of Corrosion in Ceiling
- 32. Capped Roof Hatch
- 33. Intersection of Ceiling, Beam, Wall and Column
- 34. Pipe Near Top of Wall
- 35. Capped Pipe in Ceiling
- 36. Top of Brick Masonry Baffle Wall
- 37. Top of Column
- 38. Capped Pipe through Ceiling Near Column
- 39. Thin Layer of Sediment on Floor Underwater
- 40. Bottom of Column
- 41. Sump in Floor
- 42. Top of Wall Column

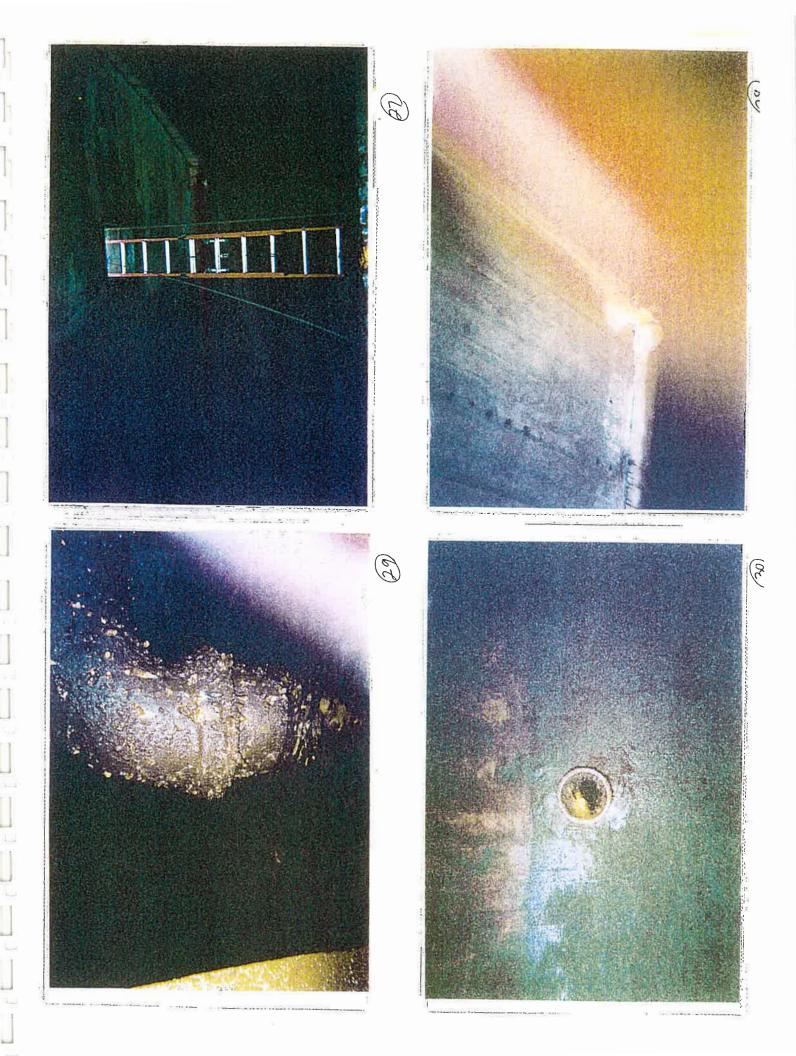




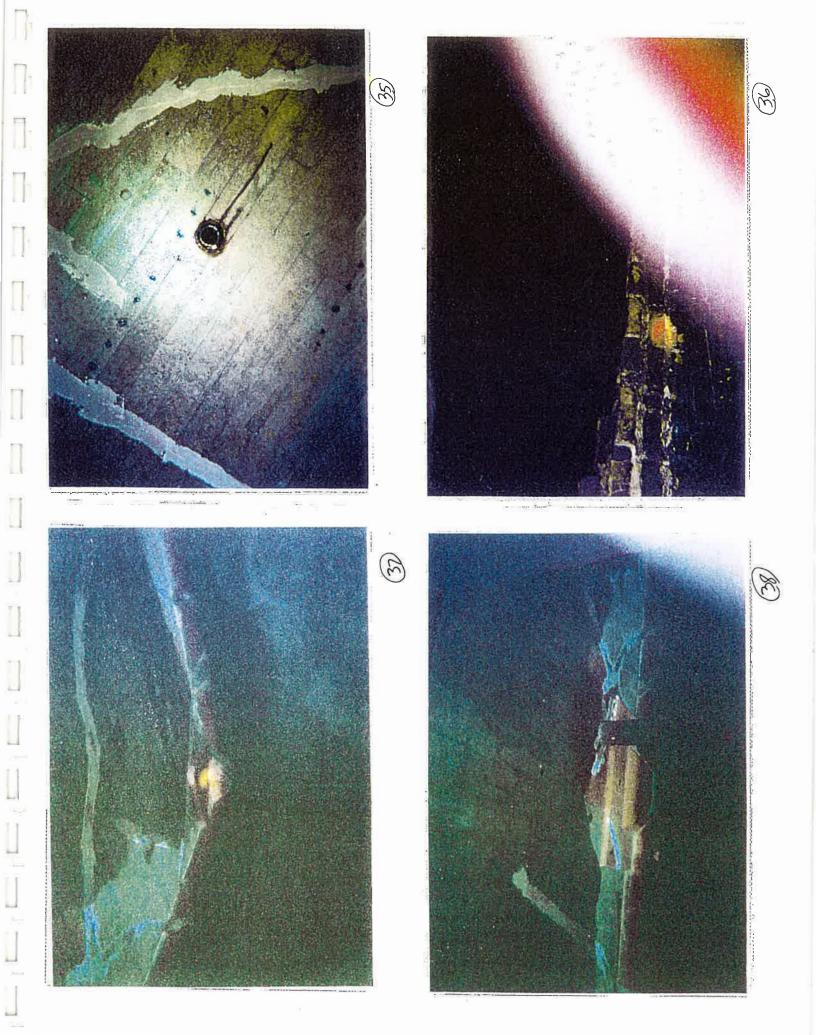


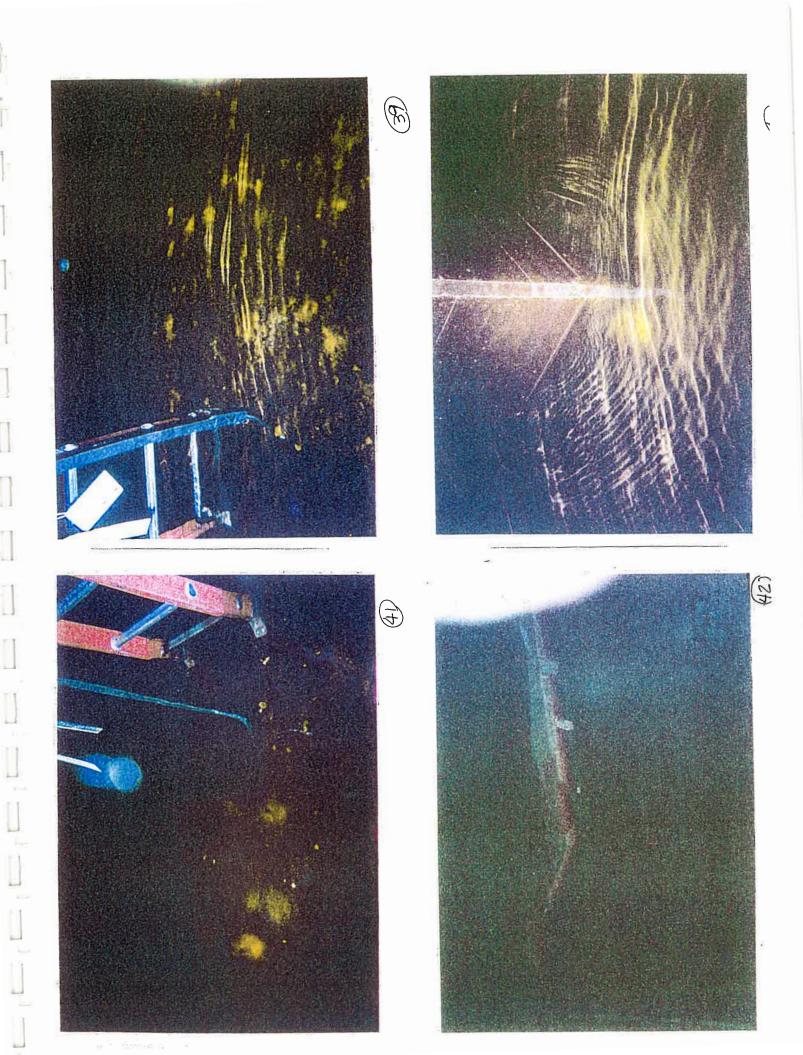





(B)







State of Wisconsin Department of Natural Resources Box 7921, Madison, WI 53707-7921

Reservoir Inspection Report Form 3300-248 (10/99) Page 1 of 2

Notice: Under NR 811.08 (5), Wis _ Adm. Code, municipalities are required to sopty and insp _ect water storage facilities at least once every 5 years and perform maintenance as necessary. Use this form as a checklist of inspection equirements, and provide a copy of the completed form to the DNR Area Engineer within 30 days of completing the inspection. Personal information collected is unlikely to be used for other purposes.

The second secon	spection. Personal miormation collected is unlikely to be used for ot	ner purposes.
Tank Information		English Hostiffer CID #
ank Owner (Municipality) Name		Facility Identifier FID #
Tank Location: Ad dress	City	State ZIP Code
	N Company of	2.5 0008
2 2/11 01/621	Kaukauna	W1 54130
Type of Tank (check one)	above grade) Other Round Tank	
7	above grade) Other	75
Constructed By (Company Name)		Construction Date
Unknown		± 1930
Inspection Information		
Inspection Company	Inspector Name	Inspection Date
McMahon Associates, In	nc Jeffrey A-Kellner	4-16-03
Company Address		Telephone Number
1445 memahon Drive	Neenah, W1 54956	(920)751-4200
Current Certifications (check all that apply)		
National Assoc. of Corrosion Engineers (NAC	E) American Welders Society (AWS)	
Steel Structures Painting Council (SSPC)	Other Wisconsin Professional	Engineer
Type of Inspection Performed (check all that apply)		The second second
Completely Drain Float-down	Dive Other drained to 16" of water re	emaining at wall
Ground Reservoir Exterior Information		Managar Salatonic
Number of Venter	Are vents screened?	Is venting adequately sized?
Number of Vents: 0 1	2 3 Yes No	Yes No
Size of Overflow Subject to flooding?	Screened? flapper gate Splash pad below?	low high above the splash pad
6 inch Yes No	Yes No Yes No	the overflow? 36 "
	cover overlap? Is cover airtight? Is co	ver locked securely?
∑ Yes	□ No ☑ Yes □ No ☑	Yes No
Condition of Exposed Concrete	Cracking or spalling? minor Efflorescenc	e present?
Excellent Good Fair	Poor X Yes No Cracks Yes	No a
Comments		
1/1/1/1		
Foundation (if visible) //07 V/3/000 Settling?	Crooke?	
	Cracks? Deterioration?	M-
Yes No Comments	Yes X No	No
Continents	v =	
Ground Reservoir Interior Information Ladders? If yes, how many pr	esent? Ladder Type (e.g., steelrungs poured in-place in concre	to)
Yes No 1 2	eserti: Laddor Type (e.g., steerlungs poured in-place in concre	ie)
	If yes, condition:	
Sump present?		
A LING		oor
Amount of Sediment Sediment Deposit Locations		vedas part of the inspection?
/2 A Distributed Eversy		es 🛱 No
	cracking? Walls/floor cracking? Other Problems Wall Crac	cks were previous
Yes No Yes No	X Yes No repaired. No new	cracks.
Piping inside of tank?	If yes, condition (check all thanpply):	
Yes No	Good Pitting Corrosion	Need Repainting
Elevated Reservoir Exterior Information	中心一种的一种是一种的一种的一种的	
Type of Reservoir	oundation Condition (check all that apply)	
Single Pedestal Spheroid Ellipsoidal	Signs of Settlement Shrubs or Trees Encroaci	ning on Foundation
Fluted Pillar Glass-lined	Anchor Bolts/Chairs Deteriorating Concrete Spalled, Cracke	d or Deteriorating
	Grout Deteriorating	

Reservoir Inspection Report Form 3300-248 (10/99) Page 2 of 2

Base Section General Condition of Paint Describe any failings of coating.	A. 1985年1986年,1985年(1985年),2014年(1985年),1985年1986年,1986年1986年,1986年1986年,1987年1986年,1987年1986年,1987年1986年,1987年 1987年
Excellent	
Good Poor	i company
Bowl/Conical Section (4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	
Excellent Fair	E .
Good Poor	ÿ an e
Equator/Sidewall Section 2019 15 Page	
	illings of coating.
Excellent Fair	S H
Good Poor	9
In I will be a server of the s	
General Condition of Paint Describe any failings of coating.	1. ec
Excellent Fair	×
Good - Poor	· · · · · · · · · · · · · · · · · · ·
Elevated Reservoir - Interior Information	
	adder Type
Yes No 1 2	
Amount of Sediment Deposit Locations	Removed as part of the inspection?
Distributed Evenly Center	
	yes, condition (check all that apply):
Yes No.	Good : Pitting Corrosion Need Repainting
Other Information	
Samples and Testing Were any coating samples taken? Was an adhes	sion test performed? Were any coating samples test for lead?
☐ Yes ☐ No ☐ Yes ☐	□ No □ Yes □ No
Valve Pit General Condition Thickness samples?	Condition of Pipes in the Pit
□ Ves □ No	Excellent Good Fair Poor
Excellent Fair Type of Controls Present	Is the pit insulated?
Type of Controls Present	Is the pit insulated?
Good Poor Type of Controls Present Pressure Valve Pres	
Good Poor Type of Controls Present Pressure Valve Pres	ssure Gage SCADA Yes No
Type of Controls Present Pressure Valve Pressure Va	ssure Gage SCADA Yes No
Type of Controls Present Good	ssure Gage SCADA Yes No
Type of Controls Present Poor	ssure Gage SCADA Yes No
Type of Controls Present Good Poor Pressure Valve	ssure Gage SCADA Yes No Locking access door/hatch?
Type of Controls Present Good Poor Type of Controls Present Pressure Valve Press	ssure Gage SCADA Yes No Locking access door/hatch? Yes No Yes No Yes No
Type of Controls Present Pressure Valve Pres Riser/Access Area General Condition of Paint Excellent Fair Good Poor Access Ladder Access ladder present? Yes No Yes Yes	evice? Locking access door/hatch? Yes No Lighting Explosion proof housings? Enough light for safety?
Type of Controls Present Good Poor Pressure Valve	evice? Locking access door/hatch? Yes No Lighting
Type of Controls Present Good Poor Pressure Valve Press General Condition of Paint Excellent Fair Good Poor Access Ladder Access ladder present? Yes No Platforms Is condensate drained properly?	ssure Gage SCADA Yes No Lighting Explosion proof housings? SCADA Yes No Lighting Explosion proof housings? Enough light for safety?
Type of Controls Present Good Poor Type of Controls Present Pressure Valve Pres	ssure Gage SCADA Yes No Lighting Explosion proof housings? SCADA Yes No Lighting Explosion proof housings? Enough light for safety?
Type of Controls Present Good Poor Type of Controls Present Pressure Valve Press General Condition of Paint Excellent Fair Good Poor Access Ladder Access ladder present? Yes No Platforms Is condensate drained properly? Yes No Are items stored in pedestal base? If yes, identify. Accessories	ssure Gage
Type of Controls Present Good Poor Pressure Valve Press General Condition of Paint Excellent Fair Good Poor Access Ladder Access ladder present? Yes No Platforms Is condensate drained properly? Yes No Are items stored in pedestal base? If yes, identify. Cathodic Type Type of Controls Present Press Safety climb de Yes If yes, identify. Cathodic Type	evice? Locking access door/hatch? No Lighting Explosion proof housings? Enough light for safety? Yes No Yes No Yes No No Yes No No No Yes No No Yes No No No Yes No No No No No No No N
Type of Controls Present Good Poor Pressure Valve	ssure Gage
Type of Controls Present Good Poor Type of Controls Present Pressure Valve Press	evice? Locking access door/hatch? Yes No Lighting Explosion proof housings? Yes No Page 100
Type of Controls Present Good Poor Pressure Valve	ssure Gage
Type of Controls Present Good Poor Pressure Valve	ssure Gage
Type of Controls Present Good Poor Pressure Valve	ssure Gage
Type of Controls Present Good Poor Pressure Valve	ssure Gage
Type of Controls Present Good Poor Pressure Valve	Source Gage
Type of Controls Present Good Poor Pressure Valve	ssure Gage
Type of Controls Present Good Poor Pressure Valve	Source Gage SCADA Yes No No

State of Wisconsin Department of Natural Resources Sox 7921, Madison, WI 53707-7921

Reservoir Inspection Report Form 3300-248 (10/99) Page 1 of 2

Notice: Under NR 811.08 (5), Wis. Adm. Code, municipalities are required to empty and inspect water storage facilities at least once every 5 years and perform maintenance as necessary. Use this form as a checklist of inspection requirements, and provide a copy of the completed form to the DNR Area Engineer within 30 days of completing the inspection. Personal information collected is unlikely to be used for other purposes.

Tank Information	但是的武器工厂会员 的复数
Tank Owner (Municipality) Name	Facility Identifier FID #
City of Kaukauna	
Tank Location: Address City	State ZIP Code
305 Elm St. Kaukauna	W1 54130
Type of Tank (check one) Ground (below grade) Elevated (above grade) Other Rectangular	
Ground (below grade) Elevated (above grade) Other Kectangular Constructed By (Company Name)	Construction Date
96.296.542	
Unknown	± 1930
Inspection Information Inspector Name	Inspection Date
McMahon Associates, Inc. Jeffrey A. Kellner	4-16-03
Company Address	Telephone Number
1445 McMghon Drive, Neengh, W1 54956	(920) 751-4200
Current Certifications (check all that apply)	(1-). 1100
☐ National Assoc. of Corrosion Engineers (NACE) ☐ American Welders Society (AWS)	
☐ Steel Structures Painting Council (SSPC) ☐ Other Wisconsin Professional	Engineer
Type of Inspection Performed (check all that apply)	
Completely Drain Float-down Dive Other <u>drained to 4" of water</u>	remaining at wa
Ground Reservoir → Exterior Information	致神经病病疾患或性
Number of Vents: 0 1 2 3 Are vents screened? Number of Vents: No	Is venting adequately sized? Yes No
	w high above the splash pad
6 ///Ch	he overflow? /6 //
	rlocked securely?
Yes No X Yes No X Yes No	
Condition of Exposed Concrete Cracking or spalling? MINOR Efflorescence	7
Excellent Good Fair Poor Yes No Cracks Yes	No No
Tank is in good condition. Foundation (If visible)	
Settling? Vot Visible Cracks? Peterioration? Yes No	
Yes X-No Yes X-No Yes No	
Ground Reservoir Interior Information	en legación de la company
Ladders? If yes, how many present? Ladder Type (e.g., steel rungs poured in-place in concrete)	
☐ Yes 🔼 No ☐ 1 ☐ 2	
Sump present? If yes, condition:	
Yes No Excellent Good Fair Poo)r =
	d as part of the inspection?
Z Distributed Evenly Center Near Overflow Edges Yes	77
	previously
Yes No Yes No Yes No new Cre	aces.
Piping inside of tank? If yes, condition (check all that apply): Yes No Pitting Corresion	Need Desciption
	Need Repainting
Elevated Reservoir Exterior Information Type of Reservoir Foundation Condition (check all that apply)	
☐ Single Pedestal Spheroid ☐ Ellipsoidal ☐ Signs of Settlement ☐ Shrubs or Trees Encroachin	g on Foundation
Fluted Pillar Glass-lined Anchor Bolts/Chairs Deteriorating Concrete Spalled, Cracked of	*
Grout Deteriorating	V

Reservoir Inspection Report Form 3300-248 (10/99) Page 2 of 2

	1					. 51111 000	0 E40 (10/00) . Ego E 0. E
Base Section General Condit		I Dosoribe any to	ilings of coating,	H-40 :- 4:70	上17年7月		
		Describe any la	mings of coating,				
Excellent	∐ Fair	161					
Good	Poor	1	and the House of the Park	OKOKONI TIPLI ILI IGADOMENI	es Juliani i + 34 . 15 Va		
Bowl/Conical Se General Condit			ilings of coating.			STANDERS OF STREET	IT ITS ON CHARGE SPECIAL SPACE SPAINS STATE ASSESSED.
Excellent	Fair	, .					
Góod	Poor						
Equator/Sidewa		Posting in the said					-1 1 m - 1 - 12 m day 1 m - 2 m -
No. of Sections			Describe any failir			Constant and a variety of the constant	7 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Exceller	nt 🔲 Fair	sa 60				
	Good	Poor					
Roof			村		TENEDE SERVICE		
General Conditi		Describe any fa	ilings of coating.	20	N S		4. Y
Excellent	Fair						
Good	Poor		84	Į.	8	40	\$ 100 12
Elevated Res	ervoir – Inte	rior Informatio					
Ladders?	Gartini a constant	If yes, how man	The second secon	dder Type	400 100 100		
☐ Yes ☐	No	1 2			K H B B	χ, χ,	ာ ၏။ရွာမ ကို ကျေးမျိုး
Amount of Sedir	ment Sedime	ent Deposit Location	ons			IR	emoved as part of the inspection?
		stributed Evenly		Near C	verflow [Edges [☐ Yes ☐ No
Piping inside of	1			es, condition (
_ =	No.		· · ·	Good	Pitting	Corrosion	Need Repainting
CONTRACTOR STREET, SAN	THE THE TAN STOTE OF THE			HEROER TAI	STATE STATES		- Need Hepaining
Other Informa Samples and Te	The same of the same of		Maria Maria Care				
Were any coatin		en?	Was an adhesic	n test perform	ed?	Were any coat	ing samples test for lead?
☐ Yes ☐	No "		Yes	No	# Cl 27	Yes	□ No
Valve Pit Genera	al Condition	Thickness samp	les?		Co	ondition of Pipes in the	he Pit
F		Yes	No			Excellent	Good Fair Poor
Excellent	Fair	Type of Controls	Present		lis	the pit insulated?	54
Good	Poor	Pressure Va		ure Gage	SCADA	Yes No	
Riser/Access Are	adallini			PHUNCH			
General Condition	on of Paint	Describe any fail	ings of coating.				5
Excellent	Fair	i					
Good	Poor						2 to 10 to 5 at 5
Access Ladder					RECTEMBLE		
Access ladder pr	resent?		Safety climb dev			Locking access	-
Yes	No		Yes	No		Yes L	No
Platforms			natione entitle		可是自然的严重的		THE BOOK WAS TO SEE THE
is condensate dr		77			sion proof hous		ough light for safety?
CONTRACTOR OF STREET	No		79		es No		Yes No
Are items stored		se? If yes, iden	iry.				2
Yes _	No						
Accessories				Detailed High		SEPTEMBER OF THE	世界。不可以1000年6月1日,1000年6月1日 1000年11日 1000
Cathodic protecti		odic Type		Date Last Eva	luated Cond	dition at Time	П Б.: П В
	No L	Hanging	Rod Net				ood Fair Poor
Aviation lights?	3 T		Antennae?				ering with tank operation?
	No.	a a de se	Yes _	No	48.00.00	Yes	No
Fank Maintena	aco Informa	tion .					学生的经验的
95. 30							
			g the inspection?				es additional work to complete?
Yes [ng the inspection?			problem that require	
Yes Signatures	or videos take		ng the inspection?				
-	or videos take No		g the inspection?				d report.
/ Signatures :	or videos take No		g the inspection?				d report.
/ Signatures :	or videos take No re J. Jali		g the inspection?				d report.

APPEND X E

PROJECTED FLOW INFORMATION

ON THE FOX

March 20, 2002

Terry Johnson, P.E. 4135 Technology Parkway Sheboygan, WI 53083

RE: Projected Sanitary Flows - Kaukauna

Dear Terry:

Attached please find the sanitary sewer flow projections for the City of Kaukauna. These flows are based on the City's ability to treat requested subdivisions, the ability to provide water and other essential municipal services and that the area would be contained in the political subdivision.

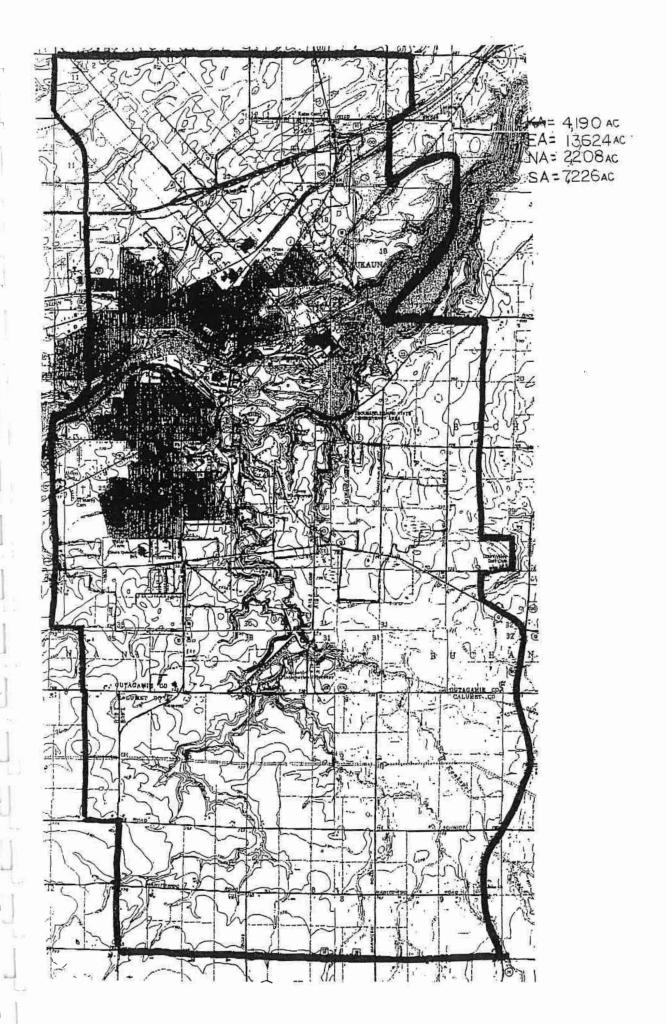
The territory in which flows are projected are contained within the enclosed map. As with all developments, the location and extent of development is a function of several factors including economic, transportation and market wants.

Should you have any questions or comments on this matter, please feel free to contact this office at (920) 766-6315 or via e-mail at planning@kaukauna-wi.org.

JAKEL

Sincerely,

Robert L. Jakei, AICP


Director of Planning and Community Development

Enclosure

			Acres	Population
2020 Projection	North	Residential	280	1,000
		Commercial	60	-
		Industrial	160	-
	South	Residential	1,900	3,800
		Commercial	150	1-12
		Industrial	40	
2040 Projection	North	Residential	700	3,000
		Commercial	140	-
		Industrial	210	-
	South	Residential	4,500	9,000
		Commercial	310	-
		Industrial	110	_

The above acreages do not include open space, wetlands, parks or environmental corridors. The acreage does include road right of way, neighborhood parks (less than two acres) and storm water detention facilities.

It should be noted that the 2040 projections are a copulation of the 2020 projections plus the projected growth from 2020 to 2040.

Alternat	400	W 4
		-
	Alma	
~~		200

		1/2/03				
1	x12	Date;				
To: /+	MY VACLAUIK	Fax #: 920 -	151-4284			
Company:_	MCMAHON					
From:	ERRY JOHNSON	Ext. #:				
Address:	Sheboygan, WI	Sending From Fax #:				
	4135 Technology Parkway	_ (920) 458-0537	(920) 458-3644			
	Sheboygan, WI 53083	(920) 458-0550				
	8	(920) 458-8771				
roject #:	T	_ (920) 458-0948				
Subject.	KAUKAUNA					
-	N . Fr.	-	100			
	# U					
-						
_	1-	/	3/			
comments:	HTTACHED ,	5 LETTER	of [20]			
FROM	1 LAUKAU	UA				
1 - 3 3						
		1900				

If you do not receive Pages (including cover page), please call us as soon as possible at (920) 458-8711

APP ENDIX F

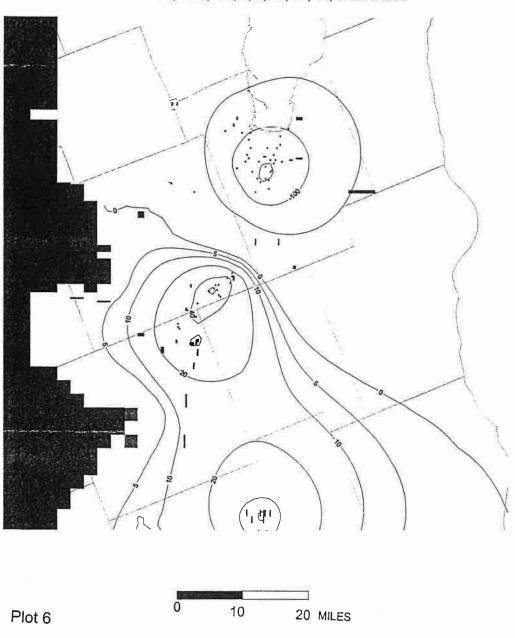
GROUNDWATER FLOW MODEL SIMULATIONS BY USGS

Mr. Gary Rosenbeck McMahon and Associates Inc. 1445 McMahon Drive Neenah WI 54957-1025

May 21, 2003

Dear Gary,

Enclosed are the results of the additional groundwater flow model simulation for the city of Kaukauna that you requested in our recent phone conversation. Plot 6 shown below represents the difference between Foxss1997 and Foxss1997_25nogbkau. Please let me know if more explanation or simulations are needed.


Sincerely,

Jim Krohelski Hydrologist

Simulations

- 1. **Foxss1997** has updated 1997 pumpages for the Green Bay metropolitan area municipal wells. All other wells pump at rates as reported in Conlon (1998), which represent 1990 conditions.
- 2. Foxss1997_25nogbkau has all Green Bay metro wells turned off, a 25 percent increase in pumping rates for all other wells except pumping rates as follows: Kimberly wells well 1 from 257200 to 600000 GPD; well 2 from 548700 to 400000 GPD; well 3 from 454000 to 1300000 GPD and Kaukauna wells well 4 from 458800 to 440000 GPD; well 5 from 340960 to 176000 GPD; well 8 from 479500 to 176000 GPD; well 9 from 82000 to 192720 GPD; well 10 (6) from 129300 to 440000 GPD.

Drawdown and drawup (recovery) due to changing pumping rates as follows: Kimberly wells: well 1 from 257200 to 600000 GPD; well 2 from 548700 to 00000 GPD; well 3 from 454000 to 1300000 GPD and Kaukauna wells: well 4 from 458800 to 440000 GPD; well 5 from 340960 to 176000 GPD; well 8 from 479500 to 176000 GPD; well 9 from 82000 to 192720 GPD; well 10 (6) from 129300 to 440000 GPD. All Green Bay metro wells are turned off rates and all other wells have a 25 percent increase in pumping of 1990 rates as reported by Conlon (1998). Maximum drawdown is 66 feet and the maximum drawup is -215 feet determined by subtracting simulated heads in Foxss1997_25nogbkau from simulated heads in Foxss1997. Contour intervals are -200, -100, -50, 0, 5, 10, 20, 40, and 60 feet.

Mr. Gary Rosenbeck McMahon and Associates Inc. 1445 McMahon Drive Neenah WI 54957-1025

May 13, 2003

Dear Gary,

Enclosed are the results of the groundwater flow model simulations for the city of Kaukauna that you requested in your letter of April 28, 2003. The Fox Cities groundwater model documented in Conlon (1998) was used for the simulations. I have followed the same format to present results for the city of Kaukauna as was used for the Kimberly request that was done last October. The objective of the simulations was to show the amount of drawdown due to changes in the pumping rates of Kimberly wells 1, 2, and 3 and Kaukauna wells 4, 5, 8, 9, and 10(6). Three base case simulations were run: 1) Foxss1997, 2) Foxss1997_25, and 3) Foxss1997_25nogb. These simulations are described below. The drawdown or drawup (recovery) caused by two of the base cases (Foxss1997_25, and Foxss1997_25nogb) are shown in plots 2 and 3. The drawdown due to changes in the pumping rates of the Kimberly and Kaukauna wells are also simulated in three simulations 1) Foxsskau 2) Foxss1997_25kau, and 3) Foxss1997_25nogbkau. These simulations are compared to the base cases to determine drawdown as shown in plots 1, 4, and 5. Please let me know if you need more information or want to discuss the results.

Sincerely,

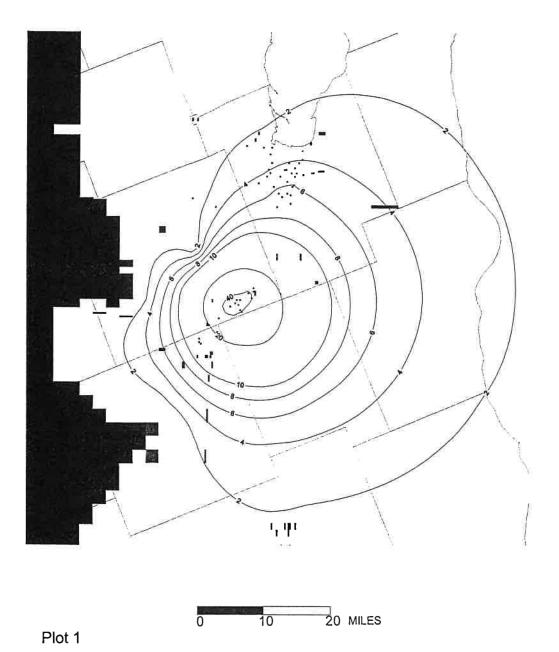
Jim Krohelski Hydrologist

1

Simulations

- 1. Foxss1997 has updated 1997 pumpages for the Green Bay metropolitan area municipal wells. All other wells pump at rates as reported in Conlon (1998), which represent 1990 conditions.
- 2. Foxsskau is the same as Foxss1997 but with pumping rates as follows: Kimberly wells well 1 from 257200 to 600000 GPD; well 2 from 548700 to 400000 GPD; well 3 from 454000 to 1300000 GPD and Kaukauna wells well 4 from 458800 to 440000 GPD; well 5 from 340960 to 176000 GPD; well 8 from 479500 to 176000 GPD; well 9 from 82000 to 192720 GPD; well 10 (6) from 129300 to 440000 GPD.
- 3. Foxss1997_25 is the same as Foxss1997 but all well pumping rates have been increased by 25 percent
- 4. Foxss1997_25nogb is the same as Foxss1997_25 but all Green Bay metropolitan municipal wells have been turned off (deleted) (see table).
- 5. Foxss1997_25kau is the same as Foxss1997_25 but with pumping rates as follows: Kimberly wells well 1 from 257200 to 600000 GPD; well 2 from 548700 to 400000 GPD; well 3 from 454000 to 1300000 GPD and Kaukauna wells well 4 from 458800 to 440000 GPD; well 5 from 340960 to 176000 GPD; well 8 from 479500 to 176000 GPD; well 9 from 82000 to 192720 GPD; well 10 (6) from 129300 to 440000 GPD.
- 6. Foxss1997_25nogbkau is the same as Foxss1997_25nogb but with pumping rates as follows: Kimberly wells well 1 from 257200 to 600000 GPD; well 2 from 548700 to 400000 GPD; well 3 from 454000 to 1300000 GPD and Kaukauna wells well 4 from 458800 to 440000 GPD; well 5 from 340960 to 176000 GPD; well 8 from 479500 to 176000 GPD; well 9 from 82000 to 192720 GPD; well 10 (6) from 129300 to 440000 GPD.

Plots

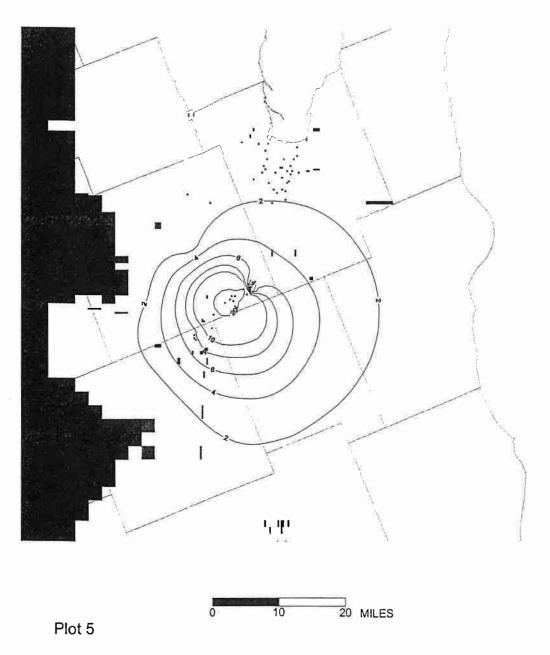

1. Drawdown due to pumping rates as follows: Kimberly wells - well 1 from 257200 to 600000 GPD; well 2 from 548700 to 400000 GPD; well 3 from 454000 to 1300000 GPD and Kaukauna wells - well 4 from 458800 to 440000 GPD; well 5 from 340960 to 176000 GPD; well 8 from 479500 to 176000 GPD; well 9 from 82000 to 192720 GPD; well 10 (6) from 129300 to 440000 GPD. Green Bay metro wells are pumping at 1997 rates and all other wells are pumping at 1990 rates as reported by Conlon (1998). Maximum drawdown is 56 feet determined by subtracting simulated heads in Foxsskau from simulated heads in Foxss1997.

May 13, 2003

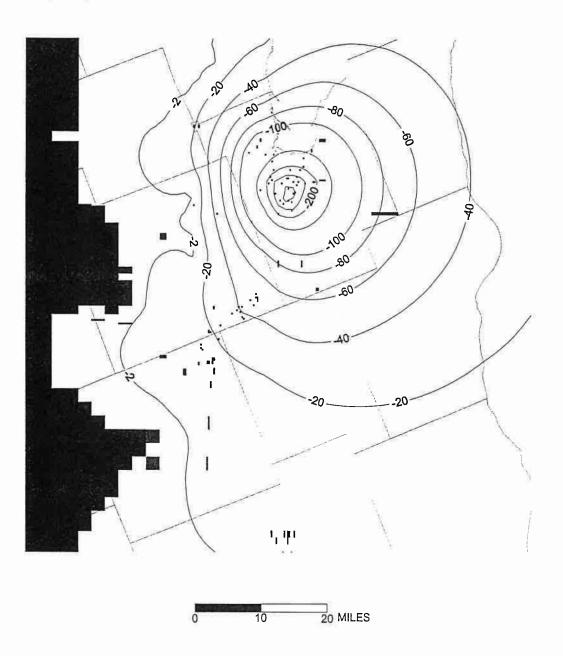
- 2. **Drawdown** due to increasing pumping rates for all wells by 25 percent over Green Bay metro wells 1997 rates and all other wells over 1990 rates as reported by Conlon (1998). Maximum drawdown is 100 feet in the Green Bay metropolitan area and 70 feet in the Fox Cities area determined by subtracting simulated heads in **Foxss1997_25** from simulated heads in **Foxss1997**.
- 3. **Drawup** (recovery) due to turning off all Green Bay metropolitan municipal wells (see table). Pumping rates for all other wells are increased by 25 percent over 1990 rates as reported by Conlon (1998). Maximum drawup is 316 feet (note the drawup is negative on plot contours) determined by subtracting simulated heads in **Foxss1997_25nogb** from simulated heads in **Foxss1997_25.**
- 4. Drawdown due to pumping rates as follows: Kimberly wells well 1 from 257200 to 600000 GPD; well 2 from 548700 to 400000 GPD; well 3 from 454000 to 1300000 GPD and Kaukauna wells well 4 from 458800 to 440000 GPD; well 5 from 340960 to 176000 GPD; well 8 from 479500 to 176000 GPD; well 9 from 82000 to 192720 GPD; well 10 (6) from 129300 to 440000 GPD. Pumping rates for all other wells are increased by 25 percent over Green Bay metropolitan municipal wells 1997 rates and other wells over 1990 rates as reported by Conlon (1998). Maximum drawdown is 39 feet determined by subtracting simulated heads in Foxss1997_25kau from simulated heads in Foxss1997
- 5. Drawdown due to pumping rates as follows: Kimberly wells well 1 from 257200 to 600000 GPD; well 2 from 548700 to 400000 GPD; well 3 from 454000 to 1300000 GPD and Kaukauna wells well 4 from 458800 to 440000 GPD; well 5 from 340960 to 176000 GPD; well 8 from 479500 to 176000 GPD; well 9 from 82000 to 192720 GPD; well 10 (6) from 129300 to 440000 GPD. All Green Bay metropolitan municipal wells are turned off and all other wells are pumping at a 25 percent increase over1990 rates as reported by Conlon (1998). Maximum drawdown is 34 feet determined by subtracting simulated heads in Foxss1997_25nogbkau from simulated heads in Foxss1997_25nogb.

May 13, 2003

Drawdown due to changing pumping rates as follows: Kimberly wells: well 1 from 257200 to 600000 GPD; well 2 from 548700 to 400000 GPD; well 3 from 454000 to 1300000 GPD and Kaukauna wells: well 4 from 458800 to 440000 GPD; well 5 from 340960 to 176000 GPD; well 8 from 479500 to 176000 GPD; well 9 from 82000 to 192720 GPD; well 10 (6) from 129300 to 440000 GPD Green Baymetro wells are pumping at 1997 ra tes and all other wells are pumping at 1 990 rates as re ported by Conlon (1998). Maximum drawdown is 56 feet de termined by su btracting simulated heads in Foxsskau from simulated heads in Foxss1997. Contour intervals are 2, 4, 6, 8, 10, 20, and 40 feet.

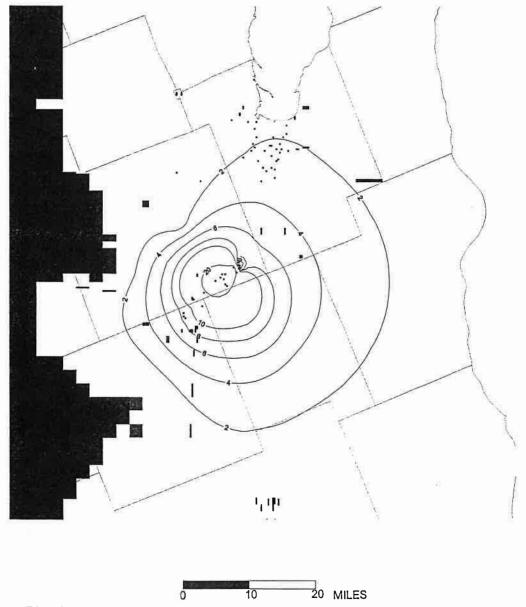


Drawdown due to increasing pumping rates for all wells by 25 percent over Green Bay metro wells 1997 rates and all other wells over 1990 rates as reported by Conlon (1998). Maximum drawdown is 100 feet in the Green Bay metropolitan area and 70 feet in the Fox Cities area determined by subtracting simulated heads in Foxss1997_25 from simulated heads in Foxss1997. Contour intervals are 2, 5, 10, 20, 40, 60, and 80 feet.



Plot 2

Drawdown due to changing pumping rates as follows: Kimberly wells: well 1 from 257200 to 600000 GPD; well 2 from 548700 to 400000 GPD; well 3 from 454000 to 1300000 GPD and Kaukauna wells: well 4 from 458800 to 440000 GPD; well 5 from 340960 to 176000 GPD; well 8 from 479500 to 176000 GPD; well 9 from 82000 to 192720 GPD; well 10 (6) from 129300 to 440000 GPD. All Green Bay metro wells are turned off and all other wells are pumping at 1990 rates as reported by Conlon (1998). Maximum drawdown is 34 feet determined by subtracting simulated heads in Foxss1997_25nogbkau from simulated heads



Drawup (recovery) due to turning off all Green Bay metropolitan municipal wells (see table). Pumping rates for all other wells are increased by 25 percent over 1990 rates as reported by Conlon (1998). Maximum drawup is 316 feet (note the drawup is negative on plot contours) determined by subtracting simulated heads in Foxss1997_25nogb from simulated heads in Foxss1997_25. Contour intervals are -2, -20, -40, -60, -80, -100, -150, -200, -250, and -300 feet.

Plot 3

D rawdwn due to changing pumping rates as fo llows: Kimberly wells: w ell 1from 257200 to 600000 GPD; well 2 from 548700 to 400000 GPD; well 3 from 454000 to 1300000 GPD and Kaukauna wells: well 4 from 458800 to 440000 GPD; well 5 from 340960 to 176000 GPD; well 8 from 479500 to 176000 GPD; well 9 from82000 to 192720 GPD; well 10 (6) from 129300 to 440000 GPD Pumping rates for all other wells are increased by 25 percent over Green Bay metropolitan municipal wells 1997 ra tes and other wells over 1990 rates as reported by Conl on (1998). M aximum drawdown is 39 feet determined by subtracting simulated heads in Foxss1997_25kau from simulated heads in Foxss1997_25. Contour intervals are 2, 4, 6, 8, 10, 20, and 40 feet.

Plot 4

Table 1. - Green Bay metropolitan municipal wells

Lay	er Row	Column	Local Well Number	Owner
2	38	77	BN-23/20E/12-0024	Allouez Well # 1
2	40	79	BN-23/20E/13-0023	
2	45		BN-23/20E/23-0113	
2	44	78	BN-23/20E/13-0144	
2	42	74	BN-23/20E/14-0166	
2	38	80	BN-23/20E/12-0285	
2	35	79	BN-23/20E/PC-0770	Allouez Well #7
2	36	73	BN-23/20E/02-0084	Ashwaubenon Well # 1
2	39		BN-23/20E/10-0130	Ashwaubenon Well # 2
2	39	62	BN-23/20E/05-0146	Ashwaubenon Well # 3
2	45	66	BN-23/20E/16-0147	Ashwaubenon Well # 4
2	37	64	BN-23/20E/04-0295	Ashwaubenon Well # 5
2	43	57	BN	Ashwaubenon Well # 6
2	37	91	BN-23/21E/22-0138	Bellevue Well # 1
2	38	89	BN-23/21E/17-0291	Bellevue Well # 2
2	39	84	BN	Bellevue Well # 3
2	49	74	BN-23/20E/PC-0067	De Pere Well # 1
2	51	71	BN-23/20E/28-0128	De Pere Well # 2
2	49	69	BN-23/20E/21-0132	De Pere Well # 3
2	50	76	BN-23/20E/27-0107	De Pere Well # 4
2	55	76	BN-23/20E/34-0139	De Pere Well # 5
2	57	68	BN	De Pere Well 6 Shuering
2	20	88	BN-24/21E/26-0129	GB # 2 Highway 54 & 57
2	24	83	BN-24/21E/28-0145	
2	29	83	BN-23/21E/32-0021	GB # 4 Deckner and Henry
2	31	81	BN-24/21E/06-0005	GB # 5 Cass and Goodell
2	31	75	BN-24/20E/36-0006	GB # 6 Mason and Adams
2	31	65	BN-24/20E/27-0007	GB # 7 7th and Military
2	35	63	BN-24/20E/33-0099	GB # 8 Highland
2	26	64	BN-24/20E/22-0017	GB # 9 Bond and Military
2	22	65	BN-24/20E/14-0100	GB #10 Military & Tower
2	22	60	BN-24/20E/16-0127	Howard Well # 1
2	21	50	BN-24/20E/07-0161	Howard Well # 2
2	17	57	BN-24/20E/03-0299	Howard Well # 3
2	17	91	BN	Scott S.D.

May 13, 2003 4

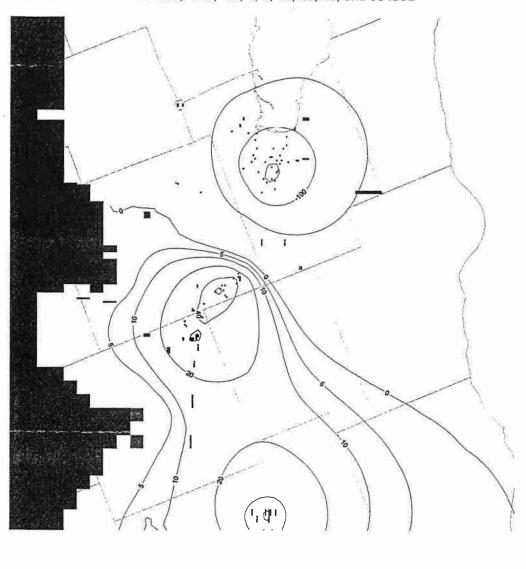
Mr. Gary Rosenbeck McMahon and Associates Inc. 1445 McMahon Drive Neenah WI 54957-1025

May 21, 2003

Dear Gary,

Enclosed are the results of the additional groundwater flow model simulation for the city of Kaukauna that you requested in our recent phone conversation. Plot 6 shown below represents the difference between Foxss1997 and Foxss1997_25nogbkau. Please let me know if more explanation or simulations are needed.

Sincerely,


Jim Krohelski Hydrologist

1

Simulations

- 1. **Foxss1997** has updated 1997 pumpages for the Green Bay metropolitan area municipal wells. All other wells pump at rates as reported in Conlon (1998), which represent 1990 conditions.
- 2. Foxss1997_25nogbkau has all Green Bay metro wells turned off, a 25 percent increase in pumping rates for all other wells except pumping rates as follows: Kimberly wells well 1 from 257200 to 600000 GPD; well 2 from 548700 to 400000 GPD; well 3 from 454000 to 1300000 GPD and Kaukauna wells well 4 from 458800 to 440000 GPD; well 5 from 340960 to 176000 GPD; well 8 from 479500 to 176000 GPD; well 9 from 82000 to 192720 GPD; well 10 (6) from 129300 to 440000 GPD.

D rawdwn and drawup (re covery) due to changing pumping rates as follows: K imberly wells: well 1 from 257200 to 6000000 GPD; well 2 from 548700 to 00000 GPD; well 3 from 454000 to 1300000 GPD and Kaukauna wells: well 4 from 458800 to 440000 GPD; well 5 from 34 0960 to 1760 0 GPD well 8 from 479500 to 176000 GPD; well 9 from 82 000 ρ 1 9272 0 GPD; well 10 (6) from 129300 to 440000 GPD A II Green Bay me tro wells are turned off rates and all other wells have a 25 percent increase in pumping of 1990 rates as reported by Conlon (1998). Maximum drawdown is 66 feet and the maximum drawup is -215 feet determined by subtracting simulated heads in Foxss1997_25nogbkau from simulated heads in Foxss1997. Contour intervals are -200, -100, -50, 0, 5, 10, 20, 40, and 60 feet.

20 MILES

Plot 6

A PPER X G

WISCONSIN DNR APPLICATION FOR DHFS RADIONUCLIDE WASTEWATER DISPOSAL CRITERIA

DNR Application of DHFS Radionuclide Wastewater Disposal Criteria

For Cation and Anion Exchange Unit & Other Water Treatment Plant Wastewater Discharges Containing Radionuclides

DRAFT

Intent: This document is solely intended to be used as an information guide for explaining and applying HFS 157 wastewater disposal criteria for wastewater containing naturally occurring radionuclides removed from well water that will be discharged to a sanitary sewer or directly to a publicly operated treatment works (POTW). Examples of applicable wastewater types include regeneration was tewater from cation and anion exchange units, backwash wastewater from filter units and wastewaster from membrane and electrodialysis reversal (EDR) units.

Wastewater Description: Regeneration wastewater from cation exchange softeners used to remove radium and water hardness (including backwash, brining and rinse wastewater) will contain high concentrations of chlorides. Regeneration wastewater from anion exchange units used to remove nitrates and uranium will contain high concentrations of sodium. The majority of the chlorides and/or sodium will be contained in the wastewater generated during the brining stage of regeneration. The wastewater chloride and/or sodium concentrations will likely exceed the allowable discharge limits for discharge to the ground surface or to a surface water body. Therefore, when conducting a review of cation or anion exchange units that regenerate using sodium chloride reviewers should ensure that the cation or anion exchange wastewater discharges to a sanitary sewer system. Discharge to a sanitary sewer system will also apply to the disposal of brackish wastewater from membrane and EDR units. Economics normally dictate that filter backwash wastewater be disposed of to a sanitary sewer although WPDES permits are occasionally granted for wastewater discharges to a detention pond or to surface water after pretreatment where sanitary sewers are not available. In almost all of the above cases the elevated radium and/or uranium content of the wastewater will dictate that the wastewater be discharged to a sanitary sewer. In some cases wastewater will need to be discharged to a holding tank. The wastewater will then need to be periodically hauled directly to the POTW for disposal.

Unity Equation: Acceptable levels of radium and uranium for discharge to sanitary sewer systems are calculated based upon the Unity Equation (see below) found in Appendix E of HFS 157. The average radium-226, radium-228 and total uranium (all as applicable) present in the wastewater will need to be calculated and inserted into the equation. Where the resultant number is less than or equal to one the proposed discharge to the sanitary sewer will be acceptable. Although most of the radionuclides will be released from cation and anion resins during the brining period of regeneration the total amount of radium and/or uranium calculated to be removed between each regeneration can be averaged over the total volume of wastewater collected for each regeneration. In the same way the amount of radium and/or uranium removed by other water treatment processes can be averaged into the total amount of filter backwash wastewater, etc. Additionally, if needed, s. HFS157.30 (3), Wis. Adm. Code, allows the radionuclide content to be averaged over a 30 day period over all the process wastewater produced. Also, the other building/site wastewater released into the sanitary sewer over the 30 days can be added. Alternatives if the result of the calculations is greater than one include adding additional low radionuclide content dilution water to the wastewater, regenerating/backwashing more frequently, nonapproval of the water treatment process as proposed or granting a variance if applicable based upon the dilution capabilities of the sanitary sewers-POTW. DNR will consult with staff of the Radiation Protection

Section (RPS) of the Department of Health and Family Services (DHFS) before proceeding further if the Unity Equation cannot be successfully met. The installation of a wastewater holding tank will not normally be required unless necessary to allow additional low ra dionuclide water to be added for blerding down the average radionucli de content to acceptable levels or to prevent hydraulic over loading of the sanitary sewer. Until such time as we obtain be tter data, these calculations only need to be performed for wells with combined radium-226 and radium-228 and/or uranium exceeding the drinking water standards.

UNITY EQUATION:

(Avg. R-226 ÷ 600) + (Avg. R-228 ÷ 600) + (Avg. Total Uranium ÷ 3,000) ≤ 1

DETERMINING AVERAGE RADIONUCLIDE CONCENTRATIONS FOR INSERTION INTO THE EQUATION:

All radium and uranium can be assumed to be contained in the total volume of regeneration/backwashing wastewater (total volume of backwash+ brining + rinse wastewater). Also, the process radium removal efficiency for a cation exchange water softener can be assumed to be 99% (0.99).

Avg. R-226 (pCi/l) = [Vol. of well water treated between regeneration/backwashing (gal.) x raw water R-226 (pCi/l) x % process radium removal efficiency] ÷ [Total volume of regeneration/backwashing wastewater (gal.)]

Avg. R-228 (pCi/l) = [Vol. of well water treated between regeneration/backwashing (gal.) x raw water R-228 (pCi/l) x % process radium removal efficiency] ÷ [Total volume of regeneration/backwashing wastewater (gal.)]

Average Total Uranium (pCi/l) = [Vol. of water treated between anion exchange unit regenerations (gal.) x raw water total uranium (pCi/l) x % process uranium removal efficiency] ÷ [Total volume of regeneration wastewater (gal.)]

Other Water Treatment Plant Radionuclide Concerns: There may be worker radiation and radon gas safety concerns involved when treatment vessels removing radionuclides are installed within buildings. Concerns include gamma radiation being given off from radionuclides building up on the treatment media and high levels of radon gas given off when vessel hatches are opened or regeneration/backwash wastewater is discharged with a free air break into a wastewater collection sump. Only metal vessels should be allowed for radionuclide removal treatment units. as they will provide better shielding from radioactivity than plastic. Staff of the Radiation Protection Section indicate that in some cases it may be necessary to take precautions to minimize exposures to waterworks operators especially from resins that continuously concentrate radionuclides and are then removed for disposal and from radon gas when released into the air. Also, it is possible that in some cases the spent media may need to be handled, shipped and disposed of as a low-level radioactive waste. The RPS will need to be contacted early in the plan review process for any proposed water treatment process that may generate a low-level radioactivate waste. DHFS licensing will likely then be required. Department approval letters for the installation of radionuclide water treatment equipment should condition that the Department be contacted as to how to proceed before removing and disposing of any spent media that has been used to remove radionuclides. The same Department approval letters should also recommend that precautions such as providing enhanced room air ventilation and minimizing the amount of time operators spend in rooms while units are being regenerated/backwashed be taken. Norman Hahn, Bureau of Drinking Water and Groundwater (608-267-7661) and Paul Schmidt (608-267-4792), Chief, Radiation Protection Section, can be contacted to discuss all of the above issues as necessary.

DHFS Radionuclide Wastewater Disposal Criteria: 3/10/03

APP ENX H

WRT PROPOSAL FOR RADIUM SELECTIVE REMOVAL PROCESS

May 14, 2003

Mr. Gary Rosenbeck, P.E McMahon Associates, Inc. 1445 McMahon Drive Neenah, Wisconsin 54957

Subject: City of Kaukauna, Wisconsin - Budget Proposal for Radium Removal

Dear Mr. Rosenbeck:

It was a pleasure speaking to you regarding radium removal for the City of Kaukauna. We appreciate the opportunity to provide you with preliminary budget pricing for WRT's Z-88™ Radium Removal System.

WRT designs, builds and maintains this proprietary, patent pending system to reduce radium levels to less than 5 pCi/L.

WRT's Z-88™ Radium Removal System is designed to be added to any new or existing potable water system. Water passes through treatment columns where Radium 226 and Radium 228 are removed. After the media is loaded with radium, it is removed from the circuit and permanently disposed of in a licensed facility. This complete process is handled by WRT, who is responsible for the safe, long term disposal of the media.

Advantages of the WRT Z-88™ Radium Removal System include:

- Nothing is added to the water. No chemicals are added in the treatment process, and nothing is imparted into the water during the treatment process.
- No liquid waste stream is generated by this process.
- Disposal of material to licensed low level radioactive waste facilities by WRT.
- Minimal Maintenance and Operation required, only routine sampling and monitoring.
 No handling of radioactive materials, media or chemicals by Utility personnel.
- Z-88[™] Radium Removal Media is NSF, Standard 61 certified for use in drinking water applications.
- Guaranteed process performance.

FROM SOURCE TO SOLUTION™

This preliminary proposal is based upon WRT providing a complete WRT Z-88™ Radium Removal System under a long term contract, including equipment, media, exchange of media when required and proper handling and disposal of used media. The equipment is comprised of one or two treatment vessels which contain the treatment media, in addition to connection piping, valves, controls and instrumentation. This equipment is provided to each treatment site by WRT and remains the property and liability of WRT. WRT delivers and installs media as required directly into the treatment vessels at each site. WRT removes used media directly out of the treatment vessels, into a service vehicle at each site. All handling of media is done by WRT. Analytical fees for laboratory analysis of samples taken for operational purposes are paid by WRT. Used treatment media remains the property and liability of WRT. WRT is licensed and permitted to dispose of used media in an approved facility. All of these items are provided for a single fee, eliminating the capital equipment investment by the Utility.

In summary, WRT will provide the following:

- Design and provide WRT Z-88™treatment system at each treatment site.
- Supervise installation of system.
- Provide Operator training and Operation and Maintenance Manuals.
- Maintain system during period of contract.
- Handling of all media.
- Installation and replacement of media.
- Transport and disposal of media.
- Operating analytical fees (analysis of samples required by WRT for operational monitoring).
- Meeting the current MCL for Radium.

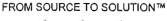
The Utility will provide the following:

- Provide water at current water quality and specified pressure.
- Site for each treatment system.
- Building to house each system.
- Site access for media loading and unloading.
- All permitting and approvals.
- Maintain each site, excluding WRT treatment system.
- Provide utilities to operate system.
- Property taxes, use fees.
- Sign confidentiality agreement.
- Sampling and daily monitoring.

 Compliance analytical fees (analysis of samples required for regulatory compliance).

Terms of Contract

- Term of contract is typically 20 years.
- Cost will be a price per month, based on agreed minimum usage amount.
- Additional usage will be billed on a cost/1,000 gallons treated basis.
- Price will be adjusted annually, tied to an agreed upon index and any increase in disposal costs.


This proposal is based upon providing a WRT Z-88™ Radium Removal System at each well site, thus eliminating the need for piping water to a central location, and providing flexibility for well site location in the future. An additional treatment system could be added with each new well site that required treatment in the future.

Based on the water quality information you provided, we have prepared a budget estimate for the treatment of radium to meet the 5 pCi/L standard, subject to conducting a pilot study at your facility to verify our anticipated test results. Upon completion of the Z-88™ field pilot study, a firm proposal will be provided.

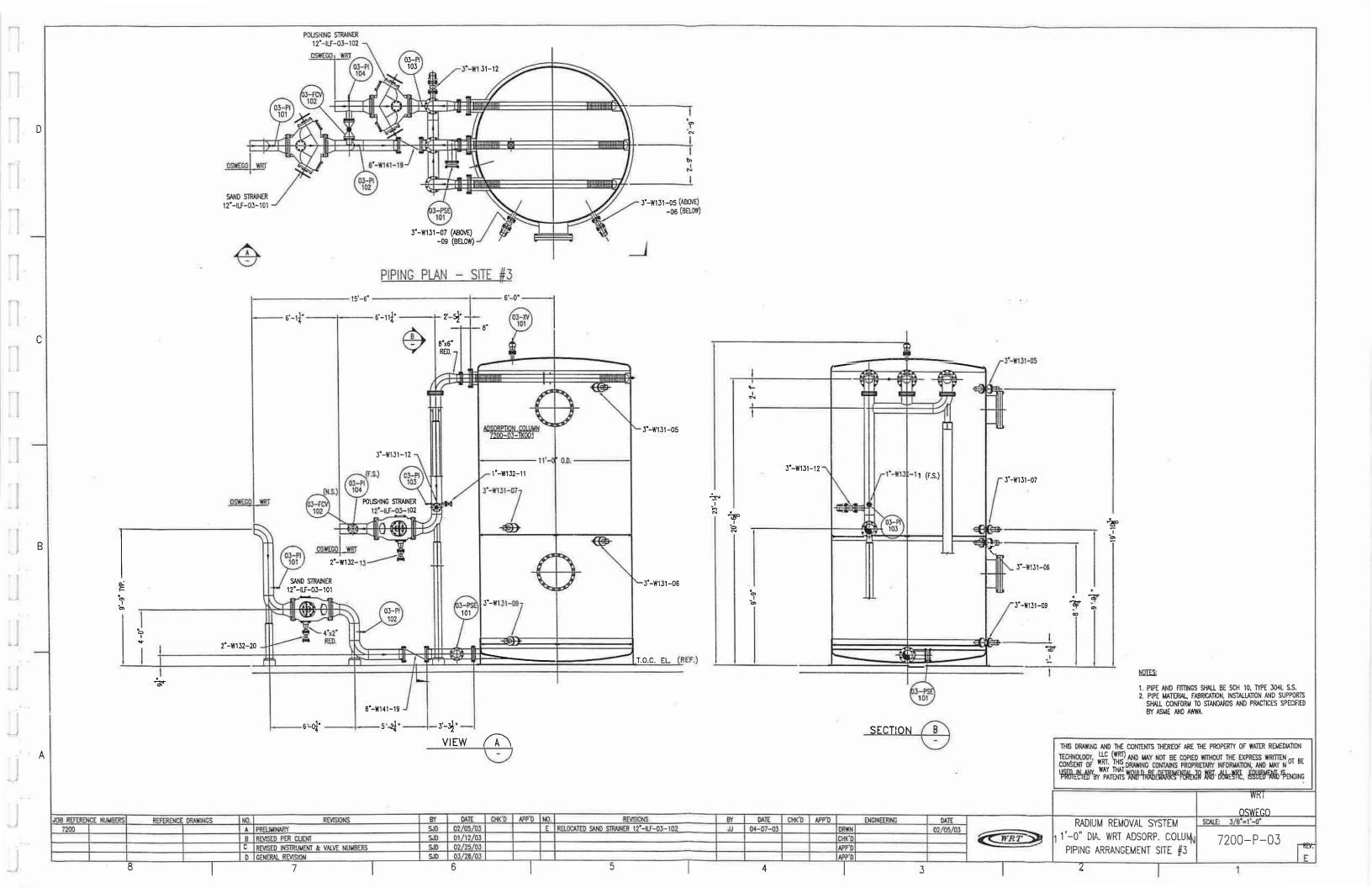
Provided below is budgetary pricing, based on the following design criteria:

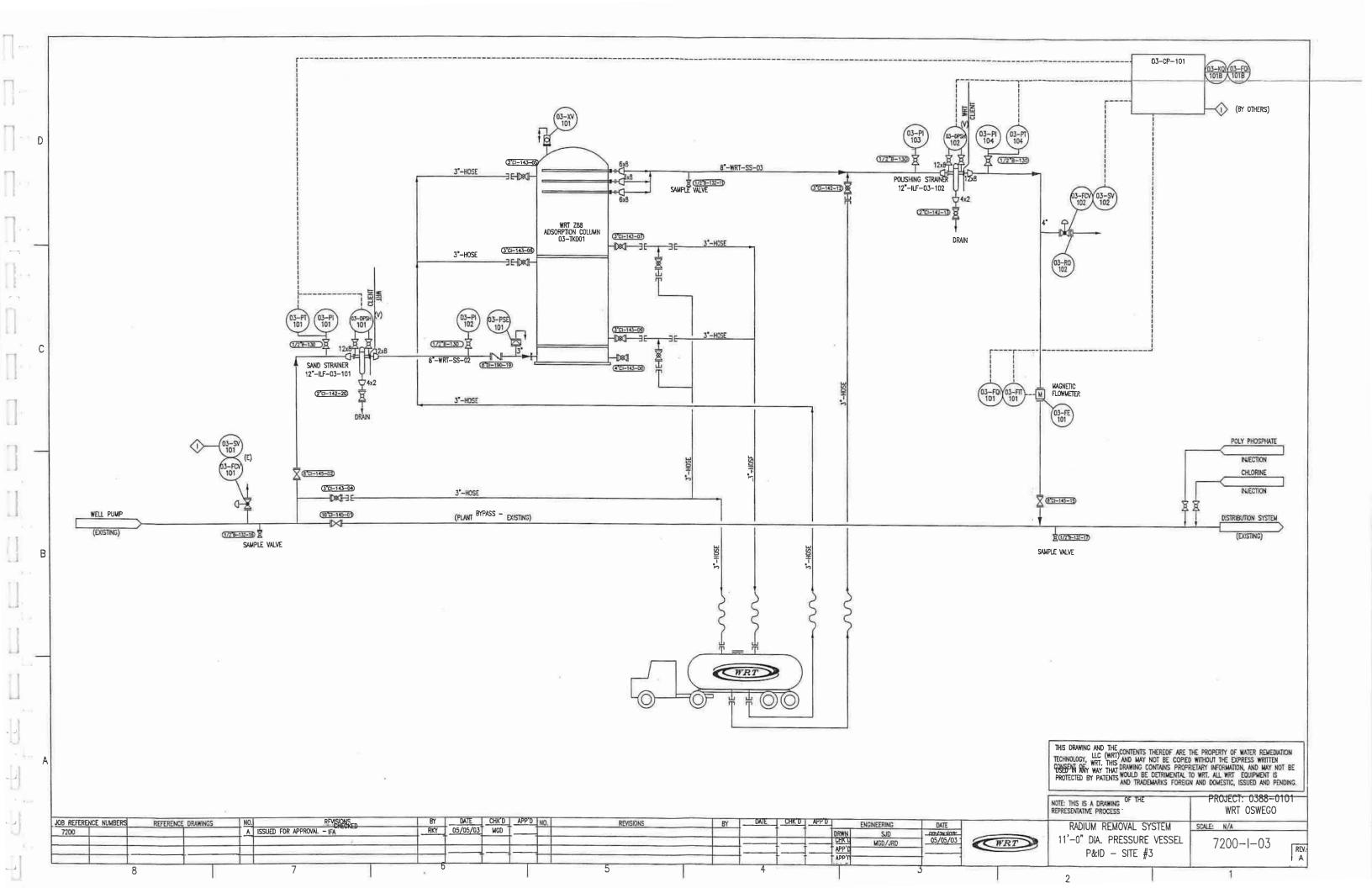
City of Kaukauna, Wisconsin	200
Hydraulic capacity of WRT systems per site	1,300/600/1,200 GPM (gallons per minute)
Average annual usage	500 MGY (million gallons per year)
Radium level in the water to be treated	5.5/6.5/5.5 pCi/L avg.
Number of sites/treatment locations in this system	3 sites
Required Radium level of treated water	5.0 pCi/L (MCL)
Budget Cost	
Budgetary annual cost for treated water including capital equipment, operating media, exchange and proper disposal of media as detailed herein. *	\$0.35 to \$0.50/1,000 gallons treated

^{*} This budget estimate is based on today's costs, and may increase in future years based on a predetermined index. This price is based on a minimum annual usage of 500,000,000 gallons. This price is based upon the water quality information provided, and is subject to verification during a field pilot study. The Utility would be required to provide a site and housing for the equipment as required for weather and security protection, installation, electrical service and

power, connection piping into and out of the system, and any site engineering, bonding and permitting. Note that taxes are <u>not</u> included.

We look forward to the opportunity to discuss this proposal with you in detail.


Please feel free to contact me with any questions or comments.


Thank you for your interest in our technology.

Best Regards,

Ron Dollar, V P Marketing

Water Remediation Technology, LLC

APPENDX I

REPORT ON DISSOLVED GAS INVESTIGATION IN THE MUNICIPAL WELLS OF KAUKAUNA, WISCONSIN; May 1, 2003

TIMOTHY J. GRUNDL, PHD GEOCHEMICAL AND HYDROGEOLOGIC CONSULTING

Report on Dissolved Gas Investigation in the Municipal wells of Kaukauna, Wisconsin May 1, 2003

Introduction:

This document is a report of the findings of my investigation into the geochemical conditions in the groundwater being pumped from the municipal wells within the City of Kaukauna. The particular question to be investigated is to determine what gas is evolving from these wells and to deduce the underlying cause. The specific tasks of this investigation are as follows:

- a) Collect water samples at the well head while pumping and conduct in-the-field measurements of pH over time during sampling.
- b) Analyze water samples for major ions plus barium and the dissolved gases.
- c) Conduct geochemical modeling to deduce the underlying cause of gas evolution in these wells.

A considerable amount of study had already been completed by other workers on this problem. Previous gas sampling had been performed and the most likely gas (carbon dioxide) was not found in concentrations sufficient to cause degassing. Hydrogen sulfide gas is not present because there is no sulfide smell evident in any of the wells. However none of the previous studies directly ascertained the particular gas that was evolving. The current study analyzed the full suite of dissolved gases in an effort to identify the actual composition of the evolving gas and come to some understanding of the underlying cause of gas evolution in these waters.

Methods:

A variety of data was collected and analyzed for the current study. Gary Rosenbeck of McMahon Associates provided a wealth of background data including:

- Detailed description of the behavior of the evolving gases at each well in the system.
- Well stratigraphy and construction details for all five wells.

- · Previous gas sampling results.
- Previous water chemistry results.

In addition to this background data, a round of sampling was performed on February 18, 2003. Care ful sampling for the dissolved gases (CO₂, CH₄, N₂, Ar and O₂), field pH, the major ions (Ca²⁺, Mg²⁺, Na⁺, K⁺, HCO₃⁻, Cl⁻, SO₄²⁻) and barium was made. All wells had been pumped for a minimum of 1.5 hours prior to sampling; a sufficient time to have cleared the well bore of standing water. Samples were taken directly from the sample tap at the wellhead. One additional dissolved gas sample was taken from the overflow basin attached to well #8. This was done to check on the condition of well #8 water after standing open to the atmosphere for a period of 3.5 hours. Dissolved gas samples were taken by filling the bottle with a sample tube while submerged in a bucket of well water All bottles were sealed before removal from the bucket of well water. Duplicate samples were taken at each site. Sample bottles were stored on ice and shipped by overnight delivery to the United States Geological Survey laboratory in Reston VA for analysis. Major ion and barium samples were collected by McMahon Associates personnel, preserved and sent to Badger Laboratories for analysis. Alkalinity measurements were not made in the field. In the field pH measurements were made over time at each well to see if any changes occurred as the degassing proceeded. Some gases, notably CO₂, are acid gases and will affect the pH as they evolve out of the water.

All data collected (field and laboratory) collected during the course of the February 18, 2003 sampling round are given in Appendix A. Appendix A is attached to the end of this report.

Results:

Inspection of the well logs and construction reports show that all the wells except well "9 are open to the entire stratigraphic section from the Sinnipee Dolomite through the Saint Peter (sandstone), the Prairie du Chien (dolomite) and the Elk Mound (sandstone). Well "9 is open only to the Prairie du Chien and the Elk Mound. Wells "10, "8 and "5 have been backfilled partially through the Elk Mound. From a geochemical point of view, the overall chemistry and the extent of gas evolution is also relatively constant. The primary difference is that wells "4 and "5 exhibit higher salinity and correspondingly high sulfate values in comparison to the other wells. The generic similarity of the wells and the water produced from them indicates that the gas evolution problem is not specific to a particular well, but is due to some process that is in operation across the entire well field.

The results of the gas analyses are given in Appendix A. The five dissolved gases are given in terms of concentration (mg/L), molar concentration (mMol/L) and partial pressures (atm). In general the waters are low in dissolved oxygen (less than 0.5 mg/L) and methane (less than 0.03 mg/L). They contain a reasonable amount of carbon dioxide (20-25 mg/L) and large amounts of both nitrogen and argon. The most pertinent fact is that nitrogen is the only gas that exceeds atmospheric pressure (nitrogen partial pressures of 1.21 to 1.39 atmospheres). The gas that is evolving from these waters is nitrogen. This high nitrogen, in combination with correspondingly high argon levels is indicative of

"excess" air being entrained into the groundwater. The phenomenon of "excess" air being entrained into natural waters is a common occurrence, however the amounts seen in these waters are unusually high. A probable cause for this phenomenon is discussed in the following section.

Another line of evidence that agrees with the presence of nitrogen is the slightly basic pH levels seen in these waters. A geochemical speciation model (PHREEQC 2.71) was run to see what the expected pH would be if 1.2 atmospheres of an acid gas (carbon dioxide) were present. Modeled results indicate that a pH of 4.8 is expected. Since nitrogen is not an acid gas it has no effect on the pH and more basic pH levels are possible.

Major ion sampling was performed in order to check on the overall chemistry of the water as well as to see if any hints exist as to why radium levels are high in some wells – particularly well #8. In some parts of Wisconsin where the Makoqueta Shale does not confine the sandstone, the radium content varies with barium content. This does not appear to be the case in Kaukauna. The barium content is below the limit of detection in all five Kaukauna wells. The interpretation of major ion analyses was complicated by the fact that 4 of the 5 analyses did not achieve charge balance (ie. the reported level of cations exceeds the reported amount of anions and the water is not electrically balanced). Comparison to previous sampling rounds indicates that the sulfate content is anomalously low in the current round of sampling.

Discussion:

Although excess air could be a function of a leaky riser pipe or some other engineering artifact, this seem unlikely especially in the light of the fact that all five Kaukauna wells are evolving nitrogen in a similar manner. In addition, the dissolved gas data is very good, with excellent reproducibility between duplicates and freedom from any indication of unusual error. A more probable explanation is given below.

The solubilities of nitrogen and argon in water are both a function of temperature and pressure. For Kaukauna, where the wells are all at approximately the same elevation, pressure can be considered constant and the solubility is controlled solely by temperature. The solubility-temperature relationship for nitrogen differs from that of argon therefore the ratio of nitrogen to argon in a given water can be related to the temperature at which it equilibrated with the atmosphere. All this is embodied in the line labeled WEA (Water in Equilibrium with Air) in figure 1. This line depicts the equilibrium amounts of nitrogen and argon present in water at any temperature between 0° and 30° C. Waters that contain air in excess of equilibrium fall along the diagonal lines extending to the right of the WEA line. What is notable about Kaukauna wells is that 1) the amount of excess air is quite high – up to 10 cc/L water and 2) the indicated temperature is quite low - approximately 1°-2° C.

High levels of excess air are indicative of aquifers where the groundwater is recharged in a rapid, episodic manner. This kind of behavior is most commonly seen in karstic or fractured aquifers. The physical process is that of small air bubbles being physically

entrained in the rapidly recharging water and subsequently dissolving in the groundwater. The low equilibration temperatures (1°-2° C) are in stark contrast to both the average groundwater temperature of nearly 11° C and the average climatic temperature for the Appleton area (7° C). The low equilibration temperatures seen in this data imply that when recharged, the groundwater exists at a much lower temperature than the average. These two facets of the data point to the conclusion that groundwater in the Kaukauna area is being recharged in rapid episodic events at a time of year when temperatures are near freezing. This is probably in the early spring immediately after the ground unfreezes and before vegetation begins to intercept much of the percolating surface water. Preferential recharge in the early spring is the normal behavior in many groundwater systems, however peculiarities of the aquifer system in the Kaukauna area are such that the level of excess air is high enough to form gas bubbles upon it's return to the surface. It is certainly possible that the upper stratigraphic unit (the Sinippee Dolomite) is more highly fractured in this area causing the recharge to entrain large amounts of excess air.

From a practical point of view this situation unfortunate in that there is nothing that can be done to change the manner in which the aquifer is being recharged. However, it is important to note that nitrogen is an inert gas that is of no danger to anyone, nor is it an indication of bacterial processing of some unknown contaminant in the aquifer.

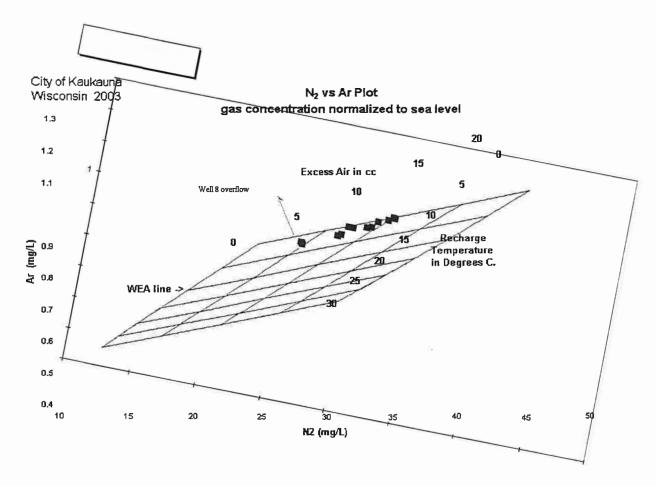


Figure 1: Excess air plot for the five Kaukauna wells and the well #8 overflow basin.

APPENDIX A

Data collected during the course of this study, including the February 18, 2003 sampling trip.

A1	
A2	Major ion data
A3	
۸.4	Field parameters

A1: Dissolved gas data (analyses performed by the United States Geological Survey Dissolved Gas Laboratory)

Comments 0.02198 0.02208 0.02536 0.02536 0.02536 0.02537 0.02337 0.023318 0.023318 0.023318 BarometriaComments | Pressure 0.97430 0.97430 0.97659 0.97659 0.97648 0.97648 0.97430 0.97430 0.97662 709.0 645.0 645.0 648.0 648.0 709.0 779.0 677.0 677.0 718.0 Elevation Concentration in minol/ 0.000000 1.32784 1.452784 1.452784 1.45284 1.26384 1.26385 1.36386 1.386386 1.386386 1.386386 1.386386 0.000000 0.000000 0.000000 Measured of Pressure 0.4528 0.4407 0.4978 0.5009 0.5149 0.5149 0.5149 0.5158 0.5158 0 000000
0 01374 1-36575
0 01404 1.41604
0 01404 1.382724
0 01404 1.282875
0 01404 1.282875
0 01204 1.282868
0 01203 1.285868
0 01203 1.285868
0 01363 1.387823
0 01363 0.382855
0 01363 0.382855
0 01363 0.382855
0 01363 0.382855 0.00038 0.00147 0.001147 0.001144 0.001144 0.00045 0.00045 0.00046 0.00046 0.8780 0.8819 0.8918 1.0156 1.0046 0.8577 0.8577 0.928 0.9281 0.9261 0.9669 Ā Partial pressures at Field Temperatures in atm 0 0019 0 0036 0 0023 0 0023 0 0030 0 0017 0 0078 02 1,3389 1,3904 1,3707 1,2283 1,2429 1,2021 1,3310 1,3165 N2 84 2A1246 85 1A1057 185 2A1322 0.000789 0.009822 182 2A1322 0.000171 0.009882 182 2A1252 0.000540 0.00981 181 2A1253 0.000554 0.00981 186 1A1051 0.000256 0.00881 187 2A1244 0.000256 0.00881 188 2A1266 0.000236 0.011659 189 2A1266 0.000239 0.011659 189 2A1265 0.000239 0.010345 000 0.007 0.007 0.007 0.007 0.007 0.007 0.007 CH4
 03
 0105
 709.0
 D-11884
 ZA1246

 03
 0150
 709.0
 D-11883
 141057

 03
 1115
 11.5
 645.0
 D-11892
 2A0892

 03
 1115
 11.5
 645.0
 D-11894
 2A1252

 03
 1140
 11.0
 648.0
 D-11894
 2A1252

 03
 110
 648.0
 D-11897
 2A1252

 03
 10.9
 709.0
 D-11897
 2A1253

 03
 10.9
 709.0
 D-11897
 2A1264

 03
 10.9
 709.0
 D-11898
 1A1051

 03
 10.9
 709.0
 D-11892
 2A1281

 03
 10.9
 672.0
 D-11899
 2A1281

 03
 12.0
 12.0
 718.0
 D-11899
 2A1281

 03
 12.0
 718.0
 D-11869
 2A1255

 03
 12.0
 718.0
 D-11869
 2A1255
 Bottle # 709.0 D-11884 2. 709.0 D-11884 1.15 545.0 D-11892 2. 11.0 648.0 D-11892 2. 11.0 648.0 D-11892 2. 11.0 648.0 D-11888 1. 10.9 709.0 D-11887 1. 10.9 709.0 D-11887 1. 10.9 672.0 D-11889 2. 12.0 718.0 D-Lab ID # Recharge Elevation FleId 0150 1110 1116 1140 1148 0930 1030 1030 1230 Collected
 Samples submitted by: James Krohelski

 Geographic location:
 2/19/03

 Dalate received:
 2/19/03

 Dalate received:
 3/11/03

 Analyzed by:
 PW

 Analyzed by:
 PW

 Worksheet Name:
 WI JK 2003

 Woll Name
 Collected

 Well Name
 Collected

 OB overflow-1
 2/18/2003

 OB overflow-2
 2/18/2003

 Well 04-2
 2/18/2003

 Well 04-2
 2/18/2003

 Well 04-2
 2/18/2003

 Well 05-3
 2/18/2003

 Well 06-2
 2/18/2003

 Well 09-3
 2/18/2003

 Well 09-4
 2/18/2003

 Well 09-7
 2/18/2003

 Well 09-7
 2/18/2003

 Well 09-8
 2/18/2003

 Well 09-7
 2/18/2003

 Well 09-7
 2/18/2003

 Well 09-8
 2/18/2003

 Well 09-7
 2/18/2003

 Well 09-8
 2/18/2003

 Well 09-9
 2/18/2003

 Well 09-0</td City of Kaukauna, V 2/19/03 3/11/03 PW WI JK 2003 Collected C 2/16/2003 2/18/2003 2/18/2003 2/18/2003 2/18/2003 2/18/2003 2/18/2003 2/18/2003 2/18/2003 2/18/2003 2/18/2003 2/18/2003 2/18/2003 Date 08 overflow-1
08 overflow-2
Well 04-1
Well 04-2
Well 05-2
Well 05-2
Well 08-2
Well 09-3
Well 10-1
Well 10-1 Name Well

Ţ

issolved Gas Spread Sheet. Dissolved Gas Laboratory, Reston, VA. See Instructions at bottom of Column A

mg/L mg/L <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Estimate</th><th></th><th></th><th></th><th>•</th><th>Air - Water Equilibrium</th><th>librium</th></th<>												Estimate				•	Air - Water Equilibrium	librium
N2 Ar O2 CO2 CH4 Excess N2 Elev. Ft. BP T oc cc STP/L mg/L 25.316 0.8760 0.12 19.93 0.006 709.0 709.0 740.5 2.6 4.4 21.045 25.227 0.8819 0.09 19.40 0.007 0.007 709.0 740.5 2.2 4.1 21.045 30.684 0.9916 0.10 22.06 0.005 0 645.0 742.2 0.09 22.06 31.844 1.0132 0.19 22.06 0.014 0 648.0 742.2 0.9 22.06 31.741 1.0156 0.10 22.66 0.017 0 648.0 742.1 0.9 9.6 22.05 31.381 1.0046 0.1 22.66 0.017 0 648.0 740.5 1.0 22.269 28.472 0.9577 0.10 20.07 0 672.0 741.5 2.1 6.9 22.269 <th></th> <th></th> <th></th> <th></th> <th></th> <th>Field</th> <th>mg/L</th> <th>mg/L</th> <th>mg/L</th> <th>mg/L</th> <th>mg/L</th> <th>mg/L</th> <th>Recharge</th> <th>mm Hg</th> <th></th> <th>Ex Air</th> <th>N2</th> <th>Ā</th>						Field	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	Recharge	mm Hg		Ex Air	N2	Ā
25.316 0.8780 0.12 19.93 0.006 709.0 740.5 2.6 4.4 21.045 25.227 0.8819 0.09 19.40 0.007 709.0 740.5 2.2 4.1 21.274 30.664 0.9916 0.10 21.91 0.024 0 645.0 742.2 0.9 8.9 22.06 31.844 1.0132 0.19 22.05 0.005 0 648.0 742.1 0.8 10.0 22.068 31.711 1.0156 0.10 22.66 0.017 0 648.0 742.1 0.8 10.0 22.068 31.393 1.0046 0.12 22.66 0.017 0 648.0 742.1 0.9 9.6 22.029 28.472 0.9577 0.10 20.09 0 740.5 740.5 741.5 21.37 28.086 0.097 0.007 0.007 0 740.5 1.8 8.9 21.478 28.085 <	Collected Collected LAB ID Bottle # Ter				Ē	du.	N2	Ā	05	C02	CH4	Excess N2	Elev. Ft.	ВР	Toc	cc STP/L	mg/L	mg/L
25.227 0.8819 0.09 19.40 0.007 709.0 740.5 2.2 4.1 21.274 30.664 0.9916 0.10 21.91 0.024 0 645.0 742.2 0.9 8.9 22.066 31.844 1.0132 0.19 22.05 0.005 0 648.0 742.1 0.8 10.0 22.068 31.711 1.0156 0.10 22.66 0.017 0 648.0 742.1 0.8 10.0 22.059 31.393 1.0046 0.12 22.66 0.017 0 648.0 742.1 0.9 9.6 22.059 28.472 0.9577 0.10 20.27 0.009 0 740.5 1.0 71.1 21.30 28.813 0.9577 0.16 20.07 0 672.0 741.5 2.3 6.8 21.37 28.813 0.9261 0.09 25.36 0.007 0 771.5 741.5 2.3 6.8 21	2/18/2003 0105 D-11884 2A1246 0.0	D-11884 2A1246	1	1	0.0		25.316	0.8780	0.12	19.93	900.0		709.0	740.5	2.6	4.4	21.045	0.8051
30.664 0.9916 0.10 21.91 0.024 0 645.0 742.2 0.9 8.9 22.068 31.844 1.0132 0.19 22.05 0.005 0 645.0 742.2 0.8 10.0 22.068 31.711 1.0156 0.10 22.66 0.018 0 648.0 742.1 0.6 9.7 22.059 31.393 1.0046 0.12 22.66 0.017 0 648.0 742.1 0.6 9.7 22.029 28.472 0.9577 0.10 20.27 0.009 0 709.0 740.5 1.0 7.1 21.50 28.813 0.9577 0.16 21.37 0.009 0 740.5 1.0 7.1 21.30 28.813 0.9261 0.09 25.36 0.007 0 672.0 741.5 2.3 6.8 21.37 28.816 0.9261 0.09 25.38 0.007 0.007 0.41.5 741.5	2/18/2003 0150 D-11883 1A1057 0.0	D-11883 1A1057			õ	0	25.227	0.8819	0.09	19.40	0.007		709.0	740.5	2.2	4.1	21.274	0.8144
31.844 1.0132 0.19 22.05 0.005 0 645.0 742.2 0.08 10.0 22.068 31.711 1.0156 0.10 22.66 0.018 0 648.0 742.1 0.0 9.7 22.269 31.393 1.0046 0.12 22.66 0.017 0 648.0 742.1 0.0 9.6 22.059 28.472 0.3577 0.16 21.37 0.008 0 709.0 740.5 1.0 7.1 21.50 28.813 0.9577 0.16 21.37 0.008 0 709.0 740.5 1.0 7.1 21.50 28.813 0.9577 0.16 21.37 0.007 0 740.5 741.5 2.3 6.9 22.150 28.816 0.9261 0.09 25.38 0.007 0.007 0.007 0.007 740.2 1.8 8.9 21.478 29.853 0.9659 0.38 22.57 0.007 0.00	2/18/2003 1110 D-11893 2A0892 11.	D-11893 2A0892			=	2	30.664	0.9916	0.10	21.91	0.024	0	645.0	742.2	6.0	8.9	22.006	0.8439
31,711 1.0156 0.10 22.66 0.018 0 648.0 742.1 0.6 9.7 22.269 31.393 1.0046 0.12 22.66 0.017 0 648.0 742.1 0.9 9.6 22.029 28.472 0.3577 0.10 20.27 0.009 0 709.0 740.5 0.6 6.5 22.150 28.813 0.9577 0.16 21.37 0.008 0 709.0 740.5 1.0 7.1 21.30 28.813 0.9577 0.16 25.38 0.007 0 672.0 741.5 2.1 6.9 21.30 28.818 0.93261 0.09 25.38 0.007 0 741.5 2.3 6.8 21.34 29.853 0.9659 0.38 22.57 0.007 0 740.2 1.8 8.9 21.432 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.	2/18/2003 1115 D-11894 2A1232 11.				Ξ.	2	31.844	1.0132	0.19	22.05	0.005	0	645.0	742.2	8.0	10.0	22.068	0.8464
31.393 1.0046 0.12 22.66 0.017 0 648.0 742.1 0.9 9.6 22.029 28.472 0.9577 0.10 20.27 0.009 0 709.0 740.5 0.6 6.5 22.150 28.813 0.9577 0.16 21.37 0.008 0 709.0 740.5 1.0 7.1 21.301 28.813 0.9524 0.09 25.38 0.007 0 672.0 740.5 1.0 7.1 21.370 27.879 0.9261 0.09 25.38 0.007 0 672.0 741.5 2.3 6.8 21.370 27.879 0.9261 0.09 25.38 0.007 0 672.0 741.5 2.3 6.8 21.370 29.853 0.9659 0.38 22.57 0.007 0 740.2 1.8 8.6 21.492 0.000 0.000 0.00 0.000 0.000 0.000 0.000 0.000 0	2/18/2003 1140 D-11892 2A1252 11				Ξ	0	31.711	1.0156	0.10	22.66	0.018	0	648.0	742.1	0.5	9.7	22.269	0.8545
28.472 0.9577 0.10 20.27 0.009 0 709.0 740.5 0.6 6.6 5.150 28.813 0.9577 0.16 21.37 0.008 0 709.0 740.5 1.0 7.1 21.301 28.086 0.9328 0.09 25.96 0.007 0 672.0 741.5 2.3 6.8 21.370 27.879 0.9261 0.09 25.38 0.007 0 672.0 741.5 2.3 6.8 21.34 29.653 0.9659 0.38 22.57 0.007 0 740.2 1.8 8.9 21.478 29.653 0.9659 0.38 22.57 0.007 0 0.00 760.0 100.0 0.00 0.000 0.000 0.00 0.000 0.000 0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 <td>2/18/2003 1148 D-11891 2A1253 11</td> <td>D-11891 2A1253</td> <td></td> <td></td> <td>Ξ</td> <td>0.</td> <td>31.393</td> <td>1.0046</td> <td>0.12</td> <td>22.66</td> <td>0.017</td> <td>0</td> <td>648.0</td> <td>742.1</td> <td>6.0</td> <td>9.6</td> <td>22.029</td> <td>0.8449</td>	2/18/2003 1148 D-11891 2A1253 11	D-11891 2A1253			Ξ	0.	31.393	1.0046	0.12	22.66	0.017	0	648.0	742.1	6.0	9.6	22.029	0.8449
28.813 0.9577 0.16 21.37 0.008 0 709.0 740.5 1.0 7.1 21.301 28.086 0.9328 0.09 25.96 0.007 0 672.0 741.5 2.1 6.9 21.370 27.879 0.9261 0.09 25.36 0.007 0 672.0 741.5 2.3 6.8 21.234 30.181 0.9712 0.41 22.70 0.007 0 740.2 1.8 8.9 21.478 29.853 0.9659 0.38 22.57 0.007 0 740.2 1.8 8.6 21.492 0.000 0.000 0.000 0.000 0.000 0.00 760.0 760.0 100.0 0.000 0.000 0.000 0.000 0.000 0.000 0.00 760.0 100.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	2/18/2003 0930 D-11888 1A1051 10				9	6	28.472	0.9577	0.10	20.27	0.009	0	709.0	740.5	9.0	6.5	22.150	0.8499
28.086 0.9328 0.09 25.96 0.007 0 672.0 741.5 2.1 6.9 21.370 27.879 0.9261 0.09 25.38 0.007 0 672.0 741.5 2.3 6.8 21.234 30.181 0.9712 0.41 22.70 0.007 0 718.0 740.2 1.8 8.9 21.478 29.853 0.9659 0.38 22.57 0.007 0 740.2 1.8 8.6 21.492 0.000 0.000 0.000 0.000 0.000 0.00 760.0 100.0 0.000 0.000 0.000 0.000 0.000 0.000 0.00 100.0 0.00 0.000 0.000 0.000 0.00 0.00 100.0 0.00	2/18/2003 0933 D-11887 2A1244 10.9	D-11887 2A1244	L	L	6	6	28.813	0.9577	0.16	21.37	0.008	0	709.0	740.5	1.0	7.1	21.901	0.8398
27.879 0.9261 0.09 25.38 0.007 0 672.0 741.5 2.3 6.8 21.234 30.181 0.9712 0.41 22.70 0.007 0 718.0 740.2 1.8 8.9 21.478 29.853 0.9659 0.38 22.57 0.007 0 718.0 740.2 1.8 8.6 21.492 0.000 0.000 0.000 0.000 0.000 0.00 760.0 100.0 0.000 0.000 0.000 0.000 0.000 0.000 0.00 0.00 0.00 0.000 0.000 0.00 0.00 0.00 0.00 0.00 0.00	2/18/2003 1030 D-11890 2A1266 10.8				10.8		28.086	0.9328	60.0	25.96	0.007	0	672.0	741.5	2.1	6.9	21.370	0.8183
30.181 0.9712 0.41 22.70 0.007 0 718.0 740.2 1.8 8.9 21.478 29.853 0.9659 0.38 22.57 0.007 0 718.0 740.2 1.8 8.6 21.492 0.000 0.000 0.000 0.000 0.000 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.00	2/18/2003 1025 D-11889 2A1281 10.9	D-11889 2A1281			10.5		27.879	0.9261	60'0	25.38	0.007	0	672.0	741.5	2.3	8.9	21.234	0.8128
29.853 0.9659 0.38 22.57 0.007 0 718.0 740.2 1.8 8.6 21.492 0.000 <td>2/18/2003 1230 D-11886 2A1255 12.0</td> <td></td> <td></td> <td></td> <td>12.</td> <td>0</td> <td>30.181</td> <td>0.9712</td> <td>0.41</td> <td>22.70</td> <td>0.007</td> <td>0</td> <td>718.0</td> <td>740.2</td> <td>1.8</td> <td>8.9</td> <td>21.478</td> <td>0.8227</td>	2/18/2003 1230 D-11886 2A1255 12.0				12.	0	30.181	0.9712	0.41	22.70	0.007	0	718.0	740.2	1.8	8.9	21.478	0.8227
0,000 0.000 <th< td=""><td>2/18/2003 1235 D-11885 2A1265 12,0</td><td>D-11885 2A1265</td><td></td><td></td><td>12.0</td><td></td><td>29.853</td><td>0.9659</td><td>0.38</td><td>22.57</td><td>0.007</td><td>0</td><td>718.0</td><td>740.2</td><td>1.8</td><td>8.6</td><td>21.492</td><td>0.8233</td></th<>	2/18/2003 1235 D-11885 2A1265 12,0	D-11885 2A1265			12.0		29.853	0.9659	0.38	22.57	0.007	0	718.0	740.2	1.8	8.6	21.492	0.8233
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	1/0/1900 0 0 0 0.0	0	0		0.0		0000	0.0000	0.00	00.0	000.0		0.0	760.0	100.0	0.0	0.000	0.0000
0.000 0.000 0.000 0.000 0.000 0.000 0.000	0 0 0 0 0 0 0.0	0	0	0.0	0.0		0.000	0.000.0	0.00	0.00	0.000		0.0	760.0	100.0	0.0	0.000	0.0000
	1/0/1900 0 0 0 0.0	0	0	0.0	8		0.000	0.000.0	0.00	00.0	0.000		0.0	760.0	100.0	0.0	0.000	0.0000

is spread sheet finds the recharge temperature and co's (STP) of excess air from an unalysis of

ssolved nitrogen and argon (in mg/L) for an assumed amount of excess nitrogen

mg/L) at assumed elevation (in feet, col_M) for recharge of the sample.

s assumed that the sample contains argon from air-water equilibrium and dissolution of excess air. The source of N2 is assumed to be that of argon plus excess N2 from another source such as denitrification. back solving routine (Calc button) interates on recharge temperature until the amount of excess air calculated from N2 and Ar are the same

r samples that have not undergone denitrification, Column L values should be zero (no excess N2 from denitrification), is spread sheet does not account for other processes such as gas stripping during sampling or in the environment

e spread sheet is intended to be used primarily to estinate recharge temperature (and excess air for estimatos of recharge elevation, and in some cases, denitrification, the calc button to recalculate the spreadsheet every time you change a value (such as elevation or excess N2 from denitrification).

timating Denitrification: Criteria - Should be low DO, Check CFC results for N2O; if present, active denitrification is occurring

let an estimate of the amount of N2 (in mg/L) in column L that may have been produced by denitrification. This value will be subtracted from the measured total N2 (ing/L) in the sample. The remaining N2 should not be lower than the expected N2 solubility other constraint on estimating amount of denitritication is obtaining positive (but "reasonable" values of or 3 cc/L excess are are normal, but up to 10 or more cc/L have been observed in water from some fractured rock or and arous e column AD for calculated solubility of N2 and compare with residual N2 after removing denitrified N2 from measured value

cognizing cases of dentitrification: Cofculated recharge temperature will be unrealistically high and high excess air,
Itural (microbial) processes can produce high concentrations of methane, CO2 and N2 that can lead to gas stripping of samples (if the total pressure of the gases exceeds the hydrostatic pressure)
cognizing cases of degassing: Calculated recharge temperature will be unrealistically high with negative excess air,

rmally, recharge temperatures will be near the mean annual temperature and the temperature of shallow ground water careful with denitrification estimation; it is easy to produce erroneous results,

Constant in columnO: Converts mg of N2/L to cc (STP) of air [28013 (mg N2/mol)/22414 4 (cc N2/mol N2)] * 0,78080 (fraction of N2 in air)= cc air STP

) Constant in column P: Converts mg of Ar/L to cc (STP) of air, [39948 (mg Ar/mol)/22414, 4 (cc Ar/mol Ar)] * 0,00934 (fraction of Ar in air)= cc air STP

A2: Major ion data (analyses performed by Badger Laboratories)

BADGER LABORATORIES & ENGINEERING INC.

501 WEST BELL STREET . NEENAH, WISCONSIN 54956-4868 . EST .1966 (920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

KAU KAUNA EECTRIC AND WATER DEPARTMENT

777 ISLAND STREET

P.O. BOX 1777

KAUKAUNA, WI 54130

ATTN: MR. JIM JELLISH

REPORT NUMBER: 99501923

REPORT DATE: 03/14/03 SAMPLED BY:

CLIENT

6 GROUNDWATERS

SAMPLE NUMBER: 33004030 DESCRIPTION: WELL #4 SAMPLE DATE: 02/18/03 DATE RECEIVED: 02/18/03

TEST RESULT/FLAGS UNITS LOD LOQ METHOD ANALYZED ANALYST ALKALINITY, TOTAL AS 186/E 8.000 12.000 310.2 02/25/03 BW mq/11.400 CHLORIDE 8.1 4.600 325.2 02/21/03 mg/1BW SULFATE 03/06/03 BW 360/E 8.000 24.000 375.2 mg/1

SAMPLE NUMBER: 33004031 DESCRIPTION: WELL #5 SAMPLE DATE: 02/18/03 DATE RECEIVED: 02/18/03

TEST	RESULT/FLAGS	UNITS	LOD	LOQ	METHOD	ANALYZED A	NALYST
ALKALINITY, TOTAL AS BARIUM, TOTAL CALCIUM, TOTAL CHLORIDE MAGNESIUM, TOTAL POTASSIUM, TOTAL SODIUM, TOTAL SULFATE TURBIDITY	178/E <70 321 12 22 4.7 15 389/E 0.3	mg/l ug/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l m	8.000 70.000 1.300 1.400 0.030 0.010 0.010 8.000 0.000	240.000 4.300 4.600 0.090 0.010 0.010 24.000	7080A 3500D 325.2 7450 7610 7770	02/20/03 02/20/03 02/21/03. 03/05/03 03/10/03 02/27/03 03/06/03 02/18/03	BW LP CB BW TS TS BBW LP

REPORT NUMBER:

PAGE: 2

99501923

SAMPLE NUMBER: 33004032 DESCRIPTION: WELL #8 SAMPLE DATE: 02/18/03 DATE RECEIVED: 02/18/03

ALKALINITY, TOTAL AS 182/E mg/l 8.000 12.000 310.2 02/25/03 BW BARIUM, TOTAL <70 ug/l 70.000 240.000 7080A 02/20/03 LP CALCIUM, TOTAL 200 mg/l 1.300 4.300 3500D 02/20/03 CB CHLORIDE 2.6 mg/l 1.400 4.600 325.2 02/21/03 BW MAGNESIUM, TOTAL 21 mg/l 0.030 0.090 7450 03/05/03 TS POTASSIUM, TOTAL 4.2 mg/l 0.010 0.010 7610 03/10/03 TS SODIUM, TOTAL 8.8 mg/l 0.010 0.010 7770 02/27/03 TS SULFATE 299/E mg/l 8.000 24.000 375.2 03/06/03 BW TURBIDITY 0.4 NTU 0.000 0.000 180.1 02/18/03	TEST	RESULT/FLAGS	UNITS	LOD	LOQ	METHOD	ANALYZED	ANALYST
LP	BARIUM, TOTAL CALCIUM, TOTAL CHLORIDE MAGNESIUM, TOTAL POTASSIUM, TOTAL SODIUM, TOTAL	<70 200 2.6 21 4.2 8.8	ug/l mg/l mg/l mg/l mg/l mg/l	70.000 1.300 1.400 0.030 0.010	240.000 4.300 4.600 0.090 0.010 0.010 24.000	7080A 3500D 325.2 7450 7610 7770 375.2	02/20/03 02/20/03 02/21/03 03/05/03 03/10/03 02/27/03	LP CB BW TS TS

SAMPLE NUMBER: 33004033 DESCRIPTION: WELL #9 SAMPLE DATE: 02/18/03 DATE RECEIVED: 02/18/03

TEST	RESULT/FLAGS	UNITS	LOD	LOQ	METHOD	ANALYZED	ANALYST	
ALKALINITY, TOTAL AS	206/E	mg/l	8.000	12.000	310.2	02/25/03	BW	
BARIUM, TOTAL	<70	ug/l	70,000	240.000	7080A	02/20/03	LP	
CALCIUM, TOTAL	224	mg/l	1.300	4.300	3500D	02/20/03	CB	
CHLORIDE	4.9	mg/l	1.400	4.600	325.2	02/21/03	BW	
MAGNESIUM, TOTAL	25	mg/l	0.030	0.090	7450	03/05/03	TS	
POTASSIUM, TOTAL	4.3	mg/l	0.010	0.010	7610	03/10/03	TS	
SODIUM, TOTAL	9.8	mg/l	0.010	0.010	7770	02/27/03	TS	
SULFATE	640/E	mg/1	2.500	7.500	300.0	03/13/03	JW	
TURBIDITY	0.4	NTU	0.000	0.000	180.1	02/18/03	LP	

SAMPLE NUMBER: 33004034
DESCRIPTION: WELL #10
SAMPLE DATE: 02/18/03
DATE RECEIVED: 02/18/03

TEST	RESULT/FLAGS	UNITS	LOD	LOQ	METHOD	ANALYZED	ANALYST
ALKALINITY, TOTAL AS	206/E	mg/l	8.000	12.000	310.2	02/25/03	BW
BARIUM, TOTAL	< 70	ug/l	70.000	240.000	7080A	02/20/03	LP
CALCIUM, TOTAL	192	mg/l	1.300	4.300	3500D	02/20/03	CB
CHLORIDE	8.6	mg/l	1.400	4.600	325.2	02/21/03	BW
MAGNESIUM, TOTAL	24	mg/l	0.030	0.090	7450	03/05/03	TS
POTASSIUM, TOTAL	4.5	mg/l	0.010	0.010	7610	03/10/03	TS
SODIUM, TOTAL	13	mg/1	0.010	0.010	7770	02/27/03	TS
SULFATE	290/E	mg/l	8.000	24,000	375.2	03/06/03	BW
TURBIDITY	0.4	NTU	0.000	0.000	180.1	02/18/03	LP

REPORT NUMBER: 99501923

PAGE: 3

SAMPLE NUMBER: 33004035

DESCRIPTION: WELL #4-METALS

SAMPLE DATE: 02/20/03 DATE RECEIVED: 02/18/03

TEST	RESULT/FLAGS	UNITS	LOD	LOQ	METHOD	ANALYZED	ANALYST
BARIUM, TOTAL	<0.07	mg/l	0.070	0.240	7080A	03/04/03	LP
CALCIUM, TOTAL	305	mg/l	1.300	4.300	3500D	02/26/03	CB
MAGNESIUM, TOTAL	21	mg/l	0.030	0.090	7450	03/05/03	TS
POTASSIUM, TOTAL	4.7	mg/l	0.010	0.010	7610	03/10/03	TS
SODIUM, TOTAL	13	mg/l	0.010	0.010	7770	02/27/03	TS
TURBIDITY	0.2	NTU	0.000	0.000	180.1	02/20/03	LP

BADGER LABORATORIES & ENGINEERING WDNR Certified Lab #445023150

Huy Mi libagnen

Approved By:

SCT:rt

cc: Mr. Gary Rosenbeck McMahon Associates Inc. PO Box 1025

Neenah WI 54956

A3: Description of gas evolution at each well (provided by Gary Rosenbeck of McMahon Associates).

January 13, 2003

E-MAIL MEMO

To:

Tim Grundl

grundl@csd.uwm.edu

From:

Gary Rosenbeck

grosenbeck@mcmgrp.com

I made the following observations at each well in the Kaukauna water system.

			Insp	ection Repor	t #1	Inspe	ection Repo	ort #2
Well	Pumping Rate	Well Started Operation	Air In Sample	Sample Time	Time to Clear	Air In Sample	Sample Time	Time to Clear
#4	630 gpm	9:00 a.m.	#1	10:00 a.m.	A	#1	1:10 p.m.	В
#5	210 gpm	9:00 a.m.	#3	10:15 a.m.	В	#3	1:25 p.m.	В
#10	540 gpm	9:00 a.m.	#2	10:30 a.m.	С	#3	1:30 p.m.	В
MFP-Influent	1,300 gpm	9:00 a.m.	#1	10:05 a.m.	Α	#4	1:20 p.m.	Α
MFP-Effluent	1,300 gpm	9:00 a.m.	#1	10:10 a.m.	Α	#4	1:25 p.m.	A
#9	1,100 gpm	10:45 a.m.	#1	11:00 a.m.	В	#1	1:45 p.m.	В
#9 F.P. Effluent	1,100 gpm	10:45 a.m.		N/A		#1	1:50 p.m.	В
Distribution System			#2	10:00 a.m.	С	#1	1:30 p.m.	С
#8	300 gpm	9:00 a.m.	#1	9:30 a.m.	В		N/A	
#8 Reservoir Discharge	300gpm	9:00 a.m.		9:45 a.m.	В		N/A	

Time To Clear Code

Air In Sample Code

A < 1 Min

#1 Clear at time 0 and then air bubble start to form.

B < 2 Min

#2 Cloudy with small bubbles, turns milky white within 15 seconds.

C < 3 Min

#3 Very cloudy, milky white with air and gets cloudier.

#4 Clear, very little formation of air bubbles.

MFP = Main Filter Plant

FP = Filter Plant

What is evident is that all wells have air entrainment resulting in a milky white coloration as the air comes out of solution and is released. Wells #4, 5, and 10 each pump through an iron filter to a large ground storage reservoir for re-pumping. While there is a slight trace of remaining dissolved air in the supply to the booster pumps and in the pump discharge, it is very slight. As Well #9 pumps through an iron filter, air remains in the water and is evident at the filter effluent and in a distribution system sample, which was collected at well #10 station. Well #8 really is no different than any of the other wells in this regard; however, the 15 minute of detention time in ground storage reservoir is not sufficient time for the air to dissipate. Well #8 is the only well not currently in operation.

A4: February 18, 2003 field parameters.

DATE: 2/18/03 TIME: 11:00 AM

AIR TEMPERATURE:

PURGE VOLUME: since 6 AM at ~600 gpm

WELL# 4

0.3 7.20 12.0 slightly cloudy/some bubbles effervescing/cleared up 1.5 7.21 11.7 tiny bubbles on side 2.5 7.22 11.6 4.5 7.23 11.5 more tiny bubbles 5.5 7.24 11.5 more tiny bubbles 8.0 7.24 11.5 more tiny bubbles 9.0 7.26 11.5 bubble getting larger on bottom 12.5 7.23 11.5 bubble getting larger on bottom 14.0 7.23 11.5 bubbles releasing from bottom 16.0 7.22 17.0 7.22 11.5 19.0 7.22 11.5 bubbles on side getting larger 21.0 7.23 11.6 25.0 7.23 11.6 27.0 7.24 11.6 29.0 7.23 11.6	time (mm)	pН	water temp (°C)	qualitative remarks
1.5 7.21 11.7 tiny bubbles on side 2.5 7.22 11.6 4.5 7.23 11.5 more tiny bubbles 5.5 7.24 11.5 more tiny bubbles 8.0 7.24 11.5 11.5 9.0 7.26 11.5 bubble getting larger on bottom 12.5 7.23 11.5 bubble getting larger on bottom 14.0 7.23 11.5 bubbles releasing from bottom 16.0 7.22 11.5 bubbles on side getting larger 21.0 7.23 11.5 bubbles on side getting larger 21.0 7.23 11.5 bubbles releasing 23.0 7.23 11.6 25.0 7.23 11.6 27.0 7.24 11.6 28.5 7.23 11.6	0.3	7.20	12.0	slightly cloudy/some bubbles effervescing/cleared up
4.5 7.23 11.5 more tiny bubbles 5.5 7.24 11.5 more tiny bubbles 8.0 7.24 11.5 9.0 7.26 11.5 10.0 7.23 11.5 bubble getting larger on bottom 12.5 7.23 11.5 bubble getting larger on bottom 14.0 7.23 11.5 bubbles releasing from bottom 16.0 7.22 11.5 bubbles on side getting larger 21.0 7.23 11.5 bubbles on side getting larger 21.0 7.23 11.5 bubbles releasing 23.0 7.23 11.6 25.0 7.23 11.6 27.0 7.24 11.6 28.5 7.23 11.6	1.5	7.21		
5.5 7.24 6.5 7.24 11.5 more tiny bubbles 8.0 7.24 11.5 9.0 7.26 11.5 10.0 7.23 11.5 bubble getting larger on bottom 12.5 7.23 11.5 bubble getting larger on bottom 14.0 7.23 11.5 bubbles releasing from bottom 16.0 7.22 17.0 7.22 11.5 19.0 7.22 11.5 bubbles on side getting larger 21.0 7.23 11.5 bubbles releasing 23.0 7.23 11.6 25.0 7.23 11.6 27.0 7.24 11.6 28.5 7.23 11.6	2.5	7.22	11.6	
6.5 7.24 11.5 more tiny bubbles 8.0 7.24 11.5 9.0 7.26 11.5 10.0 7.23 11.5 bubble getting larger on bottom 12.5 7.23 11.5 bubble getting larger on bottom 14.0 7.23 11.5 bubbles releasing from bottom 16.0 7.22 11.5 19.0 7.22 11.5 bubbles on side getting larger 21.0 7.23 11.5 bubbles releasing 23.0 7.23 11.6 25.0 7.23 11.6 27.0 7.24 11.6 28.5 7.23 11.6	4.5	7.23	11.5	more tiny bubbles
8.0 7.24 11.5 9.0 7.26 11.5 10.0 7.23 11.5 bubble getting larger on bottom 12.5 7.23 11.5 bubble getting larger on bottom 14.0 7.23 11.5 bubbles releasing from bottom 16.0 7.22 17.0 7.22 11.5 19.0 7.22 11.5 bubbles on side getting larger 21.0 7.23 11.6 bubbles releasing 23.0 7.23 11.6 25.0 7.23 11.6 27.0 7.24 11.6 28.5 7.23 11.6	5.5	7.24		
9.0 7.26 11.5 10.0 7.23 11.5 bubble getting larger on bottom 12.5 7.23 11.5 bubble getting larger on bottom 14.0 7.23 11.5 bubbles releasing from bottom 16.0 7.22 11.5 19.0 7.22 11.5 bubbles on side getting larger 21.0 7.23 11.5 bubbles releasing 23.0 7.23 11.6 25.0 7.23 11.6 27.0 7.24 11.6 28.5 7.23 11.6	6.5	7.24	11.5	more tiny bubbles
10.0 7.23 11.5 bubble getting larger on bottom 12.5 7.23 11.5 bubble getting larger on bottom 14.0 7.23 11.5 bubbles releasing from bottom 16.0 7.22 11.5 19.0 7.22 11.5 bubbles on side getting larger 21.0 7.23 11.5 bubbles releasing 23.0 7.23 11.6 25.0 7.23 11.6 27.0 7.24 11.6 28.5 7.23 11.6	8.0	7.24	11.5	
12.5 7.23 11.5 bubble getting larger on bottom 14.0 7.23 11.5 bubbles releasing from bottom 16.0 7.22 17.0 7.22 11.5 19.0 7.22 11.5 bubbles on side getting larger 21.0 7.23 11.5 bubbles releasing 23.0 7.23 11.6 25.0 7.23 11.6 27.0 7.24 11.6 28.5 7.23 11.6	9.0	7.26	11.5	
12.5 7.23 11.5 bubble getting larger on bottom 14.0 7.23 11.5 bubbles releasing from bottom 16.0 7.22 11.5 17.0 7.22 11.5 19.0 7.22 11.5 bubbles on side getting larger 21.0 7.23 11.5 bubbles releasing 23.0 7.23 11.6 25.0 7.23 11.6 27.0 7.24 11.6 28.5 7.23 11.6	10.0	7.23	11.5	bubble getting larger on bottom
14.0 7.23 11.5 bubbles releasing from bottom 16.0 7.22 17.0 7.22 11.5 19.0 7.22 11.5 bubbles on side getting larger 21.0 7.23 11.5 bubbles releasing 23.0 7.23 11.6 25.0 7.23 11.6 27.0 7.24 11.6 28.5 7.23 11.6	12.5	7.23	11.5	
17.0 7.22 11.5 19.0 7.22 11.5 bubbles on side getting larger 21.0 7.23 11.5 bubbles releasing 23.0 7.23 11.6 25.0 7.23 11.6 27.0 7.24 11.6 28.5 7.23 11.6	14.0	7.23	11.5	
19.0 7.22 11.5 bubbles on side getting larger 21.0 7.23 11.5 bubbles releasing 23.0 7.23 11.6 25.0 7.23 11.6 27.0 7.24 11.6 28.5 7.23 11.6	16.0	7.22		
21.0 7.23 11.5 bubbles releasing 23.0 7.23 11.6 25.0 7.23 11.6 27.0 7.24 11.6 28.5 7.23 11.6	17.0	7.22	11.5	
21.0 7.23 11.5 bubbles releasing 23.0 7.23 11.6 25.0 7.23 11.6 27.0 7.24 11.6 28.5 7.23 11.6	19.0	7.22	11.5	bubbles on side getting larger
25.0 7.23 11.6 27.0 7.24 11.6 28.5 7.23 11.6	21.0	7.23	11.5	bubbles releasing
27.0 7.24 11.6 28.5 7.23 11.6	23.0	7.23	11.6	
28.5 7.23 11.6	25.0	7.23	11.6	
	27.0	7.24	11.6	
29.0 7.23 11.6	28.5	7.23	11.6	
	29.0	7.23	11.6	
	211 = 11 = 11			
				2 1020
	2			

DATE: 2/18/03 TIME: 11:40 AM

AR TEMPERATURE:

PURGE VOLUME: since 8 am at 200gpm

well 5

time	рН	water temp (°C)	qualitative remarks
(M in) 0.8	7.04		[
	7.31	11.3	bubbles/cloudy - cleared within 30 sec.
1.8	7.31	11.1	very tiny bubbles forming on sides
2.5	7.31	11.0	more bubbles forming on sides
3.0	7.30	11.0	
4.0	7.31	11:0	more formi ng and larger sizes
5.0	7.31	11.0	
6.0	7.32	11.0	
7.0	7.33	11.1	
8.0	7.34	11.1	more bubbles on sides and largersizes
9.0	7.34	11.1	bubbles - some releasi ng
10.0	7.35	11.1	
11.0	7.35	11.1	
12.0	7.36	11.2	
13.5	7.36	11.2	more bubbles form ing on sides
15.0	7.37	11.3	
16.0	7.38	11.3	bubbles releasing
17.5	7.39	11.4	
19.5	7.39	11.4	
21.0	7.38	11.5	biggerbubbles
23.0	7.37	11.6	
24.5	7.37		
26.0	7.36	11.7	
28.0	7.36	11.8	
29.0	7.36	11.8	
			
-			

DATE: 2/18/03 TIME: 9:30 AM

AIR TEMPERATURE:

PURGE VOLUME: since 8 AM 310 gpm

WELL# 8

time (min)	рН	water temp (°C)	qualitative remarks
0.3	6.96	11.1	no bubbles
0.5	6.94		water looks clear - not cloudy
0.8	6.93		
1.0	6.95		
1.5	6.98		
2.0	7.01		
2.5	7.03		
3.0	7.03		tiny bubbles on sides
4.0	7.05		
5.0	7.08	11.0	
5.5	7.10		
6.5	7.14		bubbles forming on bottom
7.5	7.17	10.9	
9.0	7.19		more tiny bubbles on sides
10.5	7.23	10.9	bubbles on bottom getting larger
11.5	7.26		5 5
12.5	7.30	10.9	1440003523400
15.0	7.32	10.9	
18.5	7.34	10.9	
19.5	7.34		more tiny bubbles
20.5	7.35	10.9	shook it and pH rose
22.0	7.36	10.9	shook it and pH rose
22.5	7.37	10.9	hiny bubbles releasing from bottom to top
24.0	7.36		
25.0	7.37	10.9	
26.0	7.38	10.9	bubbles appear to be getting larger
27.5	7.38	10.9	11 5-3-3-
30.0	7.39	10.9	

DATE: 2/18/03 TIME: 10:10 AM

AIR TEMPERATURE:

PURGE VOLUME: 1000 gpm "since all night"

well 9

time (min)	рН	water tem p (°C)	qualitative remarks	
0.5	7.16	11.2	very cloudy	
1.5	7.17	11.2	u pperhalf cl oudy (bubbles)lower more clear	
2.0	7.17	11.1	cloudness is gone; verry few bubbles on side	
3.0	7.17	11.0	very tiny bubbles on bottom forming	
4.0	7.17	10.9		
5.0	7.17	10.8	shook container	
6.0	7.18	10.8	more tiny bubbles forming on sides	
7.0	7.18	10.8	more tiny bubbles forming on sides	
8.0	7.18	10.8	more tiny bubbles forming on sides	
9.5	7.18	10.8	more tiny bubbles forming on sides	
11.5	7.19	10.9	more tiny bubbles forming on sides	
13.5	7.19	10.9		
16.0	7.21	11.0		
17.0	7.22	11.0		
18.0	7.22	11.1		
19.0	7.22		lots of tiny bubbles on sides	
20.0	7.22	11.2		
21.0	7.22	11.2		
23.0	7.22	11.3		
25.5	7.22	11.4		
27.0	7.22	11.4		
28.0	7.22	11.5		

DATE: 2/18/03 TIME: 12:10 PM

AIR TEMPERATURE:

PURGE VOLUME: 540 gpm since 8 am

WELL# 10

time (m in)	рН	water temp (°C)	qualitative remarks	
0.8	7.05	12.2	very cloudy bubbl y/most of anywell	
1.0	7.11	11.9	cleared ~50 sec.	
1.5	7.18	11.8	tiny bubbles on sides	
2.3	7.25	11.9		
3.0	7.28	11.9	more formi ng getting larger	
4.0	7.30	11.9		
5.0	7.32	11.9		
6.0	7.30	11.9	many bubbles on sides - more than other wells	
8.0	7.31	12.1		
9.5	7.32	12.2		
10.5	7.32	12.2		
11.0	7.33	12.3		
12.5	7.33	12.4		
14.0	7.34			
16.0	7.36	12.6		
18.0	7.35	12.7	sides of container covered with many bubbles	
21.0	7.36	12.9		
23.0	7.36	13.0		
24.0	7.36	13.2		
25.0	7.36	13.3		
26.0	7.36	13.3		
27.0	7.36	13.4		
28.0	7.37	13.5	TO CHEROLOGY.	
29.0	7.37	13.5		
30.0	7.37	13.6		

DATE:	2/18/03		
TIME :	1:00 PM		
IR TEMP	PERATURE		
PURGE V	OLUME:	samples taken from o	overflow bsin

well 8 overflow basin

time (nın)	pН	water temp (°C)	qualitative remarks
	7.13	10.7 V	vell 8 pumpwas turned off at about 10 am and sat until 1 pm
-			
-			

APP END X J

LETTER FROM USGS May 14, 2003

United States Department of the Interior

U.S. GEOLOGICAL SURVEY

Water Resources Division 8505 Research Way Middleton, Wisconsin 53562-3586 phone: (608) 828-9901 fax: (608) 821-3817

http://wi.water.usgs.gov

Mr. Gary Rosenbeck McMahon and Associates Inc. 1445 McMahon Drive Neenah WI 54957-1025

May 14, 2003

Dear Gary,

The laboratory analyses and the interpretation of the analyses for dissolved gas from the Kaukauna wells are very interesting. The results of the analyses have determined that the gas is N_2 , which is not a human health concern. The hydrologic conceptual model for the Lower Fox River Valley that we have used requires that the Sinnipee Group be a confining unit, which would preclude recent rapid recharge to the sandstone aquifer. Based on previous discussion that Randy Hunt, from our office, has had with Tim Grundl, we would like to analyze water samples from the Kaukauna wells for oxygen isotopes. These analyses would help determine if the recharge water is recent or perhaps recharged under a colder climate, for example, during the Pleistocene. The oxygen isotope analyses will contribute to the understanding of how recharge occurs to the sandstone aquifer in the Kaukauna area. I assume Tim will be in touch with you sometime this summer to discuss sampling.

Sincerely,

Jim Krohelski Hydrologist

APPENDIX K

PROPOSAL FROM MEMBRANE LIQUI-CEL MEMBRANE CONTRACTORS

From:

<PMCMURRA@celgard.net>

To:

<grosenbeck@mcmgrp.com>

Date:

2/25/03 1:10PM

Subject:

Membrana Quotation

Gary,

I have a trached a quota tion for the application we discussed, including a perform ance estimate.

I included 3 cases: 1 pass, 2 pass, and 3 pass. In each case, everything is the same except the number of contactors.

I also included the vacuum pump size for each case.

The pump I quoted is the larger of the 2 sizes.

I also have attached some literature about the pumps.

I hope we can work with you on this project. Please don't hesitate to give me a call ifyou have questions.

Regards,
Patrick McMurray
Technical Service / Inside Sales
Membrana - Charlotte
A Division of Celgard, Inc.
13800 South Lakes Drive
Charlotte, NC USA 28273

PH: 704-587-8455 FX: 704-587-8736

e-mail: patrickmcmurray@celgard.com

Web - www.liqui-cel.com www.membrana.com

<<pre><<jpm03-050 McMahon Assoc.dot>> <<XBA 101 to 107.pdf>> <<LEM
110-170.pdf>>

Quotation_{Date:}

Feb. 25, 2003 Quotation Number:

JPM03-050

To: Gary Rosenbeck

McMahon Associates

Phone: 920-751-4200

Fax:

From: Patrick McMurray

Membrana - Charlotte

(704) 587-8455 Phone:

e-mail: patrickmcmurray@celgard.com

Re:

Liqui-Cel® Membrane Contactor Quotation

Number of pages: 3

(Including cover sheet)

Gary,

Thank you for your interest in Liqui-Cel Membrane Contactors. You will find pricing and a product description for your application below.

Description	Unit	Price	Part Number
10 x 28 Liqui-Cel® Industrial Membrane Contactor X-IND fiber, Epoxy potting, FRP housing 3" ANSI RF water connections 1" ANSI RF gas connections		Qty: 1-5: \$10,000 ea Qty: 6-10: \$9,600 ea	
SIHI Liquid Ring Vacuum Pump XBA-106 Vacuum Pump System LEM 170 Pump Motor, 7.5 Hp, 1750 rpm Max Capacity – 105 ACFM @ 27" Hg (100 torr)	Standard*	\$4,100	XBA-106
	OE*	\$4,625	
	4B*	\$9,450	

Note – If 10x28 contactors will be mounted horizontally, place an "R" after the part number.

Availability - Contactor - 1 week from receipt of PO; Vacuum Pump 4-6 weeks from receipt of PO. Terms - FCA Charlotte, NC USA Price valid for 90 days.

If you have any questions please contact me at the numbers listed above. To place an order, please fax the PO to our customer service department (704-587-8585). When placing an order, please reference the quote number listed on this quote.

Thanks again and we look forward to working with you in the future.

Regards,

Membrana-Charlotte

A Division of Celgard, Inc. 13800 South Lakes Drive Charlotte, NC 28273 USA Phone: (704) 588-5310 (800) 235-4273 fax: (704) 587-8585

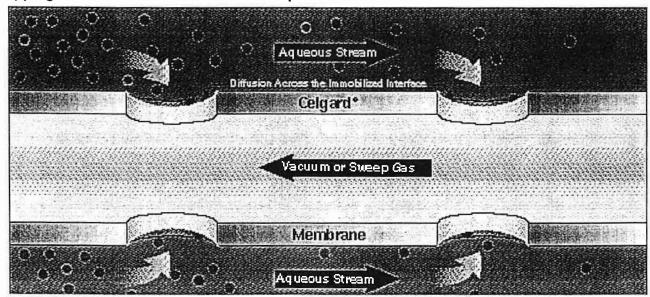
^{*} Reference materials of construction as listed on the vacuum pump data sheet.

VICTOR Performance

Design Criteria	1 Pass	2 Pass	3 Pass	
Contactor Size	10-inch	10-inch	10-inch	
Membrane Type	XIN-industrial	XIN-Industrial	XIN-Industrial	
Feed Flow (gpm)	500.0	500.0	500.0	
Temperature (F)	50	50	50	
(C)	10	10	10	
pH	6.0	6.0	6.0	
Component Concentrations (ppb)				
"Inlet" 02	11,235	11,235	11,235	
N2	18,151	18,151	18,151	
CO2 (free)	50,000	50,000	50,000	
"Average Outlet" O2	2,531	532	64	
N2	5,893	3,608	3,125	
CO2 (free) - ppm	22.88	11.54	8.70	
"Maximum Outlet" 02	2,884	759	102	
CO2 (free) - ppm	28.15	14.62	10.77	
Minimum Gas Removal 02		93.24%	99.09%	
CO2 (free)	43.69%	70.75%	78.46%	
No. of Contactors Required	3	6	9	
No. Parallel Trains	3	3	3	
No. in Series	1	2	3	
Approximate Pressure Drop				
Thru Train Less Pipe Loss (psi)	5.14	10.28	15.42	
Maximum Allowable				
Feed Pressure (psig)	62.24	62.24	62.24	
Operating Mode	Combo w/ N2	Combo w/ N2	Combo w/ N2	
Estimated Sweep Rate				
(scfm @ 60 F, 14.7 psi.)	3.00	6.00	9.00	
Sweep Composition				
Oxygen	0.005%	0.005%	0.005%	
Nitrogen	99.995%	99.995%	99.995%	
Carbon Dioxide	0.000%	0.000%	0.000%	
Approximate Vapor Load				
(ib-mole/hr)	0.866	1.495	2.063	
Approx. Vapor Molar Comp.				
Oxygen	7.87%	5.60%	4.24%	
Nitrogen	67.51%	72.24%	75.55%	
Water	9.10%	9.10%	9.10%	
Carbon Dioxide	15.53%	13.07%	11.12%	
Vacuum Volume Flow (acfm)	40.8	70.4	97.2	
Vacuum Pump Type	Liquid Ring	Liquid Ring	Liquid Ring	

Membrana-Charlotte
A Division of Celgard, Inc.
13800 South Lakes Drive
Charlotte, NC 28273 USA
Phone: (704) 588-5310
(800) 235-4273
fax: (704) 587-8585
www.membrana.com

This example calculates how much oxygen will dissolve into water exposed to air at 1.0 atmosphere. By lowering the partial pressure of oxygen in contact with the water, we can create a driving force to remove the dissolved oxygen from the water. This can be achieved by creating a vacuum in the air exposed to the water, low-


ering the concentration of oxygen in contact with the water or a combination of the two.

These two operating conditions govern the operation of membrane contactors, vacuum degasifiers and force draft decarbonators.

The Liqui-Cel® Membrane Contactor is a unique membrane

device that can be used to alter the partial pressure of gases in contact with a liquid for the purpose of dissolved gas removal. It's compact size, ease of use and versatility offer many benefits over conventional degasification equipment.

Stripping of Dissolved Gases from and Aqueous Stream

This product is to be used only by persons familiar with its use. It must be maintained within the stated limitations. All sales are subject to seller's terms and conditions. Purchaser assumes all responsibility for the use and safety of this product. Seller reserves the right to modify this document without prior notice. Check with your representative to verify the latest update.

To the best of our knowledge, the information contained herein is accurate. However, neither Seller nor any of its affiliates assumes any liability whatsoever for the accuracy or completeness of the information contained herein. Final determination of suitability of any material and whether there is any infringement of patents is the sole responsibility of the user. Users of any substance should salisfy themselves by independent investigation that the material could be used safely. We may have described certain hazards, but we cannot guarantee that these are the only hazards that exist.

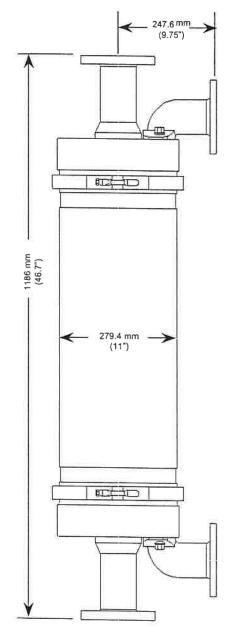
Liqui-Cel, Celgard, SuperPhobic and MiniModule are registered trademarks and NB is a trademark of Celgard Inc.

©2002 Membrana - Charlotte. A Division of Celgard Inc.

(TB9_Rev3_ 9-02)

Membrana - Charlotte A Division of Celgard Inc. 13800 South Lakes Drive Charlotte, North Carolina 28273 USA

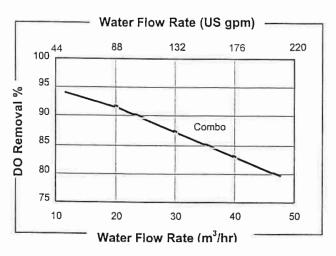
Phone: (704) 587-8888 Fax: (704) 587-8585 Europe Office Norderstedt Erlengang 31 22844 Norderstedt Germany

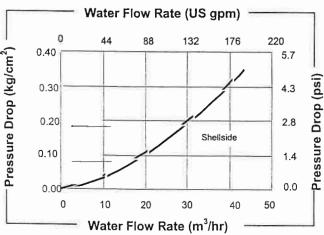

Phone: +49 40 5261 0878 Fax: +49 40 5261 0879 Japan Office Shinjuku Mitsui Building, 27F 1-1, Nishishinjuku 2-chome Shinjuku-ku, Tokyo 163-0427

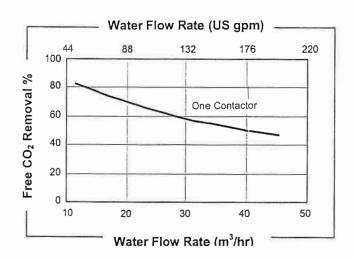
Phone: 81 3 5324 3361 Phone: 81 3 5324 3369 NATAADDANIA IVILIVILIVIATA Underlining Performance

Membrane Contactors

INDUSTRIAL 10x28


Cartridge Configuration	Industrial Use Extra-Flow with Center Baffle
Liquid Flow Guidelines	10 – 48 m³/hr (44 – 210 gpm)
Membrane Type	X-IND Fiber
Membrane/Potting Material	Polyolefin / Epoxy
Maximum Shellside Working Temperature/Pressure* [Using 50mm va cuum on Lumenside. Add 1.05kg/cm² (15psig) when	50°C, 4.6 kg/cm² or 4.5 bar In European Union Countries 50°C, 5.3 kg/cm² or 5.2 bar In Rest of World
vacuum is not used.]	(122°F, 65 psig) In European Union Countries (122°F, 75 psig) In Rest of World


Material	Fiber Reinforced Plastic (FRP) for Industrial Use Color is Gray				
Flange Connections					
Shellside (Liquid Inlet/Outlet)	 3 inch class 150 raised face flange per ANSI B16.5 80A at 10K flat face flange,per JIS B2238 				
Lumenside	1 inch class 150 raised face flange per ANSI B16.5 50A at 10K flat face flange per JIS B2238				
Max. Allowable Working Pressure*	4.6 Kg/cm² (4.5 bar or 65 psi) In European Union Countries 5.3 Kg/cm² (5.2/bar or 75 psi) Rest of World				
Seal Options					
Material	Applications				
EPDM (ANSI / NSF 61)	General Purpose				
Dry	33 kg. (73 lbs.)				
Liquid full (sh ellsidel)t	57 kg. (125 lbs.)				
Cartridge only - dry	10 kg. (23 lbs.)				
Shipping weight	44 kg. (98 lbs.)				


*Pressures are based on nondangerous liquids and nondangerous gasses per the European Union Pressure Equipment Directive /97/23/EC

ADDITIONAL NOTES:

- This Contactor Complies with the PED. The pressures and volumes of liquid processed do not require a CE Mark. This device is Manufactured with Sound Engineering Practice.
- This Industrial Contactor is NOT manufactured with FDA Compliant materials.

Cartridge Specifications					
Characteristics	Test Conditions	Specifications			
Performance 0₂ Removal	Shellside water flow: 160 gpm, 20°C (68°F) Lumenside № Flow: 3.5 ft³/min, 1.0 atm at 20°C	80.1% minimum			
Pressure Drop	Shellside water flow: 160 gpm, 20°C (68°F)	6.0 psi maximum			

Curves represent nominal values, generated using water at 20°C. Characteristics may change under different operating conditions.

This product is to be used only by persons familiar with its use. It must be maintained within the stated limitates. At I sales are ubject to set I let's terms and conditions. Rehas responsibility for the use and safety of this product. Settler reserves the right to modify this documen without primotice. Check without represe native to verify the latest updat to knowledge the information contained herein is accurate. However, neither Setter nor any of its affiliate therein. Final determination of the suitability of any material and whether there is any infringement of patents is the sole reassibility of the useUse rs of any substance should satisfy themselves by independent investigation that the material can be used safety. We may have described certain SuperPhobic and MiniModule are registered trademarks and NB is a trademark of Cetgard Inc.

©2002 Membrana - Charlotte A Division of Celgard Inc

(D81_rev.1 10x28ind 11/02)

Membrana - Charlotte

A Division of Celgard Inc. 13800 South Lakes Drive Charlotte, North Carolina 28273 USA

Phone: (704) 587 8888 Fax: (704) 587 8585

Norderstedt Erlengang 31 22844 Norderstedt Germany

Europe Office

Phone: +49 40 5261 0878 Fax: +49 40 5261 0879 Japan Office

Shinjuku Mitsui Building, 27F 1-1, Nishishinjuku 2-chome Shinjuku-ku, Tokyo 163-0427 Japan

Phone: 81 3 5324 3361 Fax: 81 3 5324 3369 MEMBRANA Underlining Performance

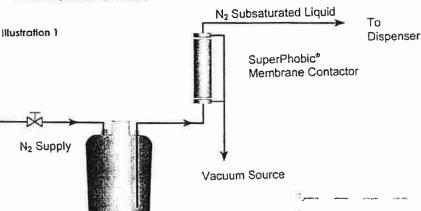
SuperPhobic® Membrane Contactors

Bubble Removal for Enhanced Processing and Yield Improvement

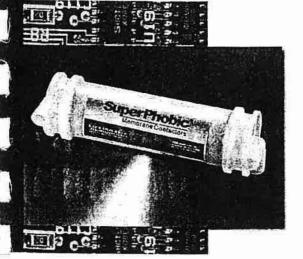
> Developer: Emulsions Idks ils

Bubble Removal for Enhanced Processing and Yield Improvement

A mechanical pump or a pressurized gas, such as nitrogen, is often used to move liquids from one process to the next. When moving solutions by these methods, microbubbles have a tendency to form. The actual formation of the microbubbles occurs when the liquid pressure is reduced below the saturation pressure of all dissolved gasses within the liquid. Bubbles usually surface at the liquid discharge and can be disruptive to the process and quality of the solution.

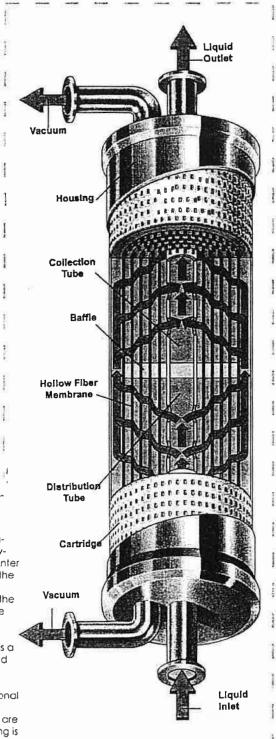

Preventing Microbubbles

Microbubbles can be prevented by reducing the dissolved gas concentration below the atmospheric equilibrium levels. SuperPhobic® Membrane Contactors are ideal for removing these microbubbles from the process. The membrane acts as a support medium that keeps the liquid on the outside of the membrane while allowing the gases in the liquid to permeate through the membrane into the vacuum phase.


The contactor is placed in-line and connected to a vacuum source (see Illustration 1). The vacuum lowers the partial pressure of the gas phase in the lumens (inside) of the Hollow Fiber. The gasses in the liquid solution want to reach equilibrium with the gases in the vacuum phase and they permeate out of the solution through the membrane wall leaving the liquid bubble free.

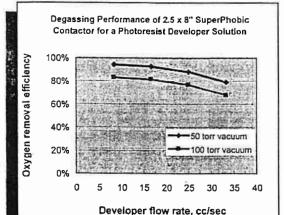
Bubble formation is a problem where coalings are applied to substrates in the semiconductor, photographic film and lithographic plate industries. In the semiconductor industry the application of photo resist and developer solutions is critical and bubbles negatively impact wafer yields.

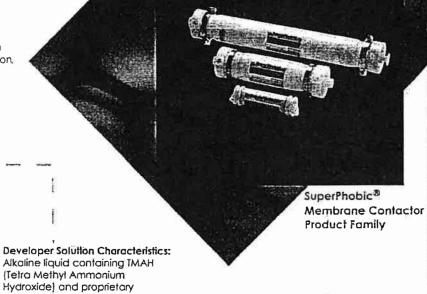
The lithographic plating, film and paper industries can experience coating defects as well. Entrapped gasses cause pinholes to form and thereby reduce the quality of the printing films, plates and coating solutions. SuperPhobic contactors will remove dissolved gasses and reduce the likelihood of pinhale formation.


Dispense Canister

Product Design SuperPhobic Contactors utilize the patented Extra-Flow design where a flowdirecting baffle in the center of the contactor directs the liquid radially across the membrane to maximize the mass transfer and surface contact area.

The time it lakes to degas a solutionis greatly reduce d due to he larg e suface area available for gas transfer ve rsus the traditional vadum d egassing lank. SuperPhobi c Cotactor s are used in-line anddegass ing is immediate.

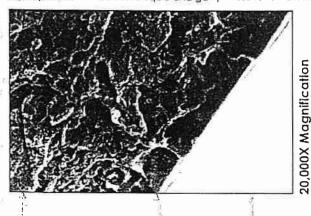

SuperPhobic Membrane Contactors


SuperPhobic

Membrane Contactors

Illustration 2 shows the oxygen removal performance of a SuperPhobic Contactor used to degas a developer solution.

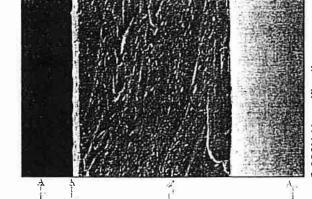
As a rule of thumb any fluid with a surface tension between 20-40 dynes/cm is ideally suited for degassing with the SuperPhobic Contactors



Applications

- Developer Solution debubbling
- Emulsion degassing
- ⇒ Debubbling Inks
- Debubbling photographic coating solutions for papers, films, and printing plates
- Degassing oily solutions

The Membrane


The Hollow Fiber Membrane used in SuperPhobic Contactors is a proprietary semi-permeable porous membrane with a non-porous but gas-permeable layer on the outer surface. The process liquid comes in contact with this outer membrane surface, which allows gas diffusion but no liquid flow across the membrane. This membrane introduces a barrier near the liquid phase that allows the liquid and gas phases to remain independent of each other.

Membrane

Outer wall

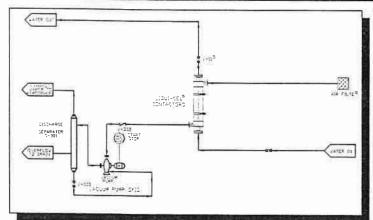
Liquid side/ Shellside

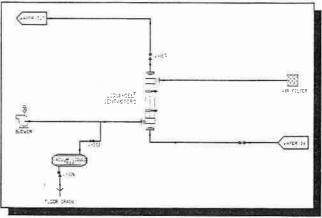
Liquid side Outer Wall

Membrane

Gas side/ Lumenside

www.liqui-cel.com


000X Magnification


Liqui-Cel®

TechBrief

Membrane Contactors

Volume 37 October 2002

System Configuration

The Liqui-Cel system configuration is so simple that the only requirement is to connect your water line and either a liquid ring vacuum pump or a regenerative air blower. You can see the simplicity of the system by reviewing the sample P&ID's above.

Cleaner System

When using a forced draft tower, high purity RO effluent water comes in direct contact with air, which has the potential of adding particles and dissolving other substances like organic matter into your water.

Liqui-Cel Membrane Contactors, however, use Celgard® microporous hollow fiber membrane, which separates the gas phase from the liquid phase. Gas transfer occurs through a 0.03 micron pore making it virtually impossible to re-contaminate the high purity water. This high standard of purity has allowed Liqui-Cel Membrane Contactors to become the degas technology of choice in the pharmaceutical, power and semiconductor industries.

System Performance

The table to the right is meant to give you an understanding of system performance. You can see the CO₂ removal percentage at different water flow rates.

These calculations are based on 20° C water temperature. For a large systems we would recommend multiple 6-inch contactors in parallel or we would suggest moving up to our 10 x 28 INDUSTRIAL Contactor.

Flow rate (m3/h)	CO2 removal %	6 x 28 units	Vacuum pump capacity	Vacuum level (mmHg)
2	90	1	15 m3/h	125
5	97	2	34 m3/h	250
10	94	2	65 m3/h	250

To estimate the remaining amount of CO2 in the water, you can multiply your inlet CO2 in ppm by (1-% removal). For example, if the CO2 inlet is 100 ppm at a flow rate of 5 m 3 /h, you would have $100^*(1-0.97) = 3$ ppm CO2 left in the water. As an added benefit, the contactors are non selective to gasses and they will also remove any dissolved oxygen in the water that could negatively impact your process.

In summary, Liqui-Cel Contactors are clean, small, modular, efficient, and proven in the field. We hope you agree that Liqui-Cel contactors are the best choice for your CO₂ removal application. Please call us to learn more or to let us size your specific system. You can also visit our website at www.liqui-cel.com for more information.

The product is to be used only by per sons fairliar with itsuse. It must be maintained within the tated limitations. All sales are ubject diseller serms and conditions. Purchaser assumes all responsibility follows a search safety of this product. Seller receives the light temodify this document without increase. Check with your received the latest update.

To the best of our knowledge, the information contained herein is accurate. However, neither Seller nor any of its affiliates assumes any liability whatsoever for th faccuracy or completenes of the information contained herein. Final determination of suitability of any material and whether there is any infringement of patents is the sole responsibility of the use fulsers of any substance flouid satisfy themselves by independent investigation that the material could be used safely. We may have described certain hazards, but we cannot guarantee that these are He only hazards that exist Liqui-Cel, Celgard, SuperPhobic and MiniModule are registered trademarks and NB is a trademark of Celgard Inc.

©2002 Membrana - Charlotte A Division of Celgard Inc.

(TB37_10-02)

Membrana - Charlotte

A Division of Celgard Inc. 13800 South Lakes Drive Charlotte, North Carolina 28273 USA

Phone: (704) 587 8888 Fax: (704) 587 8585 Europe Office Norderstedt

Erlengang 31 22844 Norderstedt Germany

Phone: +49 40 5261 0878 Fax: +49 40 5261 0879 Japan Office

Shinjuku Mitsui Building, 27F 1-1, Nishishinjuku 2-chome Shinjuku-ku, Tokyo 163-0427 Japan

Phone: 81 3 5324 3361 Fax: 81 3 5324 3369 NACA ADDANIA IVICIVIDIA ANIA Underlining Performance

TechBrief

CO₂ Removal— Comparison of Liqui-Cel® Membrane Contactors to Forced Draft Degasifiers

Liqui-Cel Membrane Contactors have been used for over 10 years and they are clearly proven in the field. In effort to help further educate customers on the benefits of Liqui-Cel Membrane Contactors over conventional forced draft degasifiers for CO2 removal, we have prepared the following technical comparison.

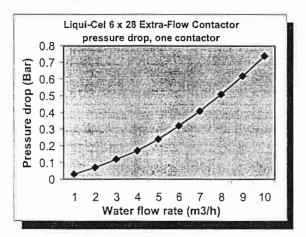
The table below lists the system design requirements that must be thought through at the beginning of the project. You will see that the Liqui-Cel System has fewer restraints.

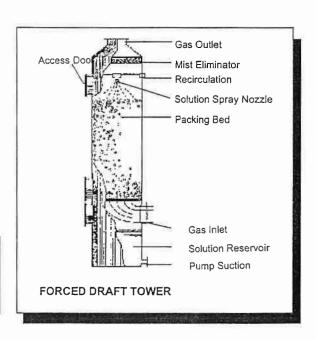
Design Requirements

Forced Draft	Liqui-Cel® Contactors		
Influent water flow rate	Influent water flow rate		
Influent CO2	Influent CO2		
Influent water temp.	Influent water temp.		
Influent water pH	Influent water pH		
CO2 Outlet	CO2 Outlet		
Influent suspended solids	Not applicable		
Physical site limitations	Not applicable		
- Coincia Zona	Not applicable		
Wind Loading	Not applicable		
Sump retent ion	Not applicable		

System Size and Placement

The size of a Liqui-Cel Contactor is comparable to a reverse osmosis (RO) membrane, which makes it possible to design your RO unit and easily accommodate your degassing system in the same system skid/frame. This is impossible when using a forced draft tower. The advantages here are saving space and lowering installation costs. Additionally, no special foundation is needed for your Liqui-Cel System. These points are very important to consider when comparing a Liqui-Cel system to a forced draft tower because the foundation, support structure, and installation of a tower can be a big expense.

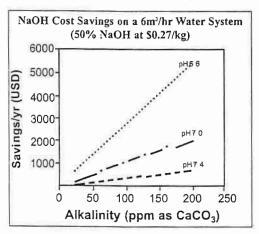

6 x 28 Inch Contactor


Foot print comparison 20 m3/hr (89gpm) system: Forced Draft: 2' ft x 20' ft high 2 Liqui-Cel Contactors on skid with pump: 3'x 2' x 5' ft high

System Pressure Drop

Because the pressure drop in the Liqui-Cel Contactors is so small compared to a forced draft tower, you have a huge benefit of sending your RO permeate water through the Liqui-Cel System and then directly into the storage tank. Similarly, RO permeate can be sent directly through the Liqui-Cel System then through the ion exchange, mixed bed, or EDI and into the storage tank without the need to re-pump. This represents a big cost savings that must be taken into consideration when comparing a Liqui-Cel Contactor system to a forced draft tower.

The following graph shows the pressure drop for one 6x28 Liqui-Cel Contactor.


TechBrie Membrane Contactors

Carbon Dioxide

In a typical small flow water system, that contains an RO membrane and Ion Exchange Resin, Liqui-Cel® Membrane Contactors may be able to save the customer thousands of dollars a year in chemical regeneration

Carbon Dioxide can be removed from the water using Liqui-Cel Membrane Contactors. When the CO2 is removed, the load on the anion exchange equipment is reduced. This will reduce the frequency of anion exchange regeneration.

By reducing the frequency of regeneration, a reduction in NaOH costs can be realized. This is shown in the attached graph for a 6 m³/hr sys-

tem. This graph shows the savings realized through NaOH costs as a function of alkalinity. This data is based on a NaOH cost of \$0.27 USD/ kg (50%). It is shown for three pH levels using a single 4-inch Liqui-Cel Membrane Contactor. The largest savings are realized when the pH is below 7. This is because more CO2 is available for removal. At higher pH more of the CO₂ is in an ionic form that is not easily removed using this technology. Air is blown through the inside of the hollow fiber membrane. The air source can be from a compressor, blower or drawn through the fibers from a vacuum source.

As an example, air can be blown through the contactor using a small blower. The electrical consumption of this size blower is about 0.5 kW. This translates to a yearly electrical

> consumption of about \$300.00 USD per year.

During regeneration, the resin must be rinsed with water. The savings in raw water and wastewaterwill typically be between \$750.00 and \$1000.00 USD per year. This savings can easily offset the yearly electrical consumption of a small blower.

If the regeneration is done by an outside source, the savings will be even more dramatic. The outside source must also pay transportation costs, labor and overhead. If the NaOH savings alone

are reviewed, a small Liqui-Cel system can be paid off in 2-3 years! If the additional cost of labor, chemical storage, waste water treatment and

ion exchange resin replacement are included, the savings are even greater.

If the pH of the water is lowered to prevent scaling of the RO membrane, these cost savings are significantly increased. The increased savings are due to the shift in equilibrium from HCO₃ to CO₂ at lower pH conditions. UnderlowerpH conditions, more CO₂ is available for removal.

The membrane contactors are a very clean, safe way to remove carbon dioxide from water. They will not allow bacteria or other airborne contaminants to come in contact with the water during operation.

If the membranes are placed downstream of an RO membrane, little to no maintenance should be required during their operation.

There are currently hundreds of membranes that have been in operation for 3-5 years without service issues. The Liqui-Cel Membrane Contactors are compact and can easily be installed on existing water systems.

To find out more about this cost savings, please contact your Membrana representative or call 704-587-8511. Also visit our web site liqui-cel.com.

Membrana - Charlotte A Division of Celgard Inc. 13800 South Lakes Drive Charlotte, North Carolina 28273 USA

(704) 587-8888 Phone: Fax: (704) 587-8585 Europe Office Norderstedt Erlengang 31 22844 Norderstedt Germany

Phone: +494052610878 +49 40 5261 0879

Japan Office Shinjuku Mitsui Building, 27F 1-1, Nishishinjuku 2-chome Shinjuku-ku, Tokyo 163-0427 Japan

Phone: 81 3 5324 3361 Phone: 81 3 5324 3369 MEMBER Underlining Performance